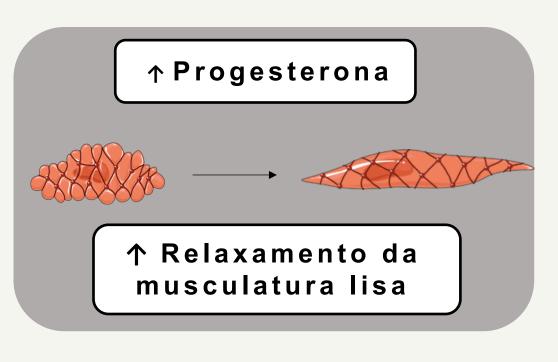

ADAPTAÇÕES GRAVÍDICAS DOS SISTEMAS GASTROINTESTINAL E UROGENITAL

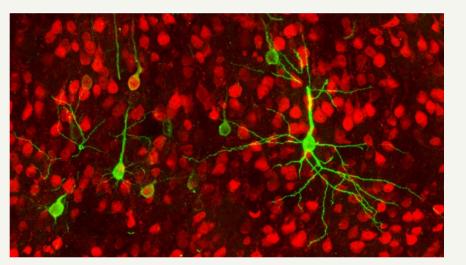
Barbara Dalmaso

Pós-Graduação em Biologia de Sistemas Instituto de Ciências Biomédicas — ICB USP



1 Náuseas e vômitos

Náuseas e/ou vômitos acometem de 50-80% das gestantes.

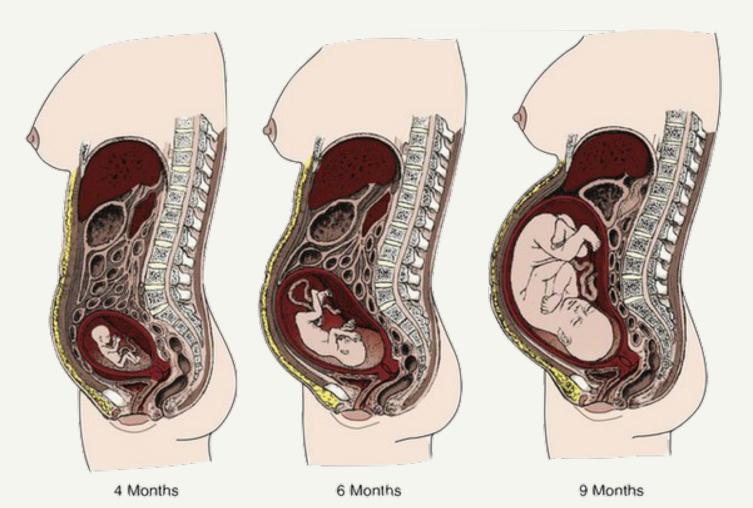

5

↑ Gastrina

↑ Acidez gástrica

1 Náuseas e vômitos

- Náuseas e vômitos possuem relação com o SNC (fatores psicológicos, cheiro, etc).
- A maioria das mulheres não precisa de tratamento farmacológico. Recomenda-se alimentação fracionada e evitar o consumo de comidas gordurosas.
- Os sintomas normalmente desaparecem, mas podem evoluir para hiperemese gravídica, associada a vômitos persistentes, desidratação e desnutrição. Em casos graves, necessita de hospitalização.



2

Neurons (green) in a brain region called the insula send projections to the stomach. Credit: David Levinthal and Peter Strick. Nature, May 2020.

Constipação

↑ Progesterona

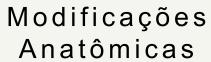
Relaxamento da musculatura lisa

Compressão gastrointestinal pelas modificações das relações anatômicas

5

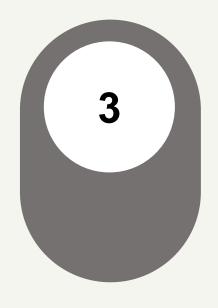
Alterações metabólicas

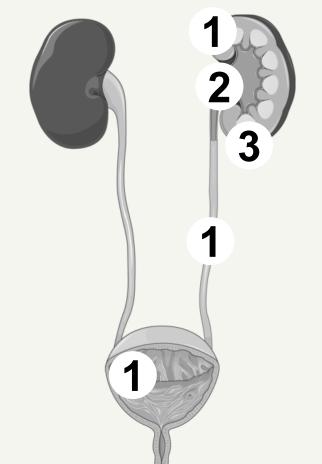
- O fígado aumenta sua atividade de síntese.
- Maior níveis séricos de algumas proteínas e colesterol.


Table 10.5. Variations in the measured concentrations of markers of hepatic synthetic activity

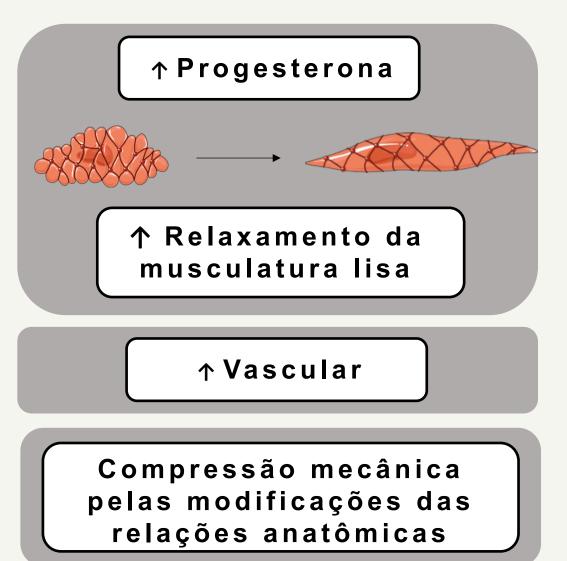
Serum analyte	Non-pregnant adult	First trimester	Second trimester	Third trimester	
Alanine transaminase (U/L [µkat/L])	0-35 (0-0.58)	3-30 (0.05-0.5)	2-33 (0.03-0.55)	2-25 (0.03-0.42)	
Albumin (g/L)	35–55	31–51	26–45	23–42	
Alkaline phosphatase (U/L [nkat/L])	30-120 (0.5-2.0)	17-88 (0.28-1.47)	25-126 (0.42-2.1)	38-229 (0.63-3.82)	
Alpha-1 antitrypsin (g/L)	0.8–2.1	2.2-3.2	2.7–3.9	3.3–4.9	
Asparatate transaminase (U/L [μkat/L])	0-35 (0-0.58)	3-23 (0.05-0.38)	3-33 (0.03-0.55)	4-32 (0.07-0.53)	
Bilirubin, total (mmol/L [mg/dL])	5.1-17.0 (0.3-1.0)	1.7-6.8 (0.1-0.4)	1.7-13.7 (0.1-0.8)	1.7-18.8 (0.1-1.1)	
Bilirubin, unconjugated (mmol/L [mg/dL])	1.7–5.1 (0.1–0.3)	1.7-8.5 (0.1-0.5)	1.7-6.8 (0.1-0.4)	1.7–8.5 (0.1–0.5)	
Bilirubin, conjugated (mmol/L [mg/dL])	3.4–12.0 (0.2–0.7)	0-1.7 (0-0.1)	0-1.7 (0-0.1)	(0-1.7 (0-0.1)	
Ceruloplasmin (mg/L)	270–370	300-490	400-530	430-780	
Gamma-glutamyl transpeptidase (U/L)	1–94	2–23	4–22	3–26	
Lactate dehydrogenase (U/L [µkat/L])	100-190 (1.7-3.2)	78–433 (1.3–7.2)	80-447 (1.3-7.5)	82-524 (1.4-8.7)	
Prealbumin (mg/L)	195–358	150–270	200–270	140–230	
Protein, total (g/L)	55–80	62–76	57–69	56–67	
Sources: Kratz, et al., 2004 [3]; Abbassi-Ghanavati, et al., 2009 [4].					

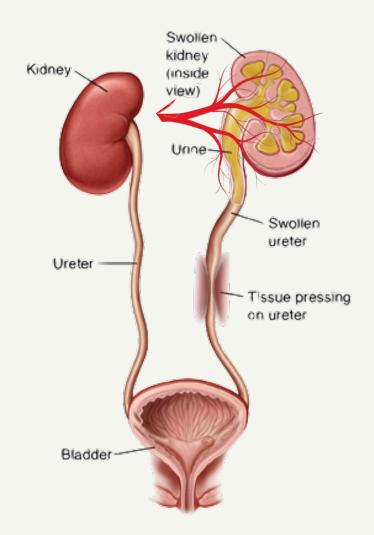
Table 10.6.	Lipid.	vitamin	and	mineral	concentrations	durina	pregnancy
-------------	--------	---------	-----	---------	----------------	--------	-----------

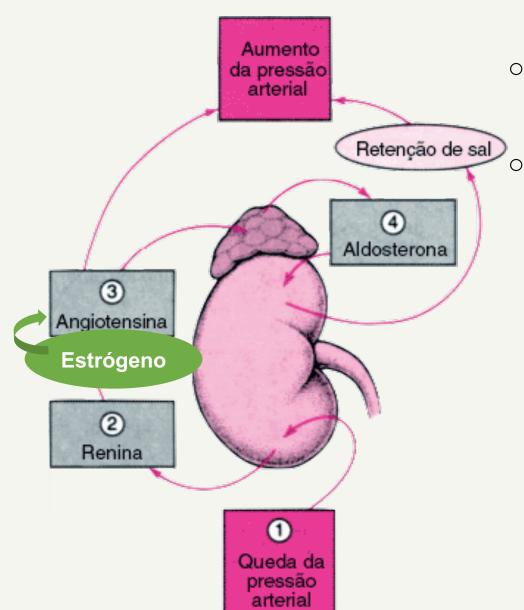

Serum analyte	Non-pregnant adult	First trimester	Second trimester	Third trimester	
Cholesterol, total (mmol/L [mg/dL])	<5.17 (<200)	3.65-5.44 (141-210)	4.56-7.74 (176-299)	5.67-9.04 (219-349)	
High density lipoprotein-cholesterol (mmol/L [mg/dL])	1.03–1.55 (40–60)	1.03–2.02 (40–78)	1.35–2.25 (52–87)	1.24–2.25 (48–87)	
Low density lipoprotein-cholesterol (mmol/L [mg/dL])	<2.59 (<100)	1.55–3.96 (60–153)	1.99–4.77 (77–184)	2.62–5.80 (101–224)	
Very low density lipoprotein-cholesterol (mmol/L [mg/dL])	0.16–1.04 (6–40)	0.26-0.47 (10-18)	0.34–0.60 (13–23)	0.54–0.93 (21–36)	
Triglyceride (mmol/L [mg/dL])	<1.8 (<160)	1.0-4.1 (40-159)	1.9-9.9 (75-382)	3.4-11.7 (131-453)	
Apolipoprotein A1 (g/L)	1.2-2.4	1.1–1.5	1.4–2.5	1.4–2.6	
Apolipoprotein B (g/L)	0.52-1.63	0.58-0.81	0.66-1.88	0.85-2.38	
Retinol (vitamin A) (μmol/L [μg/dL])	0.7-3.5 (20-100)	1.1-1.6 (32-47)	1.2–1.5 (35–44)	1.0-1.5 (29-42)	
Vitamin B ₁₂ (pmol/L [ng/dL])	205-712 (27.9-96.6)	87-323 (11.8-43.8)	96-484 (13.0-65.6)	73–388 (9.9–52.6)	
Ascorbic acid (vitamin C) (μmol/L [mg/dL])	23–57 (0.4–1.0)	Not reported	Not reported	51–74 (0.9–1.3)	
1,25-Dihydroxyvitamin D (pmol/L [ng/dL])	60–108 (2.5–4.5)	52–169 (2.0–6.5)	187–416 (7.2–16.0)	156–309 (6.0–11.9)	
25-Dihydroxyvitamin D (nmol/L [µg/dL])	25–169 (1.0–6.8)	45–67 (1.8–2.7)	25–55 (1.0–2.2)	25–45 (1.0–1.8)	
Alpha-tocopherol (vitamin E) (µmol/L [mg/dL])	116–279 (0.5–1.8	162–302 (0.7–1.3	232–371 (1.0–1.6	302–534 (1.3–2.3	
Copper (µmol/L [µg/dL])	11–22 (70–140)	18–31 (112–199)	26–35 (165–221)	20-38 (130-240)	
Zinc (μmol/L [μg/dL])	11–18 (75–120)	9–13 (57–88)	8-12 (51-80)	8–12 (50–77)	
Sources: Kratz, et al., 2004 [3]; Abbassi-Ghanavati, et al., 2009 [4].					



Função Renal




Fluidos e Metabólitos


1 Modificações Anatômicas

Dilatação da pelve e dos rins ocorre de 43-100% das gestantes.

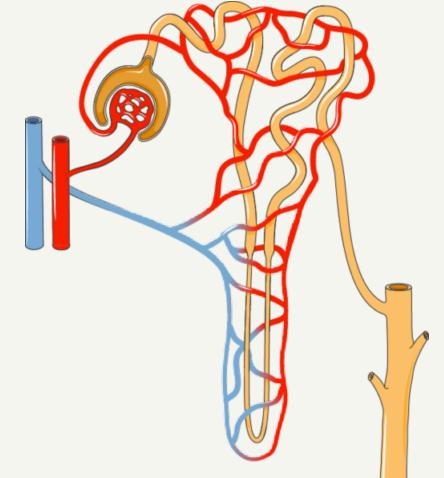
Função renal

- Regulação positiva do Sistema Renina-Angiotensina-Aldosterona, pelo estrógeno.
 - Aumenta a retenção de água.

10/15

Função renal

Dilatação vascular e diminuição da pressão sanguínea (105/60mmHg)


 Aumento da filtração glomerular (níveis séricos menores de creatinina, uréia e ácido úrico)

↑Relaxina

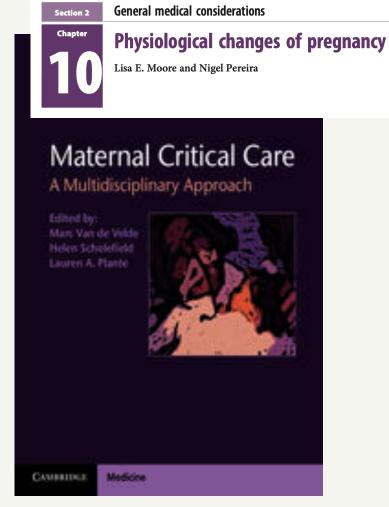
↑ Vasodilatação

↑ Progesterona

↑ Fluxo Plasmático Renal

3 Alteração de fluidos corporais

- Expansão do volume dos líquidos corporais (6-8L)
- Aumento do volume plasmático induzirá uma redução da osmolaridade sérica (8 10mOsm/kg)
- Como consequência, limite para sede e liberação de hormonio antidiurético é reduzido = aumento da ingestão e retenção de líquidos.


3 Alteração de fluidos corporais

Alteração urinária de metabólitos

Table 10.7. Variations in measured concentrations of serum and urine analytes reflecting renal physiological adaptations

Serum/urine analyte	Non-pregnant adult	First trimester	Second trimester	Third trimester	
Creatinine (mmol/L [mg/dL])	38-69 (0.5-0.9)	30-53 (0.4-0.7)	30-61 (0.4-0.8)	30-69 (0.4-0.9)	
Urea nitrogen (mmol/L [mg/dL])	3.6-7.1 (10-20)	2.5-4.3 (7-12)	1.1-4.6 (3-13)	1.1-3.9 (3-11)	
Uric acid (mmol/L [mg/dL])	90-360 (1.5-6.0)	119–250 (2.0–4.2)	143-291 (2.4-4.9)	184–375 (3.1–6.3)	
Calcium excretion, 24 hour (mmol)	<7.5	1.6-5.2	0.3-6.9	0.8-4.2	
Creatinine excretion, 24 hour (mmol)	8.8-1.4	10.6–11.6	10.3–11.5	10.2-11.4	
Potassium excretion, 24 hour (mmol)	25–100	17–33	10–38	11–35	
Protein excretion, 24 hour (mg)	<150	19–141	47–186	46–185	
Sodium excretion, 24 hour (mmol)	100–260	53–215	34–213	37–149	
Sources: Kratz, et al., 2004 [3]; Abbassi-Ghanavati, et al., 2009 [4].					

Bibliografia

Maternal Critical Care: A Multidisciplinary Approach, ed. Marc Van de Velde, Helen Scholefield, and Lauren A. Plante. Published by Cambridge University Press. © Cambridge University Press 2013.

Adv Chronic Kidney Dis. Author manuscript; available in PMC 2014 Jul 9.

Published in final edited form as:

Adv Chronic Kidney Dis. 2013 May; 20(3): 209-214.

doi: 10.1053/j.ackd.2013.01.012

Renal Physiology of Pregnancy

Katharine L. Cheung and Richard A. Lafayette

Ann Gastroenterol. 2018 Jul-Aug; 31(4): 385-394.

Published online 2018 Apr 27. doi: 10.20524/aog.2018.0264

PMCID: PMC6033757

PMCID: PMC4089195

PMID: 23928384

NIHMSID: NIHMS609376

PMID: <u>29991883</u>

Gastrointestinal diseases during pregnancy: what does the gastroenterologist need to know?

Catarina Frias Gomes, Mónica Sousa, Inês Lourenço, Diana Martins, and Joana Torres

► Author information ► Article notes ► Copyright and License information <u>Disclaimer</u>

Barbara Dalmaso

Pós-Graduação em Biologia de Sistemas Instituto de Ciências Biomédicas — ICB USP

barbara.dalmaso@usp.br