
Casimir Operators
<latexit sha1_base64="i4RC6dMsYCNygcoaiAD+23SAtO0=">AAAB+nicdVDLSgMxFM34rPU11aWbYBFclaSCbXfFbtxZwT6gHUomzbShycyQZJQy9lPcuFDErV/izr8x01ZQ0QMXDufcy733+LHg2iD04aysrq1vbOa28ts7u3v7buGgraNEUdaikYhU1yeaCR6yluFGsG6sGJG+YB1/0sj8zi1TmkfhjZnGzJNkFPKAU2KsNHALDaK55ApexUwREyk9cIuohBDCGMOM4Mo5sqRWq5ZxFeLMsiiCJZoD970/jGgiWWioIFr3MIqNlxJlOBVslu8nmsWETsiI9SwNiWTaS+enz+CJVYYwiJSt0MC5+n0iJVLrqfRtpyRmrH97mfiX10tMUPVSHsaJYSFdLAoSAU0EsxzgkCtGjZhaQqji9lZIx0QRamxaeRvC16fwf9Iul/BZqXxdLtYvlnHkwBE4BqcAgwqog0vQBC1AwR14AE/g2bl3Hp0X53XRuuIsZw7BDzhvn44AlDQ=</latexit>

Adjoint Representation
<latexit sha1_base64="zcsKU9S/vPnZNwvwRrKsObXA4GA=">AAAB/3icdVBLSwMxGMzWV62vquDFS7AInkpSwba3qhePVewD2qVks9k2NvsgyQpl7cG/4sWDIl79G978N2bbFVR0IDDMfJN8GScSXGmEPqzcwuLS8kp+tbC2vrG5VdzeaaswlpS1aChC2XWIYoIHrKW5FqwbSUZ8R7COMz5P/c4tk4qHwbWeRMz2yTDgHqdEG2lQ3Dt1b0IeaHjFTE6xQGdGCZURQhhjmBJcPUGG1Ou1Cq5BnFoGJZChOSi+992Qxr65gAqiVA+jSNsJkZpTwaaFfqxYROiYDFnP0ID4TNnJbP8pPDSKC71QmmNWmanfEwnxlZr4jpn0iR6p314q/uX1Yu3V7IQHUaxZQOcPebGAOoRpGdDlklEtJoYQKrnZFdIRkYRqU1nBlPD1U/g/aVfK+LhcuayUGmdZHXmwDw7AEcCgChrgAjRBC1BwBx7AE3i27q1H68V6nY/mrCyzC37AevsElROWew==</latexit>

g Ta g
�1 = Tb dba(g)

<latexit sha1_base64="LFwlu95pJ2cgqiwxEbFWIlvbORQ=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQoZakCroRim5cVugLmhgmk2k6dPJgZiKUkJUbf8WNC0Xc+g3u/BunbRbaeuDC4Zx7ufceN2ZUSMP41gpLyyura8X10sbm1vaOvrvXEVHCMWnjiEW85yJBGA1JW1LJSC/mBAUuI113dDPxuw+ECxqFLTmOiR0gP6QDipFUkqMf+la15SCr6t+np2Z21XJcq+o5qYuyin/i6GWjZkwBF4mZkzLI0XT0L8uLcBKQUGKGhOibRiztFHFJMSNZyUoEiREeIZ/0FQ1RQISdTt/I4LFSPDiIuKpQwqn6eyJFgRDjwFWdAZJDMe9NxP+8fiIHl3ZKwziRJMSzRYOEQRnBSSbQo5xgycaKIMypuhXiIeIIS5VcSYVgzr+8SDr1mnlWq9+dlxvXeRxFcACOQAWY4AI0wC1ogjbA4BE8g1fwpj1pL9q79jFrLWj5zD74A+3zB/dZl4c=</latexit>

d(g) d(g0) = d(g g0)
<latexit sha1_base64="7/GYnZicAeNQgU5tkMVo3iUM0Wk=">AAACDXicbVDLSgMxFM3UV62vUZduBqvQQikzVdCNUHTjsoJ9QGcsmUymDU0yQ5IRytAfcOOvuHGhiFv37vwb03YWtfVAwsk593Jzjx9TIpVt/xi5ldW19Y38ZmFre2d3z9w/aMkoEQg3UUQj0fGhxJRw3FREUdyJBYbMp7jtD28mfvsRC0kifq9GMfYY7HMSEgSVlnrmSVDql92Kvh9SNxaE4XH5Sr/cypzQM4t21Z7CWiZORoogQ6NnfrtBhBKGuUIUStl17Fh5KRSKIIrHBTeROIZoCPu4qymHDEsvnW4ztk61ElhhJPThypqq8x0pZFKOmK8rGVQDuehNxP+8bqLCSy8lPE4U5mg2KEyopSJrEo0VEIGRoiNNIBJE/9VCAyggUjrAgg7BWVx5mbRqVeesWrs7L9avszjy4AgcgxJwwAWog1vQAE2AwBN4AW/g3Xg2Xo0P43NWmjOynkPwB8bXL709mr0=</latexit>

d(g�1) = d�1(g)
<latexit sha1_base64="Gnc5gncXlesA2ZVvqkJilwYa45Q=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHahSWpgm6EohuXFewD2lgmk0k6dDIJMxMhhPorblwo4tYPceffOE2z0NYDl3s4517mznFjRqWyrG9jZXVtfWOztFXe3tnd2zcPDrsySgQmHRyxSPRdJAmjnHQUVYz0Y0FQ6DLScyc3M7/3SISkEb9XaUycEAWc+hQjpaWRWfFqwUN2ak/rV17ea0F9ZFathpUDLhO7IFVQoD0yv4ZehJOQcIUZknJgW7FyMiQUxYxMy8NEkhjhCQrIQFOOQiKdLD9+Ck+04kE/Erq4grn6eyNDoZRp6OrJEKmxXPRm4n/eIFH+pZNRHieKcDx/yE8YVBGcJQE9KghWLNUEYUH1rRCPkUBY6bzKOgR78cvLpNts2GeN5t15tXVdxFECR+AY1IANLkAL3II26AAMUvAMXsGb8WS8GO/Gx3x0xSh2KuAPjM8fXTCTSg==</latexit>

Invariant tensors
<latexit sha1_base64="Uz9gWEXgFenroCxLLwVpwep2SRw=">AAAB+nicdVDLSgMxFM34rPU11aWbYBFclUkF2+6KbnRXwT6gHUomzbShmWRIMpUy9lPcuFDErV/izr8x01ZQ0QOBwzn3knNPEHOmjed9OCura+sbm7mt/PbO7t6+WzhoaZkoQptEcqk6AdaUM0GbhhlOO7GiOAo4bQfjy8xvT6jSTIpbM42pH+GhYCEj2Fip7xauxQQrhoWBhgotle67Ra/keR5CCGYEVc49S2q1ahlVIcosiyJYotF333sDSZKICkM41rqLvNj4KVaGEU5n+V6iaYzJGA9p11KBI6r9dB59Bk+sMoChVPbZDHP1+0aKI62nUWAnI2xG+reXiX953cSEVT9lIk7sXWTxUZhwaCTMeoADpigxfGoJJorZrJCMsMLE2LbytoSvS+H/pFUuobNS+aZcrF8s68iBI3AMTgECFVAHV6ABmoCAO/AAnsCzc+88Oi/O62J0xVnuHIIfcN4+Ad3DlGc=</latexit>

⌧a = dab ⌧b
<latexit sha1_base64="FMrGUVYihQd2MsPC11V4L2xSmOI=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXEhJqqAboejGZQX7gCaEm8m0HTp5MDMRSuzCX3HjQhG3/oY7/8ZpmoW2Hrhw5px7mXuPn3AmlWV9G6Wl5ZXVtfJ6ZWNza3vH3N1ryzgVhLZIzGPR9UFSziLaUkxx2k0EhdDntOOPbqZ+54EKyeLoXo0T6oYwiFifEVBa8swDR0HqwRUOvAz8iXOav33PrFo1KwdeJHZBqqhA0zO/nCAmaUgjRThI2bOtRLkZCMUIp5OKk0qaABnBgPY0jSCk0s3y/Sf4WCsB7sdCV6Rwrv6eyCCUchz6ujMENZTz3lT8z+ulqn/pZixKUkUjMvuon3KsYjwNAwdMUKL4WBMgguldMRmCAKJ0ZBUdgj1/8iJp12v2Wa1+d15tXBdxlNEhOkInyEYXqIFuURO1EEGP6Bm9ojfjyXgx3o2PWWvJKGb20R8Ynz9xgZW7</latexit>

Consider
<latexit sha1_base64="1I0wKuVlqe9y8kpVRLDlBagaNEQ=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4KpMRbLsrduOygn1AO5RMJtOGZpIxyQhl6E+4caGIW3/HnX9jpq2gogcuHM65l3vvCRLOtHHdD6ewtr6xuVXcLu3s7u0flA+PulqmitAOkVyqfoA15UzQjmGG036iKI4DTnvBtJX7vXuqNJPi1swS6sd4LFjECDZW6rek0CykalSuuFXXdRFCMCeodula0mjUPVSHKLcsKmCF9qj8PgwlSWMqDOFY6wFyE+NnWBlGOJ2XhqmmCSZTPKYDSwWOqfazxb1zeGaVEEZS2RIGLtTvExmOtZ7Fge2MsZno314u/uUNUhPV/YyJJDVUkOWiKOXQSJg/D0OmKDF8ZgkmitlbIZlghYmxEZVsCF+fwv9J16uii6p341WaV6s4iuAEnIJzgEANNME1aIMOIICDB/AEnp0759F5cV6XrQVnNXMMfsB5+wRq4pA5</latexit>

C = ⌧a D(Ta)
<latexit sha1_base64="mGA6kdDBB9ns7+BxHDKP146cWcg=">AAAB+XicbVBNS8NAEN34WetX1KOXYBEqSEmqoBehWA8eK/QLmhAm2027dLMJu5tCCf0nXjwo4tV/4s1/47bNQVsfDDzem2FmXpAwKpVtfxtr6xubW9uFneLu3v7BoXl03JZxKjBp4ZjFohuAJIxy0lJUMdJNBIEoYKQTjOozvzMmQtKYN9UkIV4EA05DikFpyTfN+p2rIPXBvXwoN3248M2SXbHnsFaJk5MSytHwzS+3H+M0IlxhBlL2HDtRXgZCUczItOimkiSARzAgPU05RER62fzyqXWulb4VxkIXV9Zc/T2RQSTlJAp0ZwRqKJe9mfif10tVeOtllCepIhwvFoUps1RszWKw+lQQrNhEE8CC6lstPAQBWOmwijoEZ/nlVdKuVpyrSvXpulS7z+MooFN0hsrIQTeohh5RA7UQRmP0jF7Rm5EZL8a78bFoXTPymRP0B8bnD7MxkmY=</latexit>

D(g)C = ⌧a D(g)D(Ta) = ⌧a D(g Ta g
�1)D(g) = Tb dba(g) ⌧a D(g) = C D(g)

<latexit sha1_base64="+bbH+Xlq15tMyNd86ZR11meFXNE="></latexit>



Higher Tensors
<latexit sha1_base64="WwAaJseg8xXjzgUQp4w0ADDwiUM=">AAAB9XicdVBNSwMxEM3Wr1q/qh69BIvgqWxWsO2t6KXHCv2CtpZsOtuGZrNLklVK6f/w4kERr/4Xb/4bs20FFX0w8Hhvhpl5fiy4Nq774WTW1jc2t7LbuZ3dvf2D/OFRS0eJYtBkkYhUx6caBJfQNNwI6MQKaOgLaPuT69Rv34HSPJINM42hH9KR5AFn1FjptsZHY1C4AVJHSg/yBbfoui4hBKeElC5dSyqVskfKmKSWRQGtUB/k33vDiCUhSMME1bpL3Nj0Z1QZzgTMc71EQ0zZhI6ga6mkIej+bHH1HJ9ZZYiDSNmSBi/U7xMzGmo9DX3bGVIz1r+9VPzL6yYmKPdnXMaJAcmWi4JEYBPhNAI85AqYEVNLKFPc3orZmCrKjA0qZ0P4+hT/T1pekVwUvRuvUL1axZFFJ+gUnSOCSqiKaqiOmoghhR7QE3p27p1H58V5XbZmnNXMMfoB5+0TrTeSow==</latexit>

⌧a1a2a3 = da1b1 da2b2 da3b3 ⌧b1b2b3
<latexit sha1_base64="6pGa06DulNHeklK1je4VGH5PkR4=">AAACLnicbZDLSgMxFIYzXmu9VV26GSyCi1JmpoJuhKIILivYC3RKOElTDWYuJBmhDH0iN76KLgQVcetjmJmOoNUDgS//+Q/J+UksuNKO82LNzS8sLi2XVsqra+sbm5Wt7Y6KEklZm0Yikj0CigkesrbmWrBeLBkERLAuuT3L+t07JhWPwis9jtkggOuQjzgFbSRcOfc1JDgF7AL2ADcmJ8P8RrA78Ws5ewR739wgxuLXpkMks3mZgitVp+7kZf8Ft4AqKqqFK0/+MKJJwEJNBSjVd51YD1KQmlPBJmU/USwGegvXrG8whICpQZqvO7H3jTK0R5E0J9R2rv6cSCFQahwQ4wxA36jZXib+1+snenQ8SHkYJ5qFdPrQKBG2juwsO3vIJaNajA0Aldz81aY3IIFqk3DZhODOrvwXOl7dbdS9y8Nq87SIo4R20R46QC46Qk10gVqojSi6R4/oFb1ZD9az9W59TK1zVjGzg36V9fkFwpOnvw==</latexit>

D(g)C = ⌧a1a2a3 D(g Ta1 g
�1 g Ta2 g

�1 g Ta2 g
�1)D(g)

<latexit sha1_base64="z0aaNYFlYZJ3RRbhVgHEIiTQLpU="></latexit>

= D(Tb1)D(Tb2)D(Tb3) db1a1 db2a2 db3a3 ⌧a1a2a3 D(g)
<latexit sha1_base64="dbD1FVP5iPdX5y85D4thmKa/G/4="></latexit>

= D(Tb1)D(Tb2)D(Tb3) ⌧b1b2b3 D(g)
<latexit sha1_base64="C0r3QudoFcPH6NNpoG9LfhsC4jw=">AAACJnicbZDLSsNAFIYnXmu9RV26CRahBSlJK+imUNSFywq9QRPCZDpph04mYWYilNCnceOruHFREXHnozhJs6itBwY+/v8czpzfiygR0jS/tY3Nre2d3cJecf/g8OhYPzntijDmCHdQSEPe96DAlDDckURS3I84hoFHcc+b3Kd+7xlzQULWltMIOwEcMeITBKWSXL3ReCi33cRzrVnFvsq5tsT1lG0J46xJeamkFOWPKq5eMqtmVsY6WDmUQF4tV5/bwxDFAWYSUSjEwDIj6SSQS4IonhXtWOAIogkc4YFCBgMsnCQ7c2ZcKmVo+CFXj0kjU5cnEhgIMQ081RlAORarXir+5w1i6d86CWFRLDFDi0V+TA0ZGmlmxpBwjCSdKoCIE/VXA40hh0iqZIsqBGv15HXo1qpWvVp7ui417/I4CuAcXIAysMANaIJH0AIdgMALeANz8KG9au/ap/a1aN3Q8pkz8Ke0n1/td6Jh</latexit>

= C D(g)
<latexit sha1_base64="I0HAvMxvsiRbXsW6Dq4OIF1WxdQ=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJUKCWpgl6EYj14rGA/sAlls920SzebsLsRSui/8OJBEa/+G2/+G7dtDtr6YODx3gwz8/yYM6Vt+9taWV1b39jMbeW3d3b39gsHhy0VJZLQJol4JDs+VpQzQZuaaU47saQ49Dlt+6P61G8/UalYJB70OKZeiAeCBYxgbaTH67pbdsu3pcFZr1C0K/YMaJk4GSlChkav8OX2I5KEVGjCsVJdx461l2KpGeF0kncTRWNMRnhAu4YKHFLlpbOLJ+jUKH0URNKU0Gim/p5IcajUOPRNZ4j1UC16U/E/r5vo4MpLmYgTTQWZLwoSjnSEpu+jPpOUaD42BBPJzK2IDLHERJuQ8iYEZ/HlZdKqVpzzSvX+oli7yeLIwTGcQAkcuIQa3EEDmkBAwDO8wpulrBfr3fqYt65Y2cwR/IH1+QNmNo9u</latexit>

C = ⌧a1a2a3 D(Ta1)D(Ta2)D(Ta2)
<latexit sha1_base64="AnV5RHFdkic+ZmvPJw/ttTWNkI8=">AAACH3icbZDLSsNAFIYn9VbrrerSTbAIFaQkragboVgXLiv0Bk0IJ9NJO3RyYWYilNA3ceOruHGhiLjr2zhNi9jWHwY+/nMOZ87vRowKaRgTLbO2vrG5ld3O7ezu7R/kD49aIow5Jk0cspB3XBCE0YA0JZWMdCJOwHcZabvD2rTefiJc0DBoyFFEbB/6AfUoBqksJ39Vu7UkxE4CjglOGZzK2Lq4LzZSY3z+y+VFdvIFo2Sk0lfBnEMBzVV38t9WL8SxTwKJGQjRNY1I2glwSTEj45wVCxIBHkKfdBUG4BNhJ+l9Y/1MOT3dC7l6gdRT9+9EAr4QI99VnT7IgViuTc3/at1Yejd2QoMoliTAs0VezHQZ6tOw9B7lBEs2UgCYU/VXHQ+AA5Yq0pwKwVw+eRVa5ZJZKZUfLwvVu3kcWXSCTlERmegaVdEDqqMmwugZvaJ39KG9aG/ap/Y1a81o85ljtCBt8gO/IKBL</latexit>

Take
<latexit sha1_base64="GBGVeI/ymZ/uf+OmCyXCVifJmW8=">AAAB63icdVDLSgMxFM34rPVVdekmWARXJRnBtruiG5cV+oJ2KJk004YmmSHJCGXoL7hxoYhbf8idf2OmraCiBy4czrmXe+8JE8GNRejDW1vf2NzaLuwUd/f2Dw5LR8cdE6easjaNRax7ITFMcMXallvBeolmRIaCdcPpTe5375k2PFYtO0tYIMlY8YhTYnOpRaZsWCqjCkIIYwxzgqtXyJF6vebjGsS55VAGKzSHpffBKKapZMpSQYzpY5TYICPacirYvDhIDUsInZIx6zuqiGQmyBa3zuG5U0YwirUrZeFC/T6REWnMTIauUxI7Mb+9XPzL66c2qgUZV0lqmaLLRVEqoI1h/jgccc2oFTNHCNXc3QrphGhCrYun6EL4+hT+Tzp+BV9W/Du/3LhexVEAp+AMXAAMqqABbkETtAEFE/AAnsCzJ71H78V7XbaueauZE/AD3tsnPJmOXw==</latexit>



How to construct such tensors
<latexit sha1_base64="XtiNI1Ihk2tFOTJHxHk40uS6xA8=">AAACBnicdVDLSgMxFM3UV62vqksRgkVwVSYVbLsruumygn1ALSWTpm1oJhmSO0opXbnxV9y4UMSt3+DOvzHTVlDRA4HDOfdyc04QSWHB9z+81NLyyupaej2zsbm1vZPd3WtYHRvG60xLbVoBtVwKxesgQPJWZDgNA8mbwegi8Zs33Fih1RWMI94J6UCJvmAUnNTNHlb1LQaNmVYWTMwA25gNMXBltbHdbM7P+75PCMEJIcUz35FyuVQgJUwSyyGHFqh1s+/XPc3ikCtgklrbJn4EnQk1IJjk08x1bHlE2YgOeNtRRUNuO5NZjCk+dkoP97VxTwGeqd83JjS0dhwGbjKkMLS/vUT8y2vH0C91JkJFscvF5of6sUxyJ53gnjCcgRw7QpkR7q+YDamhDFxzGVfCV1L8P2kU8uQ0X7gs5CrnizrS6AAdoRNEUBFVUBXVUB0xdIce0BN69u69R+/Fe52PprzFzj76Ae/tE5wKmTw=</latexit>

Tr(Ta1 Ta2 Ta3) = Tr(gTa1g
�1 gTa2g

�1 gTa3g
�1) =

<latexit sha1_base64="GHoMezDKk0+/RK81yXvVwbVXQBY="></latexit>

= Tr(Tb1 Tb2 Tb3) db1a1 db2a2 db3a3
<latexit sha1_base64="aZ5op84CFitHVcmA8j0WIYIW6JA=">AAACMXicbZBLSwMxFIUz9VXrq+rSTbAIFUqZaQXdCEU3LhX6EDpluJOmbWjmQZIRyjB/yY3/RNx0oYhb/4RpWkGtFwIf55yQ3OPHnEll21Mrt7K6tr6R3yxsbe/s7hX3D9oySgShLRLxSNz7IClnIW0ppji9jwWFwOe044+vZ37ngQrJorCpJjHtBTAM2YARUFryijeXqSsC3BRZuemlvudkbsVA7Rvq2alb6RsPjG24BiZhuA465BVLdtU2g5fBWUAJLebWKz67/YgkAQ0V4SBl17Fj1UtBKEY4zQpuImkMZAxD2tUYQkBlLzUbZ/hEK308iIQ+ocJG/XkjhUDKSeDrZABqJP96M/E/r5uowUUvZWGcKBqS+UODhGMV4Vl9uM8EJYpPNAARTP8VkxEIIEqXXNAlOH9XXoZ2rerUq7W7s1LjalFHHh2hY1RGDjpHDXSDblELEfSIXtArerOerKn1bn3MozlrcecQ/Rrr8wtv6qiI</latexit>

Invariant but on the other side
<latexit sha1_base64="QuxIYRU0n/qUNdJL1VakwqwFfPI=">AAACCHicdVBNSwMxEM36WetX1aMHg0XwVDYVbHsretGbgtVCW0o2ndpgNlmSWaGUHr34V7x4UMSrP8Gb/8asVlDRBwmP92aYmRclSjoMw7dganpmdm4+t5BfXFpeWS2srZ87k1oBDWGUsc2IO1BSQwMlKmgmFngcKbiIrg4z/+IarJNGn+EwgU7ML7XsS8HRS93C1rG+5lZyjTRKkRpNcQDU+M9SJ3vQLRTDUhiGjDGaEVbZDz2p1aplVqUsszyKZIKTbuG13TMijUGjUNy5FgsT7Iy4RSkUjPPt1EHCxRW/hJanmsfgOqOPQ8Z0xys92jfWP7/Rh/q9Y8Rj54Zx5CtjjgP328vEv7xWiv1qZyR1kiJo8TmonyqKhmap0J60IFANPeHCSr8rFQNuuUCfXd6H8HUp/Z+cl0tsr1Q+LRfrB5M4cmSTbJNdwkiF1MkROSENIsgNuSMP5DG4De6Dp+D5s3QqmPRskB8IXt4BZLmZlQ==</latexit>

⌘ab = Tr(TaTb)
<latexit sha1_base64="UZq9YvobFWL0j7I2n9VoSF821Ks=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahbkpSBd0IRTcuK6QPaEq4mU7aoZMHMxOhhIIbf8WNC0Xc+hPu/BunbRbaeuDC4Zx7ufceP+FMKsv6Ngorq2vrG8XN0tb2zu6euX/QknEqCG2SmMei44OknEW0qZjitJMICqHPadsf3U799gMVksWRo8YJ7YUwiFjACCgteeaRSxV4GfiT68wVIXbEpOJ44Hj+mWeWrao1A14mdk7KKEfDM7/cfkzSkEaKcJCya1uJ6mUgFCOcTkpuKmkCZAQD2tU0gpDKXjb7YYJPtdLHQSx0RQrP1N8TGYRSjkNfd4aghnLRm4r/ed1UBVe9jEVJqmhE5ouClGMV42kguM8EJYqPNQEimL4VkyEIIErHVtIh2IsvL5NWrWqfV2v3F+X6TR5HER2jE1RBNrpEdXSHGqiJCHpEz+gVvRlPxovxbnzMWwtGPnOI/sD4/AEre5cz</latexit>

= ⌘cd dca ddb
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Number of Casimir Operators = rank of the algebra
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3.6 Casimir operators

Let �s1s2...sn be a tensor invariant under the adjoint representation of a Lie
group G. By that we mean

�s1s2...sn = ds1
s
0
1
(g) ds2

s
0
2
(g) . . . dsn

s0n
(g) �s

0
1s

0
2...s

0
n (3.57)

for any g 2 G, and where d
sj

s
0
j
(g) is the matrix representing g in the adjoint

representation, i.e. gTsg�1 = Ts0ds
0
s
(g) (see (2.31)).

Consider now a representation D of G and construct the operator

C(D)
n

⌘ �s1s2...sn D (Ts1)D (Ts2) . . . D (Tsn) (3.58)

Notice that such operator can only be defined on a given representation since
it involves the product of operators and not Lie brackets of the generators.

We then have

D (g)C(D)
n

= �s1s2...sn D
⇣
gTs1g

�1
⌘
D

⇣
gTs2g

�1
⌘
. . . D

⇣
gTsng

�1
⌘
D (g)

= ds
0
1
s1
(g) . . . ds

0
n
sn
(g) �s1...snD

⇣
Ts

0
1

⌘
. . . D

⇣
Ts0n

⌘
D (g)

= �s
0
1...s

0
nD

⇣
Ts

0
1

⌘
. . . D

⇣
Ts0n

⌘
D (g)

= C(D)
n

D (g) (3.59)

So, we have shown that C(D)
n

commutes with any matrix of the representation

h
C(D)

n
, D (g)

i
= 0 (3.60)

We are interested in operators that can not be reduced to lower orders.
That implies that the tensor �s1s2...sn has to be totally symmetric. Indeed,
suppose that �s1s2...sn has an antisymmetric part in the indices sj and sj+1.
Then we write

D
⇣
Tsj

⌘
D

⇣
Tsj+1

⌘
=

1

2
{D

⇣
Tsj

⌘
, D

⇣
Tsj+1

⌘
}+

1

2

h
D

⇣
Tsj

⌘
, D

⇣
Tsj+1

⌘ i

=
1

2
{D

⇣
Tsj

⌘
, D

⇣
Tsj+1

⌘
}+ f t

sjsj+1
D (Tt) (3.61)

and so, C(D)
n

will have terms involving the product of (n�1) operators. There-
fore, by totally symmetrizing the tensor �s1s2...sn we get operators C(D)

n
which

are monomials of order n in D (Ts)’s. Such operators are called Casimir opera-
tors, and n is called their order. They play an important role in representation
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Ar SU(r + 1) 2, 3, 4, . . . r + 1
Br SO(2r + 1) 2, 4, 6, . . . 2r
Cr Sp(r) 2, 4, 6 . . . 2r
Dr SO(2r) 2, 4, 6 . . . 2r � 2, r
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
G2 2, 6

Table 3.1: The orders of the Casimir operators for the simple Lie Groups

theory. From Schur’s lemma 1.1 it follows that in an irreducible representation
the Casimir operators have to be proportional to the identity.

One way of constructing tensors which are invariant under the adjoint
representation, is by considering traces of products of generators in a given
representation D0, since

Tr (D0 (Ts1Ts2 . . . Tsn)) = Tr
⇣
D0

⇣
gTs1g

�1gTs2g
�1 . . . gTsng

�1
⌘⌘

(3.62)

Then taking

�s1s2...sn ⌘
1

n!

X

permutations

Tr (D0 (Ts1Ts2 . . . Tsn)) (3.63)

we get Casimir operators. However, one finds that after the symetrization pro-
cedure very few tensors of the form above survive. It follows that a semisimple
Lie algebra of rank r possesses r invariant Casimir operators functionally in-
dependent. Their orders, for the simple Lie algebras, are given in table 3.1.

3.6.1 The Quadratic Casimir operator

Notice from table 3.1 that all simple Lie groups have a quadratic Casimir
operator. That is because all such groups have an invariant symmetric tensor
of order two which is the Killing form (see section 2.4)

⌘st = Tr (d (Ts) d (Tt)) (3.64)

and
C(D)

2 ⌘ ⌘stD (Ts)D (Tt) (3.65)
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where ⌘st is the inverse of ⌘st.
Using the normalization (2.134) of the Killing form, we have that the

Casimir operator in the Cartan-Weyl basis is given by

C(D)
2 =

rX

i=1

D (Hi)D (Hi)+
X

↵>0

↵2

2
(D (E↵)D (E�↵) +D (E�↵)D (E↵)) (3.66)

Since the Casimir operator commutes with all generators, we have from the
Schur’s lemma 1.1 that in an irreducible representation it must be propor-
tional to the unit matrix. Denoting by � the highest weight of the irreducible
representation D we have

C(D)
2 | �i =

 
rX

i=1

�2
i
+
X

↵>0

↵2

2
[D (E↵) , D (E�↵) ]

!

| �i

=

 

�2 +
X

↵>0

↵2

2
H2

↵

!

| �i

=

 

�2 +
X

↵>0

↵ · �
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where we have used (3.28) and (2.125). So, if D, with highest weight �, is
irreducible, we can write using (3.43) that

C(D)
2 = � · (�+ 2�) 1l =

⇣
(�+ �)2 � �2

⌘
1l (3.68)

where 1l is the unit matrix in the representation D under consideration.

Example 3.7 In the case of SU(2) the quadratic operator is J2 , i.e., the
square of the angular momentum. Indeed, from example 3.1 we have that
↵ = 1, and then � = 1/2 and therefore C(D)

2 = � (�+ 1). Since � is a positive
integer or half integer we see that these are really the eigenvalues of J2.

3.7 Characters

In definition 1.13 we defined the character of an element g of a group G in a
given finite dimensional representation of G, with highest weight �, as being
the trace of the matrix that represents that element, i.e.

�� (g) ⌘ Tr (D (g)) (3.69)

Obviously equivalent representations (see section 1.5) have the same charac-
ters. Analogously, two conjugate elements, g1 = g3g2g

�1
3 , have the same char-

acter in all representations. Therefore the conjugacy classes can be labelled
by the characters.
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Example 3.8 Using (2.27) and the commutation relations (2.58) for the al-
gebra of so(3) (or su(2)) one gets that

ei
⇡
2 T2 T3 e

�i
⇡
2 T2 = T1 (3.70)

and consequently
ei

⇡
2 T2 ei✓T3 e�i

⇡
2 T2 = ei✓T1 (3.71)

An analogous result is obtained if we interchange the roles of the generators T1

, T2 and T3. Therefore the rotations by a given angle ✓, no matter the axis, are
conjugate. The conjugacy classes of SO(3) are defined by the angle of rotation,
and the characters in a representation of spin j are given by

�j (✓) = �j
⇣
ei✓T3

⌘
=

jX

m=�j

eim✓ (3.72)

where m are the eigenvalues of T3 (see section 2.5). We have a geometric
progression and therefore

�j (✓) =
ei(j+

1
2)✓ � e�i(j+ 1

2)✓

ei✓/2 � e�i✓/2
(3.73)

Notice that rotations by ✓ and �✓ have the same character.

The relation (3.71) can be generalized for any compact Lie group. Any
element of a compact group is conjugate to an element of the abelian subgroup
which is the exponentiation of the Cartan subalgebra, i.e.

g = g0ei✓·Hg0�1 (3.74)

Therefore the conjugacy classes, and consequently the characters, can be la-
belled by r parameters or ”angles” (r = rank).

However, the elements of the abelian group parametrized by ✓ and �↵ (✓)
have the same character, since from (2.155) we have

S↵e
i✓·HS�1

↵
= ei�↵(✓)·H (3.75)

Thus the parameter ✓ and its Weyl reflections parametrize the same conjugacy
class.

The generalization of (3.73) to any compact group was done by H. Weyl in
1935. In a representation with highest weight the elements of the conjugacy
class labelled by have a character given by

�� (✓) =

P
�2W (sign�) ei�(�+�)·✓

ei�·✓
Q

↵>0 (1� e�i↵·✓)
(3.76)
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where the summation is over the elements � of the Weyl group W , and where
sign is 1 (�1) if the element � of the Weyl group is formed by an even (odd)
number of reflections. � is the same as the one defined in (3.43). This relation
is called the Weyl character formula.

The character can also be calculated once one knows the multiplicities of
the weights of the representation. From (3.69) and (3.74) we have that

�� (✓) = TrD�
⇣
ei✓·H

⌘
=

X

µ

m (µ) ei✓·µ (3.77)

where the summation is over the weights of the representation and m (µ) are
their multiplicities. These can be obtained from Freudenthal’s formula (3.42).

In the scalar representation the elements of the group are represented by
the unity and the highest weight is zero. So setting � = 0 in (3.76) we obtain
what is called the Weyl denominator formula

X

�2W
(sign�) ei�(�)·✓ = ei�·✓

Y

↵>0

⇣
1� e�i↵·✓

⌘
(3.78)

In general, such formula provides a nontrivial relation between a product and
a sum. Substituting (3.78)in (3.76) we can write the Weyl character formula
as the ratio of two sums:

�� (✓) =

P
�2W (sign�) ei�(�+�)·✓
P

�2W (sign�) ei�(�)·✓
(3.79)

The dimension of the representation can be obtained from the Weyl char-
acter formula (3.76) noticing that

dimD� = Tr (1l) = �� (0) (3.80)

we then obtain the so called Weyl dimensionality formula

dimD� =

Q
↵>0 (�+ �) · ↵
Q

↵>0 � · ↵
(3.81)

Example 3.9 In the case of SO(3) (or SU(2)) we have that ↵ = 1, � = 1/2
and consequently we have from (3.81) that

dim Dj = 2j + 1 (3.82)

This result can also be obtained from (3.73) by taking the limit ✓ ! 0 and
using L’Hospital’s rule
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(m1,m2) dimension

(1, 0) (triplet) 3
(0, 1) (anti-triplet) 3
(2, 0) 6
(0, 2) 6
(1, 1) (adjoint) 8
(3, 0) 10
(0, 3) 10
(2, 1) 15
(1, 2) 15

Table 3.2: The dimensions of the smallest irreps. of SU(3)

Example 3.10 Consider an irrep. of SU(3) with highest weight �. We can
write � = m1�1 + m2�2 where �1 and �2 are the fundamental weights and
m1 and m2 are non-negative integers. From (3.56) we have that (� + �)2 =
(m1 + 1)�1 + (m2 + 1)�2. Normalizing the roots of SU(3) as ↵2 = 2 we have
(from (3.4)) that �a · ↵b = �ab (a, b = 1, 2), where ↵1 and ↵2 are the simple
roots and therefore ( ↵3 = ↵1 + ↵2 )

(� + �) · ↵1 = m1 + 1 ; (� + �) · ↵2 = m2 + 1 ; (� + �) · ↵3 = m1m2 + 2

� · ↵1 = � · ↵2 = 1 ; � · ↵3 = 2 (3.83)

So, from (3.81) the dimension of the irrep. of SU(3) with highest weight � is

dim D� = dim D� =
1

2
(m1 + 1) (m2 + 1) (m1 +m2 + 2) (3.84)

In table 3.2 we give the dimensions of the smallest irreps. of SU(3).

Example 3.11 Similarly let us consider the irreps. of SO(5) (or Sp(2)) with
highest weight � = m1�1+m2�2. From example 2.14 we have that the positive
roots of SO(5) are ↵1, ↵2, ↵3 ⌘ ↵1 + ↵2, and ↵4 ⌘ 2↵1 + ↵2, and so using
(3.4) and (3.56) we get (setting ↵2

1 = 1, ↵2
2 = 2)

2� · ↵1

↵2
1

=
2� · ↵2

↵2
2

= 1 ;
2� · ↵3

↵2
3

=
3

2
1 ;

2� · ↵4

↵2
4

= 2

2 (� + �) · ↵1

↵2
1

= m1 + 1 ;
2 (� + �) · ↵2

↵2
2

= m2 + 1 (3.85)

2 (� + �) · ↵3

↵2
3

=
1

2
(m1 + 2m2 + 3) ;

2 (� + �) · ↵4

↵2
4

=
1

2
(m1 +m2 + 2)
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(m1,m2) dimension

(1, 0) (spinor) 4
(0, 1) (vector) 5
(2, 0) (adjoint) 10
(0, 2) 14
(1, 1) 16
(3, 0) 20
(0, 3) 30
(2, 1) 35
(1, 2) 40

Table 3.3: The dimensions of the smallest irreps. of SO(5) (or Sp(2))

Therefore from (3.81)

dim D(m1,m2) =
1

6
(m1 + 1) (m2 + 1) (m1 +m2 + 2) (m1 + 2m2 + 3) (3.86)

The smallest irreps. of SO(5) (or Sp(2)) are shown in table 3.3.

We give in figures 3.4 and 3.5 the dimensions of the fundamental represen-
tations of the simple Lie algebras (extracted from [DYN 57]).
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3.8 Construction of matrix representations

We have seen that finite dimensional representations of compact Lie groups
are equivalent to unitary ones (see theorem 3.1). In such representations the
Cartan subalgebra generators and step operators can be chosen to satisfy1

H†
i
= Hi ; E†

↵
= E�↵ (3.87)

We have chosen the basis of the representation to be formed by the eigenstates
of the Cartan subalgebra generators. Using (3.1) and (3.87) we have

hµ0
| Hi | µi = µihµ

0
| µi = µ0

i
hµ0

| µi (3.88)

and so
(µ0

� µ) hµ0
| µi = 0 (3.89)

and consequently states with di↵erent weights are orthogonal. In the case a
weight is degenerate, it is possible to find an orthogonal basis for the subspace
generated by the states corresponding to that degenerate weight. We then
shall denote the base states of the representation by | µ, ki where µ is the
corresponding weight and k is an integer number that runs from 1 to m(µ),
the multiplicity of µ. We can always normalize these states such that

hµ0, k0
| µ, ki = �µ,µ0 �kk0 (3.90)

If T denotes an operator of the representation of the algebra then the matrix

D (T )(µ0,k0) (µ,k) ⌘ hµ0, k0
| T | µ, ki (3.91)

form a matrix representation since they reproduce the commutation relations
of the algebra. Indeed

[D (T ) , D (T 0) ](µ0,k0) (µ,k) =
X

µ00,k00
hµ0, k0

| T | µ00, k00
ihµ00, k00

| T 0
| µ0, k0

i

�
X

µ00,k00
hµ0, k0

| T 0
| µ00, k00

ihµ00, k00
| T | µ0, k0

i

= hµ0, k0
| [T , T 0 ] | µ0, k0

i

= D ([T , T 0 ])(µ0,k0) (µ,k) (3.92)

1
In order to simplify the notation we will denote the operators D (Hi) and D (E↵) by Hi

and E↵ respectively.
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| µ0, k0

i

�
X

µ00,k00
hµ0, k0

| T 0
| µ00, k00

ihµ00, k00
| T | µ0, k0

i

= hµ0, k0
| [T , T 0 ] | µ0, k0

i

= D ([T , T 0 ])(µ0,k0) (µ,k) (3.92)

1
In order to simplify the notation we will denote the operators D (Hi) and D (E↵) by Hi

and E↵ respectively.
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where we have used the fact that

1l =
X

µ,k

| µ, kihµ, k | (3.93)

is the identity operator.
When a step operator E↵ acts on a state of weight µ, it either annihilates

it or produces a state of weight µ+ ↵. Therefore, using (3.93) and (3.90) one
gets

E↵ | µ, ki =
X

µ0,k0
| µ0, k0

ihµ0, k0
| E↵ | µ, ki

=
m(µ+↵)X

l=1

| µ+ ↵, lihµ+ ↵, l | E↵ | µ, ki (3.94)

where the sum is over the states of weight µ + ↵. Therefore, from (3.91) one
has

D (E↵)(µ0,k0) (µ,k) = hµ+ ↵, k0
| E↵ | µ, ki�µ0,µ+↵ (3.95)

The matrix elements of Hi are known once we have the weights of the
representation, since from (3.1) and (3.90)

D (Hi)(µ0,k0) (µ,k) = hµ0, k0
| Hi | µ, ki = µi �µ0,µ �k0,k (3.96)

Therefore, in order to construct the matrix representation of the algebra
we have to calculate the “transition amplitudes” hµ+ ↵, l | E↵ | µ, ki. Notice
that from (3.87)

hµ+ ↵, l | E↵ | µ, ki† = hµ, k | E�↵ | µ+ ↵, li (3.97)

Now, using the commutation relation (see (2.218))

[E↵ , E�↵ ] =
2↵ ·H

↵2
(3.98)

one gets

hµ, k | [E↵ , E�↵ ] | µ, ki = hµ, k |
2↵ ·H

↵2
| µ, ki (3.99)

=
2↵ · µ

↵2

= hµ, k | E↵E�↵ | µ, ki � hµ, k | E�↵E↵ | µ, ki

=
m(µ�↵)X

l=1

hµ, k | E↵ | µ� ↵, lihµ� ↵, l | E�↵ | µ, ki

�

m(µ+↵)X

l=1

hµ, k | E�↵ | µ+ ↵, lihµ+ ↵, l | E↵ | µ, ki
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and so, using (3.97)

m(µ�↵)X

l=1

| hµ, k | E↵ | µ� ↵, li |2 �
m(µ+↵)X

l=1

| hµ+ ↵, l | E↵ | µ, ki |2=
2↵ · µ

↵2

(3.100)
where m (µ+ ↵) and m (µ� ↵) are the multiplicities of the weights µ+↵ and
µ� ↵ respectively.

The relation (3.100) can be used to calculate the modules of the transition
amplitudes recursively. By taking ↵ to be a positive root and µ the highest
weight � of the representation we have that the second term on the l.h.s. of
(3.100) vanishes. Since, in a irrep., � is not degenerate we can neglect the
index k and write

m(µ�↵)X

l=1

| h� | E↵ | µ� ↵, li |2=
2↵ · �

↵2
= q (3.101)

where, according to (3.41), q is the highest positive integer such that � � q↵
is a weight of the representation. Taking now the second highest weight we
repeat the process and so on.

The other relations that the transition amplitudes have to satisfy come
from the commutation relations between step operators. If ↵+ � is a root we
have from (2.218)

hµ+ ↵ + �, l | [E↵ , E� ] | µ, ki = (q + 1) "(↵, �)hµ+ ↵ + �, l | E↵+� | µ, ki
(3.102)

Then using (3.90) and (3.94) one gets

m(µ+�)X

k0=1

hµ+ ↵ + �, l | E↵ | µ+ �, k0
ihµ+ �, k0

| E� | µ, ki

�

m(µ+↵)X

k0=1

hµ+ ↵ + �, l | E� | µ+ ↵, k0
ihµ+ ↵, k0

| E↵ | µ, ki

= (q + 1) "(↵, �)hµ+ ↵ + �, l | E↵+� | µ, ki (3.103)

where q is the highest positive integer such that ��q↵ (or equivalently ↵�q�,
since we are assuming ↵+� is a root) is a root, and "(↵, �) are signs determined
from the Jacobi identities (see section 2.14)

We now give some examples to ilustrate how to use (3.100) and (3.103)
to construct matrix representations. This method is very general and conse-
quently di�cult to use when the representation (or the algebra) is big. There
are other methods which work better in specific cases.
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3.8.1 The irreducible representations of SU(2)

In section 2.5 we have studied the representations of SU(2). We have seen
that the weights of SU(2), denoted by m, are integers or half integers, and on
a given irreducible representation with highest weight j they run from �j to j
in integer steps. The weights are non-degenerated and so the representations
have dimensions 2j + 1. As we did in section 2.5 we shall denote the basis of
the representation space as

| j,mi m = �j,�j + 1, . . . , j � 1, j (3.104)

and they are orthonormal

hj,m0
| j,mi = �m,m0 (3.105)

The Chevalley basis for SU(2) satisfy the commutation relations

[H , E± ] = ±E± [E+ , E� ] = H (3.106)

where H = 2↵ ·H/↵2, with ↵ being the only positive root of SU(2). In section
2.5 we have used the basis

[T3 , T± ] = ±T± [T+ , T� ] = 2T3 (3.107)

and so we have E± ⌘ T± and H ⌘ 2T3. Since m are eigenvalues of T3

T3 | j,mi = m | j,mi (3.108)

we get from (3.91) the matrix representing T3 as

D(j)
m0,m (T3) = hj,m0

| T3 | j,mi = m �m,m0 (3.109)

Using the relation (3.100), which is the same as taking the expectation
value on the state | j,mi of both sides of the second relation in (3.107), we get

| hj,m | T+ | j,m� 1i |2 � | hj,m+ 1 | T+ | j,mi |
2= 2m (3.110)

where we have used the fact that T †
+ = T� (see (3.87)). Notice that T+ | j, ji =

0, since j is the highest weight and so

| hj, j | T+ | j, j � 1i |2= 2j (3.111)

Clearly, such result could also be obtained directly from (3.101). The other
matrix elements of T+ can then be obtained recursively from (3.110). Indeed,
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denoting cm ⌘| hj,m+ 1 | T+ | j,mi |
2, we get cj�1 = 2j, cj�2 = 2j +2(j� 1),

cj�3 = 2j + 2(j � 1) + 2(j � 2), and so

cm =
j�m�1X

l=0

2(j � l) = (j �m)(j +m+ 1) = j(j + 1)�m(m+ 1)

Therefore
| hj,m+ 1 | T+ | j,mi |

2= j(j + 1)�m(m+ 1) (3.112)

and since
hj,m+ 1 | T+ | j,mi

† = hj,m | T� | j,m+ 1i (3.113)

we get
| hj,m� 1 | T� | j,mi |

2= j(j + 1)�m(m� 1) (3.114)

The phases of such matrix elements can be chosen to vanish, since in SU(2)
we do not have a relation like (3.103) to relate them. Therefore, we get

T± | j,mi =
q
j(j + 1)�m(m± 1) | j,m± 1i (3.115)

and so,

D(j)
m0,m (T+) = hj,m0

| T+ | j,mi

=
q
j(j + 1)�m(m+ 1) �m0,m+1

D(j)
m0,m (T�) = hj,m0

| T� | j,mi

=
q
j(j + 1)�m(m� 1) �m0,m�1 (3.116)

3.8.2 The triplet representation of SU(3)

Consider the fundamental representation of SU(3) with highest weight �1. In
example 3.10 we have seen it has dimension 3, and in fact it is the so called
triplet representation of SU(3). From (3.4) we have

2�1 · ↵1

↵2
1

=
2�1 · ↵3

↵2
3

= 1 (3.117)

where ↵3 = ↵� 1 + ↵2, ↵1 and ↵2 are the the simple roots of SU(3). So,from
(3.41) we get that �1, (�1 � ↵1) and (�1 � ↵3) are weights of the representation.
Since the representation has dimension 3 it follows that they are the only
weights and they are non-degenerate. Those weights are shown in figure 3.6.

cm�1 � cm = 2m

<latexit sha1_base64="2LODI+Y/L4uo+ZiqFMyIsgvR7CM=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSJ4sCUpBfUgFL14rGA/oA1hs920S3eTsLsplNB/4sWDIl79J978N27bHLT1wcDjvRlm5gUJZ0o7zre1tr6xubVd2Cnu7u0fHNpHxy0Vp5LQJol5LDsBVpSziDY105x2EkmxCDhtB6P7md8eU6lYHD3pSUI9gQcRCxnB2ki+bRM/E2V3Wia+uK32LoVvl5yKMwdaJW5OSpCj4dtfvX5MUkEjTThWqus6ifYyLDUjnE6LvVTRBJMRHtCuoREWVHnZ/PIpOjdKH4WxNBVpNFd/T2RYKDURgekUWA/VsjcT//O6qQ6vvYxFSappRBaLwpQjHaNZDKjPJCWaTwzBRDJzKyJDLDHRJqyiCcFdfnmVtKoVt1a5eayV6nd5HAU4hTO4ABeuoA4P0IAmEBjDM7zCm5VZL9a79bFoXbPymRP4A+vzB/zjkpw=</latexit>
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Taking the Cartan subalgebra generators in the Chevalley basis we have

hµ0
| Ha | µi =

2↵a · µ

↵2
a

�µ0,µ a = 1, 2 (3.118)

where we have used (3.90), and where we have neglected the degeneracy index.
From (3.4) and the Cartan matrix of SU(3) (see example 2.13) we have

2↵1 · (�1 � ↵1)

↵2
1

= �1
2↵2 · (�1 � ↵3)

↵2
2

= 1

2↵1 · (�1 � ↵3)

↵2
1

= 0
2↵2 · (�1 � ↵1)

↵2
2

= 1 (3.119)

Denoting the states as (as a matter of ordering the rows and columus of the
matrices)

| 1i ⌘| �1i ; | 2i ⌘| �1 � ↵1i ; | 3i ⌘| �1 � ↵3i (3.120)

we obtain from (3.117), (3.118), (3.119) and that the matrices representing the
Cartan subalgebra generators are

D�1 (H1) =

0

B@
1 0 0
0 �1 0
0 0 0

1

CA D�1 (H2) =

0

B@
0 0 0
0 1 0
0 0 �1

1

CA (3.121)

Using (3.101) and (3.117) we have that

| h�1 | E↵1 | �1 � ↵1i |
2=| h�1 | E↵3 | �1 � ↵3i |

2= 1 (3.122)
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Using (3.101) and (3.117) we have that

| h�1 | E↵1 | �1 � ↵1i |
2=| h�1 | E↵3 | �1 � ↵3i |

2= 1 (3.122)138 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRAS

Making µ = �1 � ↵1 and ↵ = ↵2 in (3.100) and using the fact that

h�1 � ↵1 + ↵2 | E↵2 | �1 � ↵1i = 0 (3.123)

since �1 � ↵1 + ↵2 is not weight, we get

| h�1 � ↵1 | E↵2 | �1 � ↵1 � ↵2i |
2= 1 (3.124)

These are the only non vanishing “transition amplitudes”. From (3.95) and
(3.120) we see that the only non vanishing elements of the matrices representing
the step operators are

D�1 (E↵1) = h�1 | E↵1 | �1 � ↵1i ⌘ ei✓

D�1 (E↵2) = h�1 � ↵1 | E↵2 | �1 � ↵3i ⌘ ei'

D�1 (E↵3) = h�1 | E↵3 | �1 � ↵3i ⌘ ei� (3.125)

where, according to (3.122) and (3.124), we have introduced the angles ✓, �
and '. The negative step operators are obtained from these ones using (3.87).

Choosing the cocycle " (↵1,↵2) = 1 and since ↵2 � ↵1 is not a root, we
have from (3.103) that the fases have to satisfy (set µ = �1 � ↵3 , ↵ = ↵1 and
� = ↵2 in (3.103))

✓ + ' = � (3.126)

There are no futher restrictions on these fases.
Therefore we get that the matrices which represent the step operators in

the triplet representation are

D�1 (E↵1) =

0

B@
0 ei✓ 0
0 0 0
0 0 0

1

CA D�1 (E�↵1) =

0

B@
0 0 0
e�i✓ 0 0
0 0 0

1

CA (3.127)

D�1 (E↵2) =

0

B@
0 0 0
0 0 ei'

0 0 0

1

CA D�1 (E�↵2) =

0

B@
0 0 0
0 0 0
0 e�i' 0

1

CA

D�1 (E↵3) =

0

B@
0 0 ei(✓+')

0 0 0
0 0 0

1

CA D�1 (E�↵3) =

0

B@
0 0 0
0 0 0
e�i(✓+') 0 0

1

CA

In general, the fases ✓ and ' are chosen to vanish. The algebra of SU(3)
is generated by taking real linear combination of the matrices Ha (a = 1, 2),
(E↵ + E�↵) and (E↵ � E�↵). On the other hand the algebra of SL(3) is gener-
ated by the same matrices but the third one does not have the factor i. Notice
that in this way the triplet representation of the group SU(3) is unitary whilst
the triplet of SL(3) is not.
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and so, using (3.97)

m(µ�↵)X

l=1

| hµ, k | E↵ | µ� ↵, li |2 �
m(µ+↵)X

l=1

| hµ+ ↵, l | E↵ | µ, ki |2=
2↵ · µ

↵2

(3.100)
where m (µ+ ↵) and m (µ� ↵) are the multiplicities of the weights µ+↵ and
µ� ↵ respectively.

The relation (3.100) can be used to calculate the modules of the transition
amplitudes recursively. By taking ↵ to be a positive root and µ the highest
weight � of the representation we have that the second term on the l.h.s. of
(3.100) vanishes. Since, in a irrep., � is not degenerate we can neglect the
index k and write

m(µ�↵)X

l=1

| h� | E↵ | µ� ↵, li |2=
2↵ · �

↵2
= q (3.101)

where, according to (3.41), q is the highest positive integer such that � � q↵
is a weight of the representation. Taking now the second highest weight we
repeat the process and so on.

The other relations that the transition amplitudes have to satisfy come
from the commutation relations between step operators. If ↵+ � is a root we
have from (2.218)

hµ+ ↵ + �, l | [E↵ , E� ] | µ, ki = (q + 1) "(↵, �)hµ+ ↵ + �, l | E↵+� | µ, ki
(3.102)

Then using (3.90) and (3.94) one gets

m(µ+�)X

k0=1

hµ+ ↵ + �, l | E↵ | µ+ �, k0
ihµ+ �, k0

| E� | µ, ki

�

m(µ+↵)X

k0=1

hµ+ ↵ + �, l | E� | µ+ ↵, k0
ihµ+ ↵, k0

| E↵ | µ, ki

= (q + 1) "(↵, �)hµ+ ↵ + �, l | E↵+� | µ, ki (3.103)

where q is the highest positive integer such that ��q↵ (or equivalently ↵�q�,
since we are assuming ↵+� is a root) is a root, and "(↵, �) are signs determined
from the Jacobi identities (see section 2.14)

We now give some examples to ilustrate how to use (3.100) and (3.103)
to construct matrix representations. This method is very general and conse-
quently di�cult to use when the representation (or the algebra) is big. There
are other methods which work better in specific cases.
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denoting cm ⌘| hj,m+ 1 | T+ | j,mi |
2, we get cj�1 = 2j, cj�2 = 2j +2(j� 1),

cj�3 = 2j + 2(j � 1) + 2(j � 2), and so

cm =
j�m�1X

l=0

2(j � l) = (j �m)(j +m+ 1) = j(j + 1)�m(m+ 1)

Therefore
| hj,m+ 1 | T+ | j,mi |

2= j(j + 1)�m(m+ 1) (3.112)

and since
hj,m+ 1 | T+ | j,mi

† = hj,m | T� | j,m+ 1i (3.113)

we get
| hj,m� 1 | T� | j,mi |

2= j(j + 1)�m(m� 1) (3.114)

The phases of such matrix elements can be chosen to vanish, since in SU(2)
we do not have a relation like (3.103) to relate them. Therefore, we get

T± | j,mi =
q
j(j + 1)�m(m± 1) | j,m± 1i (3.115)

and so,

D(j)
m0,m (T+) = hj,m0

| T+ | j,mi

=
q
j(j + 1)�m(m+ 1) �m0,m+1

D(j)
m0,m (T�) = hj,m0

| T� | j,mi

=
q
j(j + 1)�m(m� 1) �m0,m�1 (3.116)

3.8.2 The triplet representation of SU(3)

Consider the fundamental representation of SU(3) with highest weight �1. In
example 3.10 we have seen it has dimension 3, and in fact it is the so called
triplet representation of SU(3). From (3.4) we have

2�1 · ↵1

↵2
1

=
2�1 · ↵3

↵2
3

= 1 (3.117)

where ↵3 = ↵1+↵2, ↵1 and ↵2 are the the simple roots of SU(3). So,from (3.41)
we get that �1, (�1 � ↵1) and (�1 � ↵3) are weights of the representation. Since
the representation has dimension 3 it follows that they are the only weights
and they are non-degenerate. Those weights are shown in figure 3.6.
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Making µ = �1 � ↵1 and ↵ = ↵2 in (3.100) and using the fact that

h�1 � ↵1 + ↵2 | E↵2 | �1 � ↵1i = 0 (3.123)

since �1 � ↵1 + ↵2 is not weight, we get

| h�1 � ↵1 | E↵2 | �1 � ↵1 � ↵2i |
2= 1 (3.124)

These are the only non vanishing “transition amplitudes”. From (3.95) and
(3.120) we see that the only non vanishing elements of the matrices representing
the step operators are

D�1 (E↵1) = h�1 | E↵1 | �1 � ↵1i ⌘ ei✓

D�1 (E↵2) = h�1 � ↵1 | E↵2 | �1 � ↵3i ⌘ ei'

D�1 (E↵3) = h�1 | E↵3 | �1 � ↵3i ⌘ ei� (3.125)

where, according to (3.122) and (3.124), we have introduced the angles ✓, �
and '. The negative step operators are obtained from these ones using (3.87).

Choosing the cocycle " (↵1,↵2) = 1 and since ↵2 � ↵1 is not a root, we
have from (3.103) that the fases have to satisfy (set µ = �1 � ↵3 , ↵ = ↵1 and
� = ↵2 in (3.103))

✓ + ' = � (3.126)

There are no futher restrictions on these fases.
Therefore we get that the matrices which represent the step operators in

the triplet representation are

D�1 (E↵1) =

0

B@
0 ei✓ 0
0 0 0
0 0 0

1

CA D�1 (E�↵1) =

0

B@
0 0 0
e�i✓ 0 0
0 0 0

1

CA (3.127)

D�1 (E↵2) =

0

B@
0 0 0
0 0 ei'

0 0 0

1

CA D�1 (E�↵2) =

0

B@
0 0 0
0 0 0
0 e�i' 0

1

CA

D�1 (E↵3) =

0

B@
0 0 ei(✓+')

0 0 0
0 0 0

1

CA D�1 (E�↵3) =

0

B@
0 0 0
0 0 0
e�i(✓+') 0 0

1

CA

In general, the fases ✓ and ' are chosen to vanish. The algebra of SU(3)
is generated by taking real linear combination of the matrices Ha (a = 1, 2),
(E↵ + E�↵) and (E↵ � E�↵). On the other hand the algebra of SL(3) is gener-
ated by the same matrices but the third one does not have the factor i. Notice
that in this way the triplet representation of the group SU(3) is unitary whilst
the triplet of SL(3) is not.
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Figure 3.7: The weights of the anti-triplet representation of SU(3)

3.8.3 The anti-triplet representation of SU(3)

We now consider the other fundamental representation of SU(3) which has
highest weight �2 . In example 3.10 we saw it also has diemnsion 3 and it is
the anti-triplet of SU(3). Using (3.4) we get that the weight are �2, �2 � ↵2

and �2 � ↵3 and consequently they are not degenerate. They are shown in
figure 3.7.

We shall denote the states as

| 1i ⌘| �2i ; | 2i ⌘| �2 � ↵2i ; | 3i ⌘| �2 � ↵3i (3.128)

Using the Cartan matrix of SU(3) (see example 2.13), (3.4) and (3.118) we
get that the matrices which represent the Cartan subalgebra generators in the
Chevalley basis are

D�2 (H1) =

0

B@
0 0 0
0 1 0
0 0 �1

1

CA D�2 (H2) =

0

B@
1 0 0
0 �1 0
0 0 0

1

CA (3.129)

Using (3.101) we have that

| h�2 | E↵2 | �2 � ↵2i |
2=| h�2 | E↵3 | �2 � ↵3i |

2= 1 (3.130)

and from (3.100)

| h�2 � ↵2 | E↵1 | �2 � ↵1 � ↵2i |
2= 1 (3.131)
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Using (3.101) we have that
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| h�2 � ↵2 | E↵1 | �2 � ↵1 � ↵2i |
2= 1 (3.131)
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Using (3.95) we get that the only non vanishing matrix elements of the step
operators are

D�2 (E↵1) = h�2 � ↵2 | E↵1 | �2 � ↵3i ⌘ ei✓

D�2 (E↵2) = h�2 | E↵2 | �2 � ↵2i ⌘ ei'

D�2 (E↵3) = h�2 | E↵3 | �2 � ↵3i ⌘ ei� (3.132)

where, according to (3.130) and (3.131), we have introduced the fases ✓, ' and
�. From (3.87) we obtain the matrices for the negative step operators. Using
the fact that (q + 1) " (↵1,↵2) = 1 we get from (3.103) that these fases have to
satisfy

✓ + ' = �+ ⇡ (3.133)

Therefore the matrices which represent the step operators in the anti-triplet
representation are

D�2 (E↵1) =

0

B@
0 0 0
0 0 ei✓

0 0 0

1

CA D�2 (E�↵1) =

0

B@
0 0 0
0 0 0
0 e�i✓ 0

1

CA (3.134)

D�2 (E↵2) =

0

B@
0 ei' 0
0 0 0
0 0 0

1

CA D�2 (E�↵2) =

0

B@
0 0 0
e�i' 0 0
0 0 0

1

CA

D�2 (E↵3) = �

0

B@
0 0 ei(✓+')

0 0 0
0 0 0

1

CA D�2 (E�↵3) = �

0

B@
0 0 0
0 0 0
e�i(✓+') 0 0

1

CA

So, these matrices are obtained from those of the triplet by making the change
E±↵1 $ E±↵2 and E±↵3 $ �E±↵3 . From (3.121) and (3.129) we see the
Cartan subalgebra generators are also interchanged.

3.9 Tensor product of representations

We have seen in definition 1.12 of section 1.5 the concept of tensor product
of representations. The idea is quite simple. Consider two irreducible repre-
sentations D� and D�

0
of a Lie group G, with highest weights � and �0 and

representation spaces V � and V �
0
respectively. We can construct a third rep-

resentation by considering the tensor product space V �⌦�
0
⌘ V �

⌦ V �
0
. The

operators representing the group elements in the tensor product representation
are

D�⌦�
0
(g) ⌘ D� (g)⌦D�

0
(g) (3.135)
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0 0 0
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0 0 0

1

CA
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0

B@
0 0 ei(✓+')

0 0 0
0 0 0

1

CA D�2 (E�↵3) = �

0

B@
0 0 0
0 0 0
e�i(✓+') 0 0

1

CA
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E±↵1 $ E±↵2 and E±↵3 $ �E±↵3 . From (3.121) and (3.129) we see the
Cartan subalgebra generators are also interchanged.
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We have seen in definition 1.12 of section 1.5 the concept of tensor product
of representations. The idea is quite simple. Consider two irreducible repre-
sentations D� and D�

0
of a Lie group G, with highest weights � and �0 and

representation spaces V � and V �
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respectively. We can construct a third rep-

resentation by considering the tensor product space V �⌦�
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⌘ V �

⌦ V �
0
. The

operators representing the group elements in the tensor product representation
are
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0
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0
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and they act as

D�⌦�
0
(g)V �⌦�

0
= D� (g)V �

⌦D�
0
(g)V �

0
(3.136)

They form a representation since

D�⌦�
0
(g1)D

�⌦�
0
(g2) = D� (g1)D

� (g2)⌦D�
0
(g1)D

�
0
(g2)

= D� (g1g2)⌦D�
0
(g1g2)

= D�⌦�
0
(g1g2) (3.137)

The operators representing the elements T of the Lie algebra G of G are
given by

D�⌦�
0
(T ) ⌘ D� (T )⌦ 1l + 1l⌦D�

0
(T ) (3.138)

Indeed
h
D�⌦�

0
(T1) , D

�⌦�
0
(T2)

i
=

h
D� (T1) , D

� (T1)
i
⌦ 1l

+ 1l⌦
h
D�

0
(T1) , D

�
0
(T1)

i

= D� ([T1 , T2 ])⌦ 1l + 1l⌦D�
0
([T1 , T2 ])

= D�⌦�
0
([T1 , T2 ]) (3.139)

Notice that if | µ, li and | µ0, l0i are states of the representations V � and
V �

0
with weights µ and µ0 respectively, one gets

D�⌦�
0
(Hi) | µ, li⌦ | µ0, l0i = D� (Hi) | µ, li⌦ | µ0, l0i

+ | µ, li ⌦D�
0
(Hi) | µ

0, l0i

= (µi + µ0
i
) | µ, li⌦ | µ0, l0i (3.140)

It then follows that the weigths of the representation V �⌦�
0
are the sums

of all weights of V � with all weights of V �
0
. If � and �0 are the highest weights

of V � and V �
0
respectively, then the highest weight of V �⌦�

0
is �+ �0, and the

corresponding state is
| �+ �0

i =| �i⌦ | �0
i (3.141)

which is clearly non-degenerate.
In general, the representation V �⌦�

0
is reducible and one can split it as the

sum of irreducible representations of G

V �⌦�
0
= ��00V �

00
(3.142)

where V �
00
are irreducible representations with highest weight �00. The decom-

position (3.142) is called the branching of the representation V �⌦�
0
.
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position (3.142) is called the branching of the representation V �⌦�
0
.142 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRAS

Taking orthonormal basis | µ, li and | µ0, l0i for V � and V �
0
respectively,

we can construct an orthonormal basis for V �⌦�
0
as

| µ+ µ0, ki =
m(µ)X

l=1

m(µ0)X

l0=1

Ck

l,l0 | µ, li⌦ | µ0, l0i (3.143)

where m (µ) and m (µ0) are the multiplicities of µ and µ0 in V � and V �
0
re-

spectively, and k = 1, 2, . . .m (µ+ µ0), with m (µ+ µ0) being the multiplicity
of µ+ µ0 in V �⌦�

0
. Clearly, m (µ+ µ0) = m (µ)m (µ0). The constants Ck

l,l0 are
the so-called Clebsch-Gordan coe�cients.

Example 3.12 Let us consider the tensor product of two spinorial represen-
tations of SU(2). As discussed in section 3.8.1 it is a two dimensional repre-
sentation with states | 1

2 ,
1
2i and | 1

2 ,�
1
2i, and satisfying

T3 |
1
2 ,±

1
2i = ±

1

2
| 1

2 ,±
1
2i (3.144)

and (see (3.115))

T+ | 1
2 ,

1
2i = 0 ; T+ | 1

2 ,�
1
2i =| 1

2 ,
1
2i

T� | 1
2 ,

1
2i = | 1

2 ,�
1
2i ; T� | 1

2 ,�
1
2i = 0 (3.145)

One can easily construct the irreducible components by taking the highest
weight state | 1

2 ,
1
2i⌦ | 1

2 ,
1
2i and act with the lowering operator. One gets

D
1
2⌦

1
2 (T�) | 1

2 ,
1
2i⌦ | 1

2 ,
1
2i = (T� ⌦ 1l+ 1l⌦ T�) | 1

2 ,
1
2i⌦ | 1

2 ,
1
2i

= | 1
2 ,�

1
2i⌦ | 1

2 ,
1
2i+ | 1

2 ,
1
2i⌦ | 1

2 ,�
1
2i

and ⇣
D

1
2⌦

1
2 (T�)

⌘2
| 1

2 ,
1
2i⌦ | 1

2 ,
1
2i = 2 | 1

2 ,�
1
2i⌦ | 1

2 ,�
1
2i (3.146)

and ⇣
D

1
2⌦

1
2 (T�)

⌘3
| 1

2 ,
1
2i⌦ | 1

2 ,
1
2i = 0 (3.147)

On the other hand notice that

D
1
2⌦

1
2 (T±) (| 1

2 ,�
1
2i⌦ | 1

2 ,
1
2i� | 1

2 ,
1
2i⌦ | 1

2 ,�
1
2i) = 0 (3.148)

Therefore, one gets that the states

| 1, 1i ⌘ | 1
2 ,

1
2i⌦ | 1

2 ,
1
2i

| 1, 0i ⌘ (| 1
2 ,�

1
2i⌦ | 1

2 ,
1
2i+ | 1

2 ,
1
2i⌦ | 1

2 ,�
1
2i) /

p

2

| 1,�1i ⌘ | 1
2 ,�

1
2i⌦ | 1

2 ,�
1
2i (3.149)
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denoting cm ⌘| hj,m+ 1 | T+ | j,mi |
2, we get cj�1 = 2j, cj�2 = 2j +2(j� 1),

cj�3 = 2j + 2(j � 1) + 2(j � 2), and so

cm =
j�m�1X

l=0

2(j � l) = (j �m)(j +m+ 1) = j(j + 1)�m(m+ 1)

Therefore
| hj,m+ 1 | T+ | j,mi |

2= j(j + 1)�m(m+ 1) (3.112)

and since
hj,m+ 1 | T+ | j,mi

† = hj,m | T� | j,m+ 1i (3.113)

we get
| hj,m� 1 | T� | j,mi |

2= j(j + 1)�m(m� 1) (3.114)

The phases of such matrix elements can be chosen to vanish, since in SU(2)
we do not have a relation like (3.103) to relate them. Therefore, we get

T± | j,mi =
q
j(j + 1)�m(m± 1) | j,m± 1i (3.115)

and so,

D(j)
m0,m (T+) = hj,m0

| T+ | j,mi

=
q
j(j + 1)�m(m+ 1) �m0,m+1

D(j)
m0,m (T�) = hj,m0

| T� | j,mi

=
q
j(j + 1)�m(m� 1) �m0,m�1 (3.116)

3.8.2 The triplet representation of SU(3)

Consider the fundamental representation of SU(3) with highest weight �1. In
example 3.10 we have seen it has dimension 3, and in fact it is the so called
triplet representation of SU(3). From (3.4) we have

2�1 · ↵1

↵2
1

=
2�1 · ↵3

↵2
3

= 1 (3.117)

where ↵3 = ↵1+↵2, ↵1 and ↵2 are the the simple roots of SU(3). So,from (3.41)
we get that �1, (�1 � ↵1) and (�1 � ↵3) are weights of the representation. Since
the representation has dimension 3 it follows that they are the only weights
and they are non-degenerate. Those weights are shown in figure 3.6.
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constitute a triplet representation (spin 1) of SU(2).
The state

| 0, 0i ⌘ (| 1
2 ,�

1
2i⌦ | 1

2 ,
1
2i� | 1

2 ,
1
2i⌦ | 1

2 ,�
1
2i) /

p

2 (3.150)

constitute a scalar representation (spin 0) of SU(2).
The branching of the tensor product representation is usually denoted in

terms of the dimensions of the irreducible representations, and in such case we
have

2⌦ 2 = 3+ 1 (3.151)

Given an irreducible representation D of a group G one observes that it is
also a representation of any subgroup H of G. However, it will in general be
a reducible representation of the subgroup. The decomposition of D in terms
of irreducible representations of H is called the branching of D. In order to
illustrate it let us discuss some examples.

Example 3.13 The operator T3 generates a subgroup U(1) of SU(2) (see
(3.107)). From the considerations in 3.8.1 one observes that each state | j,mi

constitutes a scalar representation of such U(1) subgroup. Therefore, each
spin j representation of SU(2) decomposes into 2j + 1 scalars representation
of U(1).

Example 3.14 In example 3.6 we have seen that weights of the adjoint rep-
resentation of SU(3) are its roots plus the null weight which is two-fold degen-
erate. So, let us denote the states as

| ±↵1i ; | ±↵2i ; | ±↵3i ; | 0i ; | 00i (3.152)

Consider the SU(2)⌦ U(1) subgroup of SU(3) generated by

SU(2) ⌘ {E±↵1 ,
2↵1 ·H

↵2
1

}

U(1) ⌘ {
2�2 ·H

↵2
2

} (3.153)

One can define the state | 0i as

| 0i ⌘ E�↵1 | ↵1i (3.154)

and consequently the states

| ↵1i ; | 0i ; | �↵1i (3.155)
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constitute a triplet representation of the SU(2) defined above. In addition, the
states

| ↵2i ; | ↵3i (3.156)

and
| �↵3i ; | �↵2i (3.157)

constitute two dublet representations of the same SU(2).
By taking | 00i to be orthogonal to | 0i one gets that it is a singlet repre-

sentation of SU(2).
Clearly, each state | µi in (3.152) constitute a scalar representation of the

U(1) subgroup with eigenvalue 2�2 · µ/↵2
2. Since, U(1) commutes with the

SU(2) it follows the states of a given irreducible representation of SU(2) have
to have the same eigenvalue fo the U(1). Therefore, we have got the following
branching of the adjoint of SU(3) in terms of irreps. of SU(2)⌦ U(1)

8 = 3(0) + 2(1) + 2(�1) + 1(0) (3.158)

where the numbers inside the parenteses are the U(1) eigenvalues.










