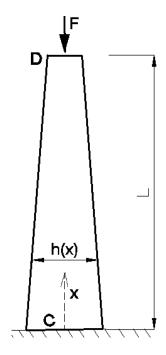
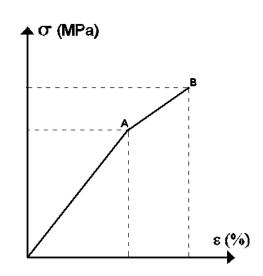
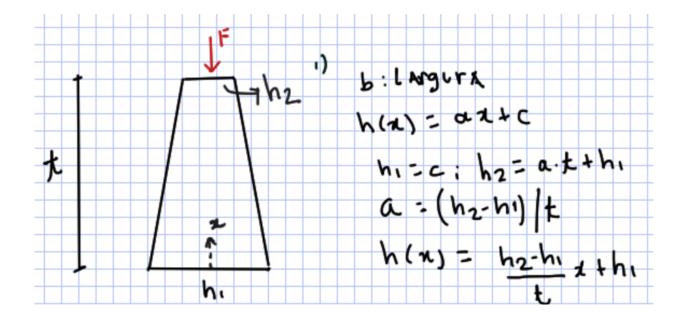
Nº USP:	Nome:


M: último inteiro do seu número usp (Nusp). Por exemplo, se Nusp 25.314.97, $\mathbf{M} = \mathbf{7}$


Sugiro transformar as unidades de medidas para metros.


Qualquer ponto que achar duvidoso e não conseguir esclarecer com o professor, escreva na resolução sua decisão tomada.

Indique seu valor de M = ____

 1^a Questão (3 ptos) O pilar está comprimido centralmente, de comprimento L = (1,0 + M) metros, de seção transversal de medidas de largura constante de 10 cm e altura, h(x), que varia linearmente, onde na seção em C e D tem, respectivamente, medidas de 10 cm e 3 cm. Age em D uma força de F = (10 + M) kN. O material do pilar tem diagrama de tensão-deformação indicado na figura, onde o ponto A é o limite elástico, e nesse ponto a tensão e deformação valem 70 MPa e 10%. Obtenha o deslocamento axial do ponto D. Adote a origem do eixo x em C, como indicado na figura. O pilar é mobilizado dentro do regime elástico linear.

Area da s.
$$\tau$$

$$A(x) = b \cdot h(x)$$

$$A(x) = b \cdot h($$

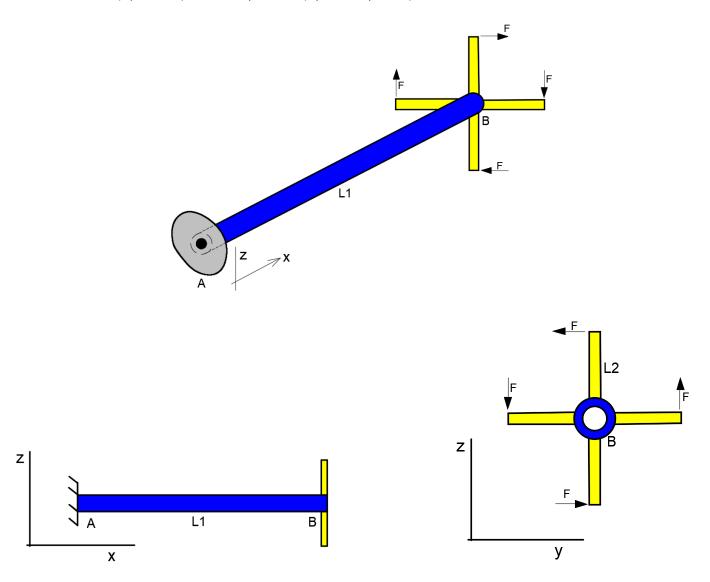
$$S = \frac{F}{Eb} \int_{h_2-h_1}^{h_2} \frac{t}{h_2-h_1} \frac{dy}{y} = \frac{F \cdot t}{E \cdot b(h_2-h_1)/k} \frac{dy}{k}$$

$$S = \frac{F \cdot t}{E \cdot b(h_2-h_1)} \int_{h_1}^{h_2/h_1} \frac{F \cdot b(h_2-h_1)/k}{E \cdot b(h_2-h_1)} \frac{dy}{k}$$

$$E = \frac{70 \text{ mRs}}{O.1} = \frac{700 \text{ mRs}}{10.1} = \frac{7 \cdot 10 \text{ kPs}}{10.1} ; F = \frac{10 \text{ fm}}{10.1} ; t = 1 \text{ fm}$$

$$S = -\frac{10 \text{ fm}}{10.1} (1 + \text{ fm}) \ln \frac{h_2/h_1}{10.1} = -\frac{10 \text{ fm}}{10.1} (1 + \text{ fm}) (1 + \text{ fm})$$

$$\frac{7 \cdot 10^5 \cdot 0.1 \cdot (-0.07)}{10.1} = -\frac{10 \text{ fm}}{10.1} (1 + \text{ fm}) (1 + \text{ fm})$$


2	M	desloc (m)	desloc (cm)	desloc (mm)	
3	0	-0,002457	-0,24571	-2,45709	
	1	-0,005406	-0,54056	-5,40559	
	2	-0,008846	-0,88455	-8,84551	
,	3	-0,012777	-1,27769	-12,7769	
,	4	-0,017200	-1,71996	-17,1996	
3	5	-0,022114	-2,21138	-22,1138	
,	6	-0,027519	-2,75194	-27,5194	
0	7	-0,033416	-3,34164	-33,4164	
1	8	-0,039805	-3,98048	-39,8048	
2	9	-0,046685	-4,66847	-46,6847	

2ª Questão (3 ptos) O eixo cilíndrico AB de comprimento L1 possui seção transversal vazada e está fixo em A. Seu diâmetro externo e interno é, respectivamente, de 10 cm e 2 cm. Em B são soldados 4 barras perpendiculares entre si que estão todas contidas no plano yz. Em cada barra atua uma força perpendicular ao seu eixo e de intensidade F, conforme figuras. O comprimento de cada uma dessas 4 barras é L2 e sua seção transversal é maciça e quadrada de lado 5 cm. Tanto o cilindro AB como as 4 barras são de mesmo material, com E = 100 GPa, G = 50 GPa e suas tensões admissíveis são de: $σ_{adm} = 120$ MPa e $τ_{adm} = 50$ MPa.

Obtenha:

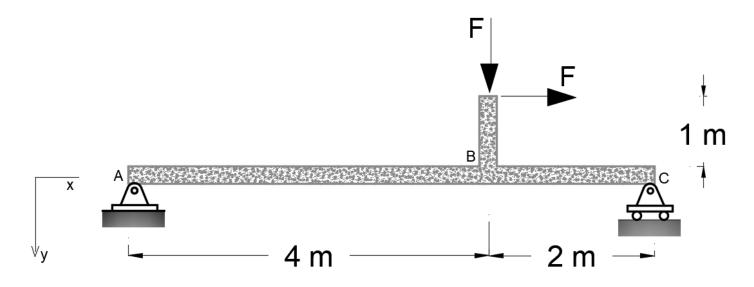
- a) Força máxima F;
- b) Para esse valor máximo de F obtido no item *a*, calcule a rotação da seção B do cilindro AB, em graus.

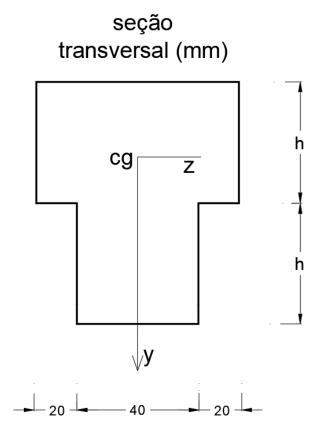
Adote: L1 = (1,0 + M) metros; L2 = (0,20 + 0,1*M) metros.

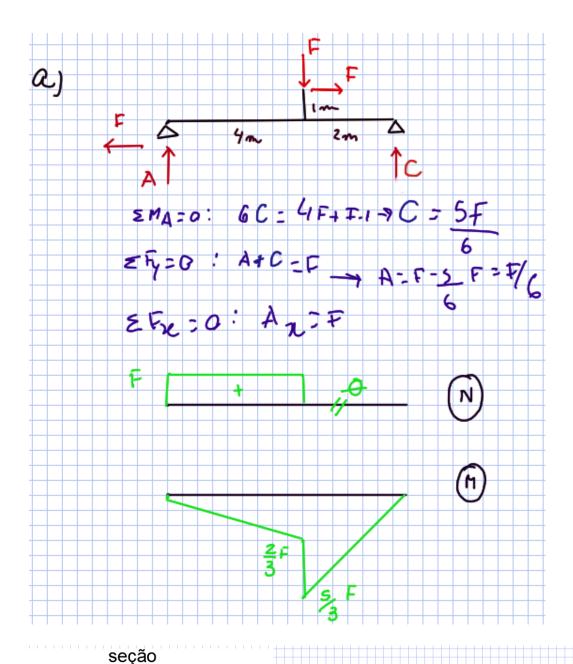
Q2)
$$\int_{\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{32}}^{\frac{1}{32}} \left(o_{1}^{14} - o_{1} o_{2}^{4} \right) = 9,802.10 \, \text{m}^{4}$$

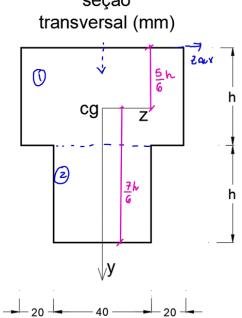
$$\int_{\frac{1}{32}}^{\frac{1}{32}} \int_{\frac{1}{32}}^{\frac{1}{32}} \left(o_{1}^{14} - o_{1} o_{2}^{4} \right) = 9,802.10 \, \text{m}^{4}$$

$$\int_{\frac{1}{32}}^{\frac{1}{32}} \int_{\frac{1}{32}}^{\frac{1}{32}} \left(o_{1}^{14} - o_{1} o_{2}^{4} \right) = 9,802.10 \, \text{m}^{4}$$


$$\int_{\frac{1}{32}}^{\frac{1}{32}} \int_{\frac{1}{32}}^{\frac{1}{32}} \left(o_{1}^{14} - o_{1} o_{2}^{4} - o_{1}^{4} o_{2}^{4} \right) = 9,802.10 \, \text{m}^{4}$$


$$\int_{\frac{1}{32}}^{\frac{1}{32}} \int_{\frac{1}{32}}^{\frac{1}{32}} \left(o_{1}^{14} - o_{1} o_{2}^{4} - o_{1}^{4} o_{2}^{4} - o_{1}$$


ercicio 2	Fflexao	Ftorcao	Ang rad Ang Grau		au
M					
0	12,5	12,250	0,0200	1,146	
1	8,333333	8,167	0,0400	2,291	
2	6,25	6,125	0,0600	3,437	
3	5	4,900	0,0800	4,583	
4	4,166667	4,083	0,1000	5,729	
5	3,571429	3,500	0,1200	6,874	
6	3,125	3,063	0,1400	8,020	
7	2,777778	2,722	0,1600	9,166	
8	2,5	2,450	0,1800	10,312	
9	2,272727	2,227	0,2000	11,457	


 3^a Questão (4 ptos) A viga está submetida a força horizontal e vertical, sua seção transversal no trecho ABC é a indicada na figura, com valores em mm. Obtenha a força F máxima admissível. Não é necessário avaliar o trecho da viga vertical, apenas o trecho horizontal ABC. Para a viga adote os valores das tensões admissíveis de tração $\sigma_{adm} = 200$ MPa e compressão $\sigma_{adm} = 150$ MPa.

Adote: h = [(30 + 10*M)/1000] metros.

b) caracteristichs Geomeracias

$$Y(G) = \frac{(0.08 \text{ h}) \text{ h} 12 + 0.04 \text{ h} \cdot \text{l} \cdot \text{sh}}{0.08 \text{ h} + 0.04 \text{ h}} = \frac{5 \text{ h}}{6} + \frac{1}{1.2}$$

$$X_{7} = 0.12 \text{ h} \cdot (m^{2})$$

$$I_{2_{11}} = \begin{pmatrix} 0.08 \cdot \text{h}^{3} + 1 \cdot \text{h}^{2} \cdot 0.068 \end{pmatrix} + \frac{1}{12} + \frac{1}{12} \cdot (m^{4})$$

$$I_{2_{11}} = \frac{11 \text{ h}^{3}}{12} \cdot (m^{4})$$

$$I_{2_{11}} = \frac{11 \text{ h}^{3}}{300} \cdot (m^{4})$$

c)analise de tensois trecho Bc: M=(5/3F) N=0 Ot= (5/3 F) (7/6 h) < 200.103 7 F < 3771.h2 < 150.10 F < 3960h trecho Ao: < 200.10 (xla) 0,12h < 200.000 (KPa) 200.000

М	H (m)	YCG (superior)	lcg (m4)	Area m2	F - tensao tracao AB (kN)	F - tensao tracao BC (kN)	F - tensao comp BC (kN)
0	0,03	0,025	9,90E-07	3,60E-03	8,39	3,39	3,564
1	0,04	0,033	2,35E-06	4,80E-03	14,85	6,03	6,336
2	0,05	0,042	4,58E-06	6,00E-03	23,12	9,43	9,9
3	0,06	0,050	7,92E-06	7,20E-03	33,16	13,58	14,256
4	0,07	0,058	1,26E-05	8,40E-03	44,96	18,48	19,404
5	0,08	0,067	1,88E-05	9,60E-03	58,50	24,14	25,344
6	0,09	0,075	2,67E-05	1,08E-02	73,76	30,55	32,076
7	0,1	0,083	3,67E-05	1,20E-02	90,72	37,71	39,6
8	0,11	0,092	4,88E-05	1,32E-02	109,36	45,63	47,916
9	0,12	0,100	6,34E-05	1,44E-02	129,66	54,31	57,024

É necessário fazer pelo menos essas 3 análises: à esquerda de B, flexão composta com M=2/3 F e N=F para, pelo menos, tração e à direita de B com M=5/3F para tração e compressão. Essas 3 análises foram averiguadas.