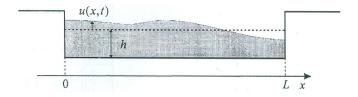
tAGG5819 – MÉTODOS MATEMÁTICOS EM GEOFÍSICA LISTA 5/2020 Entrega até 11/06/2020

QUESTÃO 1 – Ondas de gravidade em um tanque d'água longo, estreito e raso, obedecem à equação de onda:

$$u_{tt} = a^2 u_{rr}$$

sendo a a velocidade de propagação da onda que é dada por $a=\sqrt{gh}$, sendo g a aceleração gravitacional e h a profundidade da água no tanque. Considere que o eixo x é orientado no sentido do comprimento do tanque, de modo que os extremos deste último estejam nas posições x=0 e x=L (o tanque tem comprimento x=0). Nessas condições, pede-se:



- a) Utilize o método da separação de variáveis para encontrar soluções particulares u(x,t) da equação de onda, sujeita às condições de contorno $u_x(0,t) = 0$ e $u_x(L,t) = 0$ (A derivada parcial da solução é nula nas extremidades do tanque).
- b) Verifique que as soluções assim obtidas são funções periódicas do tempo. Identifique aquela solução que tem o período mais longo no tempo e faça um esboço do gráfico da mesma em função de x, para diversos valores fixos de t.
- c) Calcule o período da solução a que se refere o item b) para um tanque com comprimento de 50 m e profundidade de água de 2 m.

QUESTÃO 2 – Determine o valor das constantes p e q de modo que a função $u(x,t) = \sin(px+t) + \cos(x+qt)$ seja solução da equação onda $u_{tt} = a^2 u_{xx}$.

QUESTÃO 3 – Sendo dado que a função u(x,t) é solução da equação de onda $u_{tt}=a^2u_{xx}$, pede-se:

- a) Mostre que $v(x,t) = u_t(x,t)$ também é solução da equação de onda.
- b) Mostre que a derivada parcial de qualquer ordem de u(x,t), $\frac{\partial^{n+m}}{\partial x^n \partial t^m} u(x,t)$, também é solução da equação de onda.

QUESTÃO 4 – Considerando a equação de onda 1D em coordenadas cartesianas $u_{tt} = 25u_{xx}$ no domínio infinito $(-\infty < x < +\infty, 0 \le t < \infty)$, pede-se:

- a) Determine u(x,t), solução particular da equação de onda acima, que satisfaz as condições iniciais $u(x,0) = e^{-x^2}$ e $u_t(x,0) = 10xe^{-x^2}$;
- b) Verifique que u(x,t) determinada em a) é, de fato, solução da equação de onda e que também satisfaz as condições iniciais especificadas.

QUESTÃO 5 – Determine o valor das constantes α e β de modo que a função $u(x,y) = e^{\alpha x + \beta y}$. $\cos(3x + 5y)$ seja solução da equação de Laplace em coordenadas cartesianas.

QUESTÃO 6 – Dada a função $u(r, \theta) = r^3(q \sin(\theta) - 4 \sin^3(\theta))$, pede-se:

- a) Determine o valor da constante q de modo que $u(r, \theta)$ acima seja solução da equação de Laplace em coordenadas cilíndricas;
- b) Verifique que $u(r, \theta)$, escrita em coordenadas cartesianas é um polinômio homogêneo, o qual é solução da equação de Laplace em coordenadas cartesianas.

QUESTÃO 7 – Determine todas as soluções da equação de Laplace em coordenadas cartesianas 2D que sejam polinômios homogêneos de grau 5. Um polinômio homogêneo de grau 5 é da forma: $u(x,y) = ax^5 + bx^4y + cx^3y^2 + dx^2y^3 + ex^1y^4 + fy^5$.

QUESTÃO 8 – A equação de Laplace em coordenadas esféricas possui infinitas soluções axi-simétricas (ou seja, independentes de λ) dadas por: $u_n(r,\theta) = r^n P_n(\cos(\theta))$, com n = 0,1,2,..., sendo $P_n(\cos(\theta))$ o polinômio de Legendre $P_n(s)$ de grau n, com $s = \cos(\theta)$. Os polinômios de Legendre podem ser calculados pela fórmula de Rodrigues: $P_n(s) = \frac{1}{2^n n!} \frac{d^n}{ds^n} (s^2 - 1)^n$. Nessas condições, pede-se:

- a) Escreva a expressão de $u_n(r,\theta)$, conforme acima definida, explicitamente em termos de r e θ para n=3:
- b) Mostre que $u_n(r,\theta)$ do item a), quando expressa em coordenadas cartesianas, tem a forma de um polinômio homogêneo, o qual é solução da equação de Laplace em coordenadas cartesianas.