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Introduction to Information Retrieval

Overview — Ranking

= Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

= Term frequency: This is a key ingredient for ranking.
= Tf-idf ranking: best known traditional ranking scheme

= Vector space model: One of the most important formal

models for information retrieval (along with Boolean and
probabilistic models)
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Outline — Ranking

1 — Why ranked retrieval?
2 — Term frequency
3 — Tf-idf weighting

4 — The vector space model



Introduction to Information Retrieval

Ranked retrieval

= Thus far, our queries have all been Boolean.

= Documents either match or don’t.

" Good for expert users with precise understanding of their
needs and of the collection.

= Also good for applications: Applications can easily consum
1000s of results.

= Not good for the majority of users

= Most users are not capable of writing Boolean queries . ..
= ...ortheyare, but they think it’'s too much work.
= Most users don’t want to wade through 1000s of results.

= This is particularly true of web search.
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Problem with Boolean search: Feast or famine

= Boolean queries often result in either too few (=0) or too
many (1000s) results.

= Query 1 (boolean conjunction): [standard user dlink 650]
= — 200,000 hits — feast

= Query 2 (boolean conjunction): [standard user dlink 650 no
card found]

= > 0 hits — famine

" |n Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.
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Feast or famine: No problem in ranked retrieval

= With ranking, large result sets are not an issue.
= Just show the top 10 results
= Doesn’t overwhelm the user

= Premise: the ranking algorithm works: More relevant results
are ranked higher than less relevant results.
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Scoring as the basis of ranked retrieval

We wish to rank documents that are more relevant higher
than documents that are less relevant.

"= How can we accomplish such a ranking of the documents in
the collection with respect to a query?

= Assign a score to each query-document pair, say in [0, 1].

* This score measures how well document and query “match”.
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Query-document matching scores

= How do we compute the score of a query-document pair?
= Let’s start with a one-term query.

= |f the query term does not occur in the document: score
should be 0.

* The more frequent the query term in the document, the
higher the score

= We will look at a number of alternatives for doing this.
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Take 1: Jaccard coefficient

= A commonly used measure of overlap of two sets
" Let A and B be two sets
= Jaccard coefficient:

AN B
AU B|

JACCARD(A, B) =

(A or B+#0)
= JACCARD (A, A) = 1

= JACCARD (A, B)=0ifAnB=0
= A and B don’t have to be the same size.
= Always assignhs a number between 0 and 1.

10
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Jaccard coefficient: Example

= What is the query-document match score that the Jaccard
coefficient computes for:

= Query: “ides of March”
= Document “Caesar died in March”
= JACCARD(qg, d) =1/6

11
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What's wrong with Jaccard?

* |t doesn’t consider term frequency (how many occurrences a
term has).

= Rare terms are more informative than frequent terms.
Jaccard does not consider this information.

= We need a more sophisticated way of normalizing for the
length of a document.

= Later in this lecture, we’ll use |An B|/+/|AU B| (cosine) ...

= ...instead of |[An B|/|A U B| (Jaccard) for length
normalization.
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Outline — Ranking

1 —Why ranked retrieval?
2 — Term frequency
3 — Tf-idf weighting

4 — The vector space model
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Binary incidence matrix

Anthony Julius  The Hamlet Othello Macbeth

and Caesar Tempest

Cleopatra
ANTHONY 1 1 0 0 0 1
BRUTUS 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Each document is represented as a binary vector € {0, 1}IVI

14
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest

Cleopatra
ANTHONY 157 73 0 0 0 1
BRUTUS 4 157 0 2 0 0
CAESAR 232 227 0 2 1 0
CALPURNIA 0 10 0 0 0 0
CLEOPATRA 57 0 0 0 0 0
MERCY 2 0 3 8 5 8
WORSER 2 0 1 1 1 5

Each document is now represented as a count vector € NIVI-
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Bag of words model

= We do not consider the order of words in a document.

= John is quicker than Mary and Mary is quicker than John
are represented the same way.

= Thisis called a bag of words model.

" |n a sense, this is a step back: The positional index was able
to distinguish these two documents.

= We will look at “recovering” positional information later in
this course.

= For now: bag of words model

16
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Term frequency tf

= The term frequency tf, , of term t in document d is defined
as the number of times that t occurs in d.

= We want to use tf when computing query-document match
scores.

= But how?

= Raw term frequency is not what we want because:

= A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the
term.

= But not 10 times more relevant.

= Relevance does not increase proportionally with term
frequency.

17



Instead of raw frequency: Log frequency
weighting

* The log frequency weight of term t in d is defined as follows

W o 1+ |0g10 tft,d ii tft,d >0
SER otherwise

0 tft,d > W, y:
0->0,1->1,2->1.3,10-> 2,1000 = 4, etc.

= Score for a document-query pair: sum over terms t in both g
and d:
tf-matching-score(q, d) =2teqnd(1 +log tf, ;)

= The score is 0 if none of the query terms is present in the
document.

18
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Exercise

= Compute the Jaccard matching score and the tf matching
score for the following query-document pairs.

= q: [information on cars] d: “all you’ve ever wanted to know
about cars”

= g: [information on cars] d: “information on trucks,
information on planes, information on trains”

= q:[red cars and red trucks] d: “cops stop red cars more
often”

19



Introduction to Information Retrieval

Outline — Ranking

1 —Why ranked retrieval?
2 — Term frequency
3 — Tf-idf weighting

4 — The vector space model
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Frequency in document vs. frequency in

collection

= |n addition, to term frequency (the frequency of the term
in the document) . ..

= . ..we also want to use the frequency of the term in the
collection for weighting and ranking.

21
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Desired weight for rare terms

= Rare terms are more informative than frequent terms.

= Consider a term in the query that is rare in the collection
(e.g., ARACHNOCENTRIC).

= A document containing this term is very likely to be
relevant.

- We want high weights for rare terms like
ARACHNOCENTRIC.,

22
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Desired weight for frequent terms

" Frequent terms are less informative than rare terms.

= Consider a term in the query that is frequent in the
collection (e.g., GOOD, INCREASE, LINE).

= A document containing this term is more likely to be
relevant than a document that doesn’t . ..

= ... but words like GOOD, INCREASE and LINE are not sure
indicators of relevance.

= - For frequent terms like GOOD, INCREASE and LINE, we
want positive weights . . .

... but lower weights than for rare terms.

23
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Document frequency

= We want high weights for rare terms like ARACHNOCENTRIC.
= We want low (positive) weights for frequent words like
GOOD, INCREASE and LINE.

= We will use document frequency to factor this into
computing the matching score.

= The document frequency is the number of documents in
the collection that the term occurs in.

24
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idf weight

df, is the document frequency, the number of documents
that t occurs in.

df, is an inverse measure of the informativeness of term t.
We define the idf weight of term t as follows:
idf; = logg d_/\flt
(N is the number of documents in the collection.)
idf, is a measure of the informativeness of the term.
[log N/df, ] instead of [N/df,] to “dampen” the effect of idf

Note that we use the log transformation for both term
frequency and document frequency.
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Examples for idf

= Compute idf, using the formula: idf, = log,, 1.03(}_.000
term df, idf,
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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Effect of idf on ranking

= idf affects the ranking of documents for queries with at
least two terms.

= For example, in the query “arachnocentric line”, idf
weighting increases the relative weight of ARACHNOCENTRIC

and decreases the relative weight of LINE.
= idf has little effect on ranking for one-term queries.

27
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tf-idf weighting

The tf-idf weight of a term is the product of its tf weight
and its idf weight.

N
Wt d = (1 + |Og tft,d) . |Og d—f
t

tf-weight

idf-weight

Best known weighting scheme in information retrieval
Note: the “-” in tf-idf is a hyphen, not a minus sign!
Alternative names: tf.idf, tf x idf

28
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Summary: tf-idf

= Assign a tf-idf weight for each term t in each document d:
we g = (1 + logtfs g) - log a’%
= The tf-idf weight . ..

= . .increases with the number of occurrences within a
document. (term frequency)

= . ..increases with the rarity of the term in the collection.
(inverse document frequency)

29
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Exercise: Term, collection and document
frequency

Quantity Symbol Definition
term frequency tf,,  number of occurrences of tin
d

document frequency df,  number of documents in the
collection that t occurs in
collection frequency cf,  total number of occurrences of

tin the collection

= Relationship between df and cf?
= Relationship between tf and cf?

= Relationship between tf and df?

30
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Outline — Ranking

1 —Why ranked retrieval?
2 —Term frequency
3 — Tf-idf weighting

4 — The vector space model

31



Introduction to Information Retrieval

Binary incidence matrix

Anthony Julius  The Hamlet Othello Macbeth

and Caesar Tempest

Cleopatra
ANTHONY 1 1 0 0 0 1
BRUTUS 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Each document is represented as a binary vector € {0, 1}IVI
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Count matrix

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest

Cleopatra
ANTHONY 157 73 0 0 0 1
BRUTUS 4 157 0 2 0 0
CAESAR 232 227 0 2 1 0
CALPURNIA 0 10 0 0 0 0
CLEOPATRA 57 0 0 0 0 0
MERCY 2 0 3 8 5 8
WORSER 2 0 1 1 1 5

Each document is now represented as a count vector € NIVI-
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Binary - count - weight matrix

Anthony Julius  The Hamlet Othello Macbeth

and Caesar Tempest

Cleopatra
ANTHONY 5.25 3.18 0.0 0.0 0.0 0.35
BRUTUS 1.21 6.10 0.0 1.0 0.0 0.0
CAESAR 8.59 2.54 0.0 1.51 0.25 0.0
CALPURNIA 0.0 1.54 0.0 0.0 0.0 0.0
CLEOPATRA 2.85 0.0 0.0 0.0 0.0 0.0
MERCY 1.51 0.0 1.90 0.12 5.25 0.88
WORSER 1.37 0.0 0.11 4.15 0.25 1.95

Each document is now represented as a real-valued vector of tf
idf weights € RIVI-
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Documents as vectors

= Each document is now represented as a real-valued vector
of tf-idf weights € RIVI-

= So we have a |V|-dimensional real-valued vector space.
= Terms are axes of the space.
= Documents are points or vectors in this space.

= Very high-dimensional: tens of millions of dimensions
when you apply this to web search engines

= Each vector is very sparse - most entries are zero.

35
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Queries as vectors

= Key idea 1: do the same for queries: represent them as
vectors in the high-dimensional space

= Key idea 2: Rank documents according to their proximity to
the query

= proximity = similarity
= proximity = negative distance

= Recall: We're doing this because we want to get away from
the you’re-either-in-or-out, feast-or-famine Boolean
model.

= |nstead: rank relevant documents higher than nonrelevant
documents

36



How do we formalize vector space

similarity?

= First cut: (negative) distance between two points

= ( =distance between the end points of the two vectors)
= Euclidean distance?

= Euclidean distanceisabadidea...

= ... because Euclidean distance is large for vectors of
different lengths.

37
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Why distance is a bad idea

POOR
14 di: Ranks of starving poets swell

d>:Rich poor gap grows

q: [rich poor]

ds: Record baseball salaries in 2010
- RICH

0

The Euclidean distance of ¢ and 32 is large although the distribution
of terms in the query g

and the distribution of terms in the document d, are very similar.

Questions about basic vector space setup?
38
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Use angle instead of distance

= Rank documents according to angle with query

= Thought experiment: take a document d and append it to
itself. Call this document d’. d’is twice as long as d.

= “Semantically” d and d” have the same content.

= The angle between the two documents is O, corresponding
to maximal similarity . . .

= _..even though the Euclidean distance between the two
documents can be quite large.

39
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From angles to cosines

= The following two notions are equivalent.

= Rank documents according to the angle between query and
document in decreasing order

= Rank documents according to cosine(query,document) in
increasing order

= Cosine is a monotonically decreasing function of the angle
for the interval [0°, 180°]

40
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Cosine

50 o0 150 200 250 300 350
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Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length — here we use the L, norm:

[Ixll2 = /205 %7

This maps vectors onto the unit sphere . ..

... since after normalization: ||x||2 = />_; x7 = 1.0

As a result, longer documents and shorter documents have
weights of the same order of magnitude.

Effect on the two documents d and d’ (d appended to
itself) from earlier slide: they have identical vectors after
length-normalization.

42



Cosine similarity between query and

document

d_ Y ad
Glld vV V
9SSl o

Q)
&l
|

‘Ql

cos(g, d) = sim(§,

= g.is the tf-idf weight of term i in the query.

d; is the tf-idf weight of term i in the document.
| g | and | d | are the lengths of § and d.

= This is the cosine similarity of G anc d ...... or,
equivalently, the cosine of the angle between g anc d
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Cosine for normalized vectors

= For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

cos(§,d)=G-d=3,qid

= (if gand d are length-normalized).

44
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Cosine similarity illustrated

POOR
11 V(d1)

RICH
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Cosine: Example

term frequencies (counts)

How similar are term SaS PaP WH
these novels? SaS: AFFECTION 115 58 20
Sense and JEALOUS 10 7 11
Sensibility PaP: GOSSIP 2 0 6
Pride and WUTHERING 0 0 38
Prejudice WH:

Wuthering

Heights

46
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Cosine: Example

term frequencies (counts) log frequency weighting
term SaS PaP WH term SaS PaP WH
AFFECTION 115 58 20 AFFECTION 3.06 2.76 2.30
JEALOUS 10 7 11 JEALOUS 2.0 1.85 2.04
GOSSIP p) 0 6 GOSSIP 1.30 0 1.78
WUTHERING 0 0 38 WUTHERING 0 0 258

(To simplify this example, we don't do idf weighting.)

47
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Cosine: Example

log frequency weighting log frequency weighting &
cosine normalization
term SaS PaP WH term SaS PaP WH
AFFECTION 3.06 2.76 2.30 AFFECTION 0.789 0.832 0.524
JEALOUS 2.0 185 2.04 JEALOUS 0.515 0.555 0.465
GOSSIP 1.30 0 1.78 GOSSIP 0.335 0.0 0.405
WUTHERING 0 0 2.58 WUTHERING 0.0 0.0 0.588

= cos(SaS,PaP) =
0.789 * 0.832 + 0.515 * 0.555 + 0.335 *% 0.0 + 0.0 * 0.0 = 0.94.
= cos(SaS,WH) = 0.79
= cos(PaP,WH) = 0.69
= Why do we have cos(SaS,PaP) > cos(SaS,WH)?

48
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Computing the cosine score

COSINESCORE(q)
1 float Scores[N] =0

float Length[N]

for each query term t

do calculate w; 4 and fetch postings list for t
for each pair(d,tf; 4) in postings list
do Scores[d]+ = w¢g X Wt g

Read the array Length

for each d

do Scores|d] = Scores|d]/Length|d]

return Top K components of Scores|]

O OO ~NO O B WM

[
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Components of tf-idf weighting

Term frequency

Document frequency

Normalization

L (Iog ave) 1+log(tf, 4)

1+loglave,c 4(ti; 4))

n (natural) tf, 4 n (no) 1 n (none) 1
. . N . 1
| (logarithm) 1+ log(tf; 4) t (idf) log af. ¢ (cosine) 7 2w 3
a (augmented) 05 + 05xth, p (prob idf) max{0, log #ﬁ u (pivoted 1/u
max, (th; 4) die uni
que)

1 iftf, 4, >0 . ) a

b (boolean) { 0 otherwise b (byte size) 1/CharlLength”,

a <1
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tf-idf example

= We often use different weightings for queries and documents.
= Notation: ddd.qqq

= Example: Inc.ltn

= document: logarithmic tf, no df weighting, cosine
normalization

= query: logarithmic tf, idf, no normalization
" |sn’t it bad to not idf-weight the document?
= Example query: “best car insurance”

= Example document: “car insurance auto insurance”

51
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tf-idf example: Inc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word

query document product
tf-raw tf-wght df idf  weight | tf-raw tf-wght weight n'lized
auto 0 0 5000 23 0 1 1 1 052 |0
best 1 1 50000 13 13 0 0 0 0 0
car 1 1 10000 2.0 20 1 1 1 0.52 | 1.04
iInsurance | 1 1 1000 30 3.0 2 1.3 1.3 0.68 | 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght:

logarithmically weighted term frequency, df: document frequency, idf:
inverse document frequency, weight: the final weight of the term in the
qguery or document, n’lized: document weights after cosine normalization,
oroduct: the nroduct of final query weight and final document weight

V12 4024124132192

1/1.92 =0.52

1.3/1.92 = 0.68 Final similarity score between query and
document: . iWgi - Wy =0+0+1.04+2.04=3.08 Questions?

52



Summary: Ranked retrieval in the vector space
model

= Represent the query as a weighted tf-idf vector
= Represent each document as a weighted tf-idf vector

= Compute the cosine similarity between the query vector and
each document vector

= Rank documents with respect to the query
= Return the top K (e.g., K =10) to the user

53
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Review — Ranking

= Ranking search results: why it is important (as opposed to just
presenting a set of unordered Boolean results)

= Term frequency: This is a key ingredient for ranking.
= Tf-idf ranking: best known traditional ranking scheme

= Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)
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Resources

= Lucene: Similarity class javadoc

= https://lucene.apache.org/core/3_6_0/api/all/org/
apache/lucene/search/Similarity.html

= Package similarities: 4.0.0

= Resources at http://ifnlp.org/ir
= Vector space for dummies
= Exploring the similarity space (Moffat and Zobel, 2005)
= Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of IIR)
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Outline

1 — Introduction

2 — Text
3 — Index
4 — Ranking

5 — System
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Outline

@ Recap
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Term frequency weight

" The log frequency weight of term t in d is defined as follows

Wtd =1 0 otherwise
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idf weight

* The document frequency dft is defined as the number of
documents that t occurs in.

= We define the idf weight of term t as follows:

. N
Idft = |0g10 d_f
t

= idf is a measure of the informativeness of the term.
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tf-idf weight

" The tf-idf weight of a term is the product of its tf weight and
its idf weight.
N

Wt,d — (1 + IOg tft,d) ' |Og F
t
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Cosine similarity between query and document

cos(G, d) = sim(g, d) =

= g;is the tf-idf weight of term i in the query.

d; is the tf-idf weight of term j in the document.
G| and |d| are the lengths of § andd.

q/lql and 8’/|8’| are length-1 vectors (= normalized).

61



Introduction to Information Retrieval

Cosine similarity illustrated

POOR
11 V(di)

RICH

62



Introduction to Information Retrieval

Overview — System

* The importance of ranking: User studies at Google
* Length normalization: Pivot normalization
* Implementation of ranking

* The complete search system

63
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Outline

® Why rank?
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Why is ranking so important?

" Last lecture: Problems with unranked retrieval
= Users want to look at a few results — not thousands.
" |t’s very hard to write queries that produce a few results.
= Even for expert searchers

= —> Ranking is important because it effectively reduces a large set
of results to a very small one.

= Next: More data on “users only look at a few results”

= Actually, in the vast majority of cases they only examine 1, 2, or
3 results.
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Empirical investigation of the effect of ranking

= How can we measure how important ranking is?

= Observe what searchers do when they are searching in a
controlled setting

= Videotape them
= Ask them to “think aloud”

= |Interview them

Eye-track them

Time them

= Record and count their clicks
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So.. Did you notice the FTD official
site?

To be honest, | didn't even look at
that.

At first | saw “from $20” and $20is
what | was looking for.

To be honest, 1800-flowers is
what I'm familiar with and
why | went there next even
though | kind of assumed
they wouldn’t have $20
flowers

And you knew they were
expensive?

| knew they were expensive but |
thought “hey, maybe they've
got some flowers for under
$20 here...”

But you didn't notice the FTD?

No | didn't, actually... that's really
funny.

Interview video
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Rapidly scanning the results

Note scan pattern:
Wicb |mages Vidos lewz Mgz mores
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How many links do users view?

Total number of abstracts viewed per page

120
100
g % Dip after
S 60 page break
g 40
20

o

2 3 4 5 6 7 8 9 10
Total number of abstracts viewed

Mean: 3.07 Median/Mode: 2.00

| Google o
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Looking vs. Clicking

180
160
140
120
100

8

# times rank selected
2

20

Google

B # times result selected
O time spent in abstract

Mﬂ_ﬂ_ﬂ_&_
5 6 7 8 9 10 1
Rank of result

Users view results one and two more often / thoroughly
Users click most frequently on result one

0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

mean time (s)
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Presentation bias — reversed results

« Order of presentation influences where users look
AND where they click

Probability of Click

Google

60%
50%
40%
30%
20%
10%

0%

normal

More relevant

sw apped
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Importance of ranking: Summary

= Viewing abstracts: Users are a lot more likely to read the
abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts
of the lower ranked pages (7, 8, 9, 10).

= Clicking: Distribution is even more skewed for clicking
" |n 1 out of 2 cases, users click on the top-ranked page.

= Even if the top-ranked page is not relevant, 30% of users will
click on it.

= - Getting the ranking right is very important.
= - Getting the top-ranked page right is most important.

72



Introduction to Information Retrieval

Outline

€ More on cosine
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Why distance is a bad idea

POOR
14 di: Ranks of starving poets swell

d>:Rich poor gap grows

q: [rich poor]

dsz: Record baseball salaries in 2010
- RICH

0

The Euclidean distance of ¢ and 32 is large although the distribution
of terms in the query g and the distribution of terms in the document
d, are very similar. That’s why we do length normalization or,

equivalently, use cosine to compute query-document matching scores.
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Exercise: A problem for cosine normalization

= Query g: “anti-doping rules Beijing 2008 olympics”
* Compare three documents
= d,: a short document on anti-doping rules at 2008 Olympics

= d,: a long document that consists of a copy of d, and 5
other news stories, all on topics different from Olympics/
anti-doping

" dy: a short document on anti-doping rules at the 2004
Athens Olympics

* What ranking do we expect in the vector space model?
* What can we do about this?
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Pivot normalization

= Cosine normalization produces weights that are too large for
short documents and too small for long documents (on

average).

= Adjust cosine normalization by linear adjustment: “turning” the
average normalization on the pivot

= Effect: Similarities of short documents with query decrease;
similarities of long documents with query increase.

= This removes the unfair advantage that short documents have.
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Predicted and true probability of relevance

[EADLIIDL/DOUBAD| DI

Jo . Anpgeqoad,,

Relevance vs Retrieval with cosine normalization

cosine norm

cee - ‘e
e ‘e, * b, .
. .. e .

o - 0.....o -

'l
------
"

crossing poin

“true” relevance

document lenecth

source:

Lillian Lee
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Pivot normalization

Pivot normalization

10198.] UONRZI[RWION PAlOAL]

A Cosine Normalization

Pivoted Normalization

u
slope = tan(a)

/ source:

Lillian Lee

Cosine Normalization Factor

78



Introduction to Information Retrieval

Pivoted normalization: Amit Singhal’s experiments

Pivoted Cosine Normalization

Cosine Slope
0.60 0.65 0.70 0.75 0.80
6,526 6,342 6,458 6,574 6.629 6.671
(),.2840 0.3024 0.3097 0.3144 0.3171 0.3162
Improvement | + 6.5% | + 9.0% | +10.7% | +11.7% | +11.3%

(relevant documents retrieved and (change in) average precision)
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Outline

O Implementation of ranking
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Now we also need term frequencies in the index

Brurtus —11,2|17,3183,1|87,2

CAESAR —|11,115,1113,1]|17,1

CALPURNIA | — | 7,118,2140,11| 97,3

term frequencies
We also need positions. Not shown here
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Term frequencies in the inverted index

" In each posting, store tf, , in addition to doclID

= As an integer frequency, not as a (log-)weighted real
number

" ... because real numbers are difficult to compress.
* Unary code is effective for encoding term frequencies.
= Why?

= QOverall, additional space requirements are small: less than a
byte per posting with bitwise compression.

= Or a byte per posting with variable byte code

82



Exercise: How do we compute the top k in

ranking?

" |n many applications, we don’t need a complete ranking.
"= We just need the top k for a small k (e.g., k = 100).
" |f we don’t need a complete ranking, is there an efficient way
of computing just the top k?
= Naive:
= Compute scores for all N documents

= Sort
= Return the top k

= \What’s bad about this?
= Alternative?
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Use min heap for selecting top k ouf of N

= Use a binary min heap

= A binary min heap is a binary tree in which each node’s value is
less than the values of its children.

= Takes O(N log k) operations to construct (where N is the
number of documents) . ..

= ...then read off k winners in O(k log k) steps
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Binary min heap




Introduction to Information Retrieval

Selecting top k scoring documents in O(N log k)

= Goal: Keep the top k documents seen so far
= Use a binary min heap
= To process a new document d’ with score s':
= Get current minimum h,_ of heap (O(1))
= If s' < h,, skip to next document
= If ' > h,_ heap-delete-root (O(log k))
= Heap-add d'/s’ (O(log k))
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More efficient computation of top k: Heuristics

" |dea 1: Reorder postings lists

" |[nstead of ordering according to docID . ..

= . ..order according to some measure of “expected relevance”.
" |dea 2: Heuristics to prune the search space

= Not guaranteed to be correct. ..

= ... but fails rarely.

= |n practice, close to constant time.
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Outline

© The complete search system

88



Introduction to Information Retrieval

Complete search system

’ Parsing Luser query J
+ | :’\> Linguistics Jj, Results
Documents ﬂ Free text query parser "J\> page
—V
/! [
Document Indexers Spell correction| | Scoring and ranking ’
cache \Z/ i /\
4 &7 U
Metadata in | Inexact : : :
zone and top K Tler'e.d mv_erted k-gram Scoring
tiold indexes | retrieval positional index parameters
Indexes MLR
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Tiered indexes

= Basic idea:

= Create several tiers of indexes, corresponding to importance of
indexing terms

= During query processing, start with highest-tier index

= |f highest-tier index returns at least k (e.g., k = 100) results: stop
and return results to user

= |f we’ve only found < k hits: repeat for next index in tier cascade
= Example: two-tier system

= Tier 1: Index of all titles

= Tier 2: Index of the rest of documents

= Pages containing the search words in the title are better hits than
pages containing the search words in the body of the text.
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Tiered index

auto » Doc2
Tier 1 oest
car > Doct ! - Doc3
insurance v Docz ! - Doc3
aulo
bast ' * Doct I . Doc3
Tier 2 : : : :
car
insurance
auto ” Doct
Tier 3 oost
car | " Doc2
insuranca
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Tiered indexes

= The use of tiered indexes is believed to be one of the reasons
that Google search quality was significantly higher initially
(2000/01) than that of competitors.

" (along with PageRank, use of anchor text and proximity
constraints)
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Exercise

= Design criteria for tiered system

= Each tier should be an order of magnitude smaller than the next tier.

= The top 100 hits for most queries should be in tier 1, the top 100 hits for
most of the remaining queries in tier 2 etc.

= We need a simple test for “can | stop at this tier or do | have to go to the
next one?”
= There is no advantage to tiering if we have to hit most tiers for most queries
anyway.
= (Question 1: Consider a two-tier system where the first tier indexes titles and
the second tier everything. What are potential problems with this type of
tiering?
= Question 2: Can you think of a better way of setting up a multitier system?
Which “zones” of a document should be indexed in the different tiers (title,
body of document, others?)? What criterion do you want to use for

including a document in tier 17
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Complete search system

!

Free text guery parser
[[‘v

Results
page

Spell correction

Scoring and ranking

‘Ij Parsing [ user query
1 Linguistics
Documents 1 1
— |
Document Indexers / /
cache \\/ /

/

I

Metadata in | Inexact Tiered inverted Scorin —
zone and top K . . k-gram B ——
tield indexas | retrieval | POsitional index parameters «—training

Indexes MLR \set
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Components we have introduced thus far

* Document preprocessing (linguistic and otherwise)

= Positional indexes

= Tiered indexes

= Spelling correction

= k-gram indexes for wildcard queries and spelling correction
= Query processing

= Document scoring
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Components we haven’t covered

* Document cache: we need this for generating snippets
(=dynamic summaries)

= Zone indexes: They separate the indexes for different zones:
the body of the document, all highlighted text in the
document, anchor text, text in metadata fields etc

* Machine-learned ranking functions

" Proximity ranking (e.g., rank documents in which the query
terms occur in the same local window higher than documents
in which the query terms occur far from each other)

= Query parser
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Vector space retrieval: Interactions

= How do we combine phrase retrieval with vector space
retrieval?

= We do not want to compute document frequency / idf for
every possible phrase. Why?

* How do we combine Boolean retrieval with vector space
retrieval?

" For example: “+”-constraints and “-”-constraints

= Postfiltering is simple, but can be very inefficient — no easy
answer.

= How do we combine wild cards with vector space retrieval?

= Again, no easy answer
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Review — System

* The importance of ranking: User studies at Google
= Length normalization: Pivot normalization
" Implementation of ranking

= The complete search system

98



Introduction to Information Retrieval

Resources

= Resources at http://ifnlp.org/ir
= How Google tweaks its ranking function
" [nterview with Google search guru Udi Manber

= Yahoo Search BOSS: Opens up the search engine to developers.
For example, you can rerank search results.

= Compare Google and Yahoo ranking for a query

How Google uses eye tracking for improving search
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