Lista de exercícios sobre integral de superfície de campo escalar

profa. Zara Abud

(I) Calcule as seguintes integrais de superfície:

(1)
$$\iint_S x^2 dS$$
 sendo S a parte lateral do cilindro $x^2 + y^2 = 4$, com $0 \le z \le 2$.

(2) $\iint_S x^2 dS$ sendo S a parte do plano z = x + 3 que se encontra no interior do cilindro $x^2 + y^2 = 1$.

(3)
$$\iint_S (x^2 + y^2 - 2z^2) dS$$
 sendo S a parte da esfera $x^2 + y^2 + z^2 = 4$ com $z \ge \frac{x^2 + y^2}{3}$.

(4)
$$\iint_S \sqrt{\frac{2x^2 + 2y^2 - 2}{2x^2 + 2y^2 - 1}}$$
 sendo S a parte do hiperbolóide $x^2 + y^2 - z^2 = 1$ com $1 \le z \le 3$.

(Sugestão: para cada valor de z entre 1 e 3 (vamos chamar z de v), a interseção da superfície com o plano z=v é dada por $x^2+y^2=v^2+1$, e portanto, é uma circunferência de centro no eixo z (centro nno ponto (0,0,v)) e raio $\sqrt{v^2+1}$. Então podemos considerar a seguinte parametrização para S:

$$\sigma \colon \begin{cases} x = \sqrt{v^2 + 1} \cos u \\ y = \sqrt{v^2 + 1} \operatorname{senu} \\ z = v \\ \operatorname{com} 1 \le v \le 3 e \ 0 \le u \le 2\pi \end{cases}$$

(II) Calcule a área das seguintes superfícies S:

(1) S é a parte da esfera
$$x^2 + y^2 + z^2 = 4$$
 interior ao cone $z \ge \sqrt{x^2 + y^2}$.

(2) S é a parte do plano
$$z = 2x + 3y$$
 interior ao cilindro $x^2 + y^2 = 16$.

(3) S é o toro (pneu) obtido por rotação da circunferência, no plano xz, com centro no ponto (b,0,0) e raio a>0, com a< b, em torno do deixo z.

(III) Determine a massa da superfície S, com densidade δ , em cada um dos casos:

(1)
$$S$$
 é a esfera de centro na origem e raio $a>0,$ e $\delta(x,y,z)=x^2+y^2.$

(2)
$$S$$
 é a parte do plano $z=x$ dentro do cilindro $x^2+y^2=1$, com $\delta(x,y,z)=x^2+2y^2+z^2$.

1

(3)
$$S$$
 é a parte do gráfico da função $z = ln(x^2 + y^2)$, limitada pelos cilindros $x^2 + y^2 = 1$ e $x^2 + y^2 = e^2$, com $\delta(x, y, z) = \sqrt{x^2 + y^2}$.