Introduction to Information Retrieval

Hinrich Schütze and Christina Lioma http://nlp.stanford.edu/IR-book/

Outline

- 1 Introduction
- 2 Text
- 3 Index
- 4 Ranking
- 5 System

Overview – Ranking

- Ranking search results: why it is important (as opposed to just presenting a set of unordered Boolean results)
- Term frequency: This is a key ingredient for ranking.
- Tf-idf ranking: best known traditional ranking scheme
- Vector space model: One of the most important formal models for information retrieval (along with Boolean and probabilistic models)

Outline – Ranking

- 1 Why ranked retrieval?
- 2 Term frequency
- 3 Tf-idf weighting
- 4 The vector space model

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and of the collection.
- Also good for applications: Applications can easily consum 1000s of results.
- Not good for the majority of users
- Most users are not capable of writing Boolean queries . . .
 - . . . or they are, but they think it's too much work.
- Most users don't want to wade through 1000s of results.
- This is particularly true of web search.

Problem with Boolean search: Feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1 (boolean conjunction): [standard user dlink 650]
 - \rightarrow 200,000 hits feast
- Query 2 (boolean conjunction): [standard user dlink 650 no card found]
 - \rightarrow 0 hits famine
- In Boolean retrieval, it takes a lot of skill to come up with a query that produces a manageable number of hits.

Feast or famine: No problem in ranked retrieval

- With ranking, large result sets are not an issue.
- Just show the top 10 results
- Doesn't overwhelm the user
- Premise: the ranking algorithm works: More relevant results are ranked higher than less relevant results.

Scoring as the basis of ranked retrieval

- We wish to rank documents that are more relevant higher than documents that are less relevant.
- How can we accomplish such a ranking of the documents in the collection with respect to a query?
- Assign a score to each query-document pair, say in [0, 1].
- This score measures how well document and query "match".

Query-document matching scores

- How do we compute the score of a query-document pair?
- Let's start with a one-term query.
- If the query term does not occur in the document: score should be 0.
- The more frequent the query term in the document, the higher the score
- We will look at a number of alternatives for doing this.

Take 1: Jaccard coefficient

- A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

- JACCARD (A, A) = 1
- JACCARD (A, B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Example

- What is the query-document match score that the Jaccard coefficient computes for:
 - Query: "ides of March"
 - Document "Caesar died in March"
 - JACCARD(q, d) = 1/6

What's wrong with Jaccard?

- It doesn't consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms.
 Jaccard does not consider this information.
- We need a more sophisticated way of normalizing for the length of a document.
- Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$ (cosine) . . .
- . . . instead of $|A \cap B|/|A \cup B|$ (Jaccard) for length normalization.

Outline – Ranking

- 1 Why ranked retrieval?
- 2 Term frequency
- 3 Tf-idf weighting
- 4 The vector space model

Binary incidence matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	1	1	0	0	0	1
BRUTUS	1	1	0	1	0	0
CAESAR	1	1	0	1	1	1
CALPURNIA	0	1	0	0	0	0
CLEOPATRA	1	0	0	0	0	0
MERCY	1	0	1	1	1	1
WORSER	1	0	1	1	1	0

. . .

Each document is represented as a binary vector $\subseteq \{0, 1\}^{|V|}$.

Binary incidence matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	157	73	0	0	0	1
BRUTUS	4	157	0	2	0	0
CAESAR	232	227	0	2	1	0
CALPURNIA	0	10	0	0	0	0
CLEOPATRA	57	0	0	0	0	0
MERCY	2	0	3	8	5	8
WORSER	2	0	1	1	1	5

. . .

Each document is now represented as a count vector $\subseteq N^{|V|}$.

Bag of words model

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.
- This is called a bag of words model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want because:
- A document with tf = 10 occurrences of the term is more relevant than a document with tf = 1 occurrence of the term.
- But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

Instead of raw frequency: Log frequency weighting

The log frequency weight of term t in d is defined as follows

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{otherwise} \end{array}
ight.$$

- $\mathsf{tf}_{t,d} \to \mathsf{w}_{t,d}$: $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, \text{ etc.}$
- Score for a document-query pair: sum over terms t in both q and d:

tf-matching-score
$$(q, d) = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

The score is 0 if none of the query terms is present in the document.

Exercise

- Compute the Jaccard matching score and the tf matching score for the following query-document pairs.
- q: [information on cars] d: "all you've ever wanted to know about cars"
- q: [information on cars] d: "information on trucks, information on planes, information on trains"
- q: [red cars and red trucks] d: "cops stop red cars more often"

Outline – Ranking

- 1 Why ranked retrieval?
- 2 Term frequency
- 3 Tf-idf weighting
- 4 The vector space model

Frequency in document vs. frequency in collection

- In addition, to term frequency (the frequency of the term in the document) . . .
- . . .we also want to use the frequency of the term in the collection for weighting and ranking.

Desired weight for rare terms

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC).
- A document containing this term is very likely to be relevant.
- → We want high weights for rare terms like ARACHNOCENTRIC.

Desired weight for frequent terms

- Frequent terms are less informative than rare terms.
- Consider a term in the query that is frequent in the collection (e.g., GOOD, INCREASE, LINE).
- A document containing this term is more likely to be relevant than a document that doesn't . . .
- . . . but words like GOOD, INCREASE and LINE are not sure indicators of relevance.
- → For frequent terms like GOOD, INCREASE and LINE, we want positive weights . . .
- ... but lower weights than for rare terms.

Document frequency

- We want high weights for rare terms like ARACHNOCENTRIC.
- We want low (positive) weights for frequent words like GOOD, INCREASE and LINE.
- We will use document frequency to factor this into computing the matching score.
- The document frequency is the number of documents in the collection that the term occurs in.

idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- df_t is an inverse measure of the informativeness of term t.
- We define the idf weight of term t as follows:

$$idf_t = log_{10} \frac{N}{df_t}$$

(N is the number of documents in the collection.)

- idf_t is a measure of the informativeness of the term.
- [log N/df_t] instead of [N/df_t] to "dampen" the effect of idf
- Note that we use the log transformation for both term frequency and document frequency.

Examples for idf

• Compute idf_t using the formula: $idf_t = log_{10} \frac{1,000,000}{df_t}$

term	df_t	idf_t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

Effect of idf on ranking

- idf affects the ranking of documents for queries with at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.
- idf has little effect on ranking for one-term queries.

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

- tf-weight
- idf-weight
- Best known weighting scheme in information retrieval
- Note: the "-" in tf-idf is a hyphen, not a minus sign!
- Alternative names: tf.idf, tf x idf

Summary: tf-idf

- Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$
- The tf-idf weight . . .
 - . . . increases with the number of occurrences within a document. (term frequency)
 - . . . increases with the rarity of the term in the collection. (inverse document frequency)

Exercise: Term, collection and document frequency

Quantity	Symbol	Definition
term frequency	tf _{t,d}	number of occurrences of t in
		d
document frequency	df_t	number of documents in the
		collection that t occurs in
collection frequency	cf_t	total number of occurrences of
		t in the collection

- Relationship between df and cf?
- Relationship between tf and cf?
- Relationship between tf and df?

Outline – Ranking

- 1 Why ranked retrieval?
- 2 Term frequency
- 3 Tf-idf weighting
- 4 The vector space model

Binary incidence matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	1	1	0	0	0	1
BRUTUS	1	1	0	1	0	0
CAESAR	1	1	0	1	1	1
CALPURNIA	0	1	0	0	0	0
CLEOPATRA	1	0	0	0	0	0
MERCY	1	0	1	1	1	1
WORSER	1	0	1	1	1	0

. . .

Each document is represented as a binary vector $\subseteq \{0, 1\}^{|V|}$.

Count matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	157	73	0	0	0	1
BRUTUS	4	157	0	2	0	0
CAESAR	232	227	0	2	1	0
CALPURNIA	0	10	0	0	0	0
CLEOPATRA	57	0	0	0	0	0
MERCY	2	0	3	8	5	8
WORSER	2	0	1	1	1	5

. . .

Each document is now represented as a count vector $\subseteq N^{|V|}$.

Binary \rightarrow count \rightarrow weight matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTHONY	5.25	3.18	0.0	0.0	0.0	0.35
BRUTUS	1.21	6.10	0.0	1.0	0.0	0.0
CAESAR	8.59	2.54	0.0	1.51	0.25	0.0
CALPURNIA	0.0	1.54	0.0	0.0	0.0	0.0
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0
MERCY	1.51	0.0	1.90	0.12	5.25	0.88
WORSER	1.37	0.0	0.11	4.15	0.25	1.95

. . .

Each document is now represented as a real-valued vector of tf idf weights $\subseteq \mathbb{R}^{|V|}$.

Documents as vectors

- Each document is now represented as a real-valued vector of tf-idf weights $\subseteq \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to web search engines
- Each vector is very sparse most entries are zero.

Queries as vectors

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity ≈ negative distance
- Recall: We're doing this because we want to get away from the you're-either-in-or-out, feast-or-famine Boolean model.
- Instead: rank relevant documents higher than nonrelevant documents

How do we formalize vector space similarity?

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

Questions about basic vector space setup?

Use angle instead of distance

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'. d' is twice as long as d.
- "Semantically" d and d' have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity . . .
- . . . even though the Euclidean distance between the two documents can be quite large.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to cosine(query,document) in increasing order
- Cosine is a monotonically decreasing function of the angle for the interval [0°, 180°]

Cosine

Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- This maps vectors onto the unit sphere
- . . . since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- As a result, longer documents and shorter documents have weights of the same order of magnitude.
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.

Cosine similarity between query and document

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term i in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- This is the cosine similarity of \vec{q} and \vec{d} or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for normalized vectors

 For normalized vectors, the cosine is equivalent to the dot product or scalar product.

$$cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$$

• (if \vec{q} and \vec{d} are length-normalized).

Cosine similarity illustrated

Cosine: Example

term frequencies (counts)

How similar are these novels? SaS:

Sense and

Sensibility PaP:

Pride and

Prejudice WH:

Wuthering

Heights

term	SaS	PaP	WH
AFFECTION	115	58	20
JEALOUS	10	7	11
GOSSIP	2	0	6
WUTHERING	0	0	38

Cosine: Example

term frequencies (counts)

log frequency weighting

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	115	58	20	AFFECTION	3.06	2.76	2.30
JEALOUS	10	7	11	JEALOUS	2.0	1.85	2.04
GOSSIP	2	0		GOSSIP	1.30	0	1.78
WUTHERING	0	0	38	WUTHERING	0	0	2.58

(To simplify this example, we don't do idf weighting.)

Cosine: Example

log frequency weighting

log frequency weighting & cosine normalization

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

- $cos(SaS,PaP) \approx$ 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 ≈ 0.94.
- $cos(SaS,WH) \approx 0.79$
- $cos(PaP,WH) \approx 0.69$
- Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Computing the cosine score

```
CosineScore(q)

1  float Scores[N] = 0

2  float Length[N]

3  for each query term t

4  do calculate w<sub>t,q</sub> and fetch postings list for t

5  for each pair(d, tf<sub>t,d</sub>) in postings list

6  do Scores[d]+ = w<sub>t,d</sub> × w<sub>t,q</sub>

7  Read the array Length

8  for each d

9  do Scores[d] = Scores[d]/Length[d]

10  return Top K components of Scores[]
```

Components of tf-idf weighting

Term frequency		Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\text{max}\{0, \text{log} \tfrac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$	
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$					

50

tf-idf example

- We often use different weightings for queries and documents.
- Notation: ddd.qqq
- Example: Inc.ltn
- document: logarithmic tf, no df weighting, cosine normalization
- query: logarithmic tf, idf, no normalization
- Isn't it bad to not idf-weight the document?
- Example query: "best car insurance"
- Example document: "car insurance auto insurance"

tf-idf example: Inc.Itn

Query: "best car insurance". Document: "car insurance auto insurance".

word	query				document			product		
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

$$1/1.92 \approx 0.52$$

1.3/1.92 ≈ 0.68 Final similarity score between query and document: $\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$ Questions?

Summary: Ranked retrieval in the vector space model

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
- Rank documents with respect to the query
- Return the top K (e.g., K = 10) to the user

Review – Ranking

- Ranking search results: why it is important (as opposed to just presenting a set of unordered Boolean results)
- Term frequency: This is a key ingredient for ranking.
- Tf-idf ranking: best known traditional ranking scheme
- Vector space model: One of the most important formal models for information retrieval (along with Boolean and probabilistic models)

Resources

- Lucene: Similarity class javadoc
 - https://lucene.apache.org/core/3_6_0/api/all/org/apache/lucene/search/Similarity.html
 - Package similarities: 4.0.0
- Resources at http://ifnlp.org/ir
 - Vector space for dummies
 - Exploring the similarity space (Moffat and Zobel, 2005)
 - Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of IIR)

Outline

- 1 Introduction
- 2 Text
- 3 Index
- 4 Ranking
- 5 System

Outline

- 1 Recap
- 2 Why rank?
- More on cosine
- 4 Implementation of ranking
- **5** The complete search system

Term frequency weight

The log frequency weight of term t in d is defined as follows

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{otherwise} \end{array}
ight.$$

idf weight

- The document frequency dft is defined as the number of documents that t occurs in.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

• idf is a measure of the informativeness of the term.

tf-idf weight

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

Cosine similarity between query and document

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \sum_{i=1}^{|V|} \frac{q_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2}} \cdot \frac{d_i}{\sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term i in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- $\vec{q}/|\vec{q}|$ and $\vec{d}/|\vec{d}|$ are length-1 vectors (= normalized).

Cosine similarity illustrated

Overview – System

- The importance of ranking: User studies at Google
- Length normalization: Pivot normalization
- Implementation of ranking
- The complete search system

Outline

- 1 Recap
- 2 Why rank?
- More on cosine
- 4 Implementation of ranking
- **5** The complete search system

Why is ranking so important?

- Last lecture: Problems with unranked retrieval
 - Users want to look at a few results not thousands.
 - It's very hard to write queries that produce a few results.
 - Even for expert searchers
 - → Ranking is important because it effectively reduces a large set of results to a very small one.
- Next: More data on "users only look at a few results"
- Actually, in the vast majority of cases they only examine 1, 2, or 3 results.

Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to "think aloud"
 - Interview them
 - Eye-track them
 - Time them
 - Record and count their clicks

Rapidly scanning the results

Note scan pattern:

Page 3:

Result 1

Result 2

Result 3

Result 4

Result 3

Result 2

Result 4

Result 5

Result 6 <click>

Q: Why do this?

A: What's learned later influences judgment of earlier content.

How many links do users view?

Mean: 3.07 Median/Mode: 2.00

Looking vs. Clicking

- Users view results one and two more often / thoroughly
- Users click most frequently on result one

Presentation bias – reversed results

 Order of presentation influences where users look AND where they click

Importance of ranking: Summary

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking: Distribution is even more skewed for clicking
- In 1 out of 2 cases, users click on the top-ranked page.
- Even if the top-ranked page is not relevant, 30% of users will click on it.
- → Getting the ranking right is very important.
- → Getting the top-ranked page right is most important.

Outline

- 1 Recap
- 2 Why rank?
- More on cosine
- 4 Implementation of ranking
- **5** The complete search system

Why distance is a bad idea

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar. That's why we do length normalization or, equivalently, use cosine to compute query-document matching scores.

Exercise: A problem for cosine normalization

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 Olympics
 - d_2 : a long document that consists of a copy of d_1 and 5 other news stories, all on topics different from Olympics/anti-doping
 - d_3 : a short document on anti-doping rules at the 2004 Athens Olympics
- What ranking do we expect in the vector space model?
- What can we do about this?

Pivot normalization

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot
- Effect: Similarities of short documents with query decrease;
 similarities of long documents with query increase.
- This removes the unfair advantage that short documents have.

Predicted and true probability of relevance

source:

Lillian Lee

Pivot normalization

Pivot normalization

source:

Lillian Lee

Pivoted normalization: Amit Singhal's experiments

	Pivoted Cosine Normalization				
Cosine	Slope				
	0.60	0.65	0.70	0.75	0.80
6,526	6,342	6,458	6,574	6,629	6,671
0.2840	0.3024	0.3097	0.3144	0.3171	0.3162
Improvement	+6.5%	+ 9.0%	+10.7%	+11.7%	+11.3%

(relevant documents retrieved and (change in) average precision)

Outline

- 1 Recap
- 2 Why rank?
- More on cosine
- 4 Implementation of ranking
- **5** The complete search system

Now we also need term frequencies in the index

term frequencies

We also need positions. Not shown here

Term frequencies in the inverted index

- In each posting, store $\mathsf{tf}_{t,d}$ in addition to docID $_d$
- As an integer frequency, not as a (log-)weighted real number
- . . . because real numbers are difficult to compress.
- Unary code is effective for encoding term frequencies.
- Why?
- Overall, additional space requirements are small: less than a byte per posting with bitwise compression.
- Or a byte per posting with variable byte code

Exercise: How do we compute the top *k* in ranking?

- In many applications, we don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
 - Sort
 - Return the top k
- What's bad about this?
- Alternative?

Use min heap for selecting top k ouf of N

- Use a binary min heap
- A binary min heap is a binary tree in which each node's value is less than the values of its children.
- Takes $O(N \log k)$ operations to construct (where N is the number of documents) . . .
- . . . then read off k winners in $O(k \log k)$ steps

Binary min heap

Selecting top *k* scoring documents in *O*(*N* log *k*)

- Goal: Keep the top k documents seen so far
- Use a binary min heap
- To process a new document d' with score s':
 - Get current minimum h_m of heap (O(1))
 - If $s' < h_m$ skip to next document
 - If $s' > h_m$ heap-delete-root $(O(\log k))$
 - Heap-add d'/s' (O(log k))

More efficient computation of top k: Heuristics

- Idea 1: Reorder postings lists
 - Instead of ordering according to docID . . .
 - . . . order according to some measure of "expected relevance".
- Idea 2: Heuristics to prune the search space
 - Not guaranteed to be correct . . .
 - . . . but fails rarely.
 - In practice, close to constant time.

Outline

- 1 Recap
- 2 Why rank?
- More on cosine
- 4 Implementation of ranking
- **5** The complete search system

Complete search system

Tiered indexes

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user
 - If we've only found < k hits: repeat for next index in tier cascade
- Example: two-tier system
 - Tier 1: Index of all titles
 - Tier 2: Index of the rest of documents
 - Pages containing the search words in the title are better hits than pages containing the search words in the body of the text.

Tiered index

Tiered indexes

- The use of tiered indexes is believed to be one of the reasons that Google search quality was significantly higher initially (2000/01) than that of competitors.
- (along with PageRank, use of anchor text and proximity constraints)

Exercise

- Design criteria for tiered system
 - Each tier should be an order of magnitude smaller than the next tier.
 - The top 100 hits for most queries should be in tier 1, the top 100 hits for most of the remaining queries in tier 2 etc.
 - We need a simple test for "can I stop at this tier or do I have to go to the next one?"
 - There is no advantage to tiering if we have to hit most tiers for most queries anyway.
- Question 1: Consider a two-tier system where the first tier indexes titles and the second tier everything. What are potential problems with this type of tiering?
- Question 2: Can you think of a better way of setting up a multitier system? Which "zones" of a document should be indexed in the different tiers (title, body of document, others?)? What criterion do you want to use for including a document in tier 1?

Complete search system

Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction
- Query processing
- Document scoring

Components we haven't covered

- Document cache: we need this for generating snippets (=dynamic summaries)
- Zone indexes: They separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields etc
- Machine-learned ranking functions
- Proximity ranking (e.g., rank documents in which the query terms occur in the same local window higher than documents in which the query terms occur far from each other)
- Query parser

Vector space retrieval: Interactions

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: "+"-constraints and "-"-constraints
- Postfiltering is simple, but can be very inefficient no easy answer.
- How do we combine wild cards with vector space retrieval?
- Again, no easy answer

Review – System

- The importance of ranking: User studies at Google
- Length normalization: Pivot normalization
- Implementation of ranking
- The complete search system

Resources

- Resources at http://ifnlp.org/ir
 - How Google tweaks its ranking function
 - Interview with Google search guru Udi Manber
 - Yahoo Search BOSS: Opens up the search engine to developers.
 For example, you can rerank search results.
 - Compare Google and Yahoo ranking for a query
 - How Google uses eye tracking for improving search