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Power Method MAP2210

To approximate the dominant eigenvalue and an associated eigenvector of the n % n matrix
A given a nonzero vector x:

INPUT dimension n; matrix A; vector x: tolerance TOL; maximum r'lll_mber of iterations V.
—y

OUTPUT  approximate eigenvalue p1; approximate eigenvector x (with |[x||.c = 1)pra
message that the maximum number of iterations was exceeded. e —_s

Step 1 Setk=1.

o s "™ o #)

Step 2 Find the smallest integer pwith 1 <p <n anc{ p| = %] g1

e

Step 3 Set X = x/xj,.
Step 4 While (k = N) do Steps 5-11.
Step 5 Sety = Ax.

. Autovalor
Step 6 Set 1 = y,.

o s "™ mm )

Step 7 Find the smallest integer pwith 1 <p <n zml!:l [¥pl = I¥llocd

-_— e s ™ l
Step 8 1f y, = 0 then OUTPUT (“Eigenvector’, x);
OUTPUT (°A has the eigenvalue 0, select a new vector x and
restart’);
STOP.
Step 9 Set ERR = [|x — (y/¥p)loos
Autovetor
X =¥/¥p.
Step 10 1If ERR < TOL then OUTPUT (. x);

(The procedure was successful.)
STOP.

Step 11 Setk =k + 1.

Step 12 OUTPUT (‘The maximum number of iterations exceeded’);

(The procedure was unsuccessful.)
STOP. [ |



. MAP2210
2.5 Accelerating Convergence

Implementing the A’ procedure in Algorithm
9.1 is accomplished by modifying the algorithm as follows:

Step 1 Setk=1:

o = 0;
ey = 0.
Step 6 Set = yp: [
A — po— (1 — po)’ _
= 2p + po
Step 10 If ERR = TOL and k = 4 then OUTPUT (1. x);

STOP.

Step 11 Setk =k +1;
Ho = [,
L1 = [
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Symmetric Power Method

To approximate the dominant eigenvalue and an associated eigenvector of the n x n sym-
metric matrix A, given a nonzero vector x:

INPUT dimension n; matrix A; vector x; tolerance TOL; maximum number of iterations V.

OUTPUT  approximate eigenvalue p; approximate eigenvector x (with ||x|, = 1) or a
message that the maximum number of iterations was exceeded.

Step1 Seth=li= — 4
I )
| X= x/|x|l2- 1
_— o s " = |
Step 2  While (k = N) do Steps 3-8. Autovalor
Step 3 Sety = Ax.
Step 4 Set p = x'y.

Step 5 If ||y|l, = 0, then OUTPUT (*Eigenvector’, X):
OUTPUT (°A has eigenvalue 0, select new vector x
and restart’);
STOP.

Step 6 Set ERR:JI-X— Y.
F=Li- J};in Autovetor
[ X =¥/1l2. 1

-— ey s ™ l
Step 7 If ERR < TOL then OUTPUT (., x);
(The procedure was successful.)
STOP.

Step 8 Setk=k+1.

Step 9 OUTPUT (*Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)
STOP. [ ]



Example 2 MAP2210

Apply both the Power method and the Symmetric Power method to the matrix

4 —1 1
A= -1 3 -2 1.
1 -2 3

using Aitken’s A? method to accelerate the CONVErgence.

Table 9.3
m [},rm}}r F-{m} ﬁ:rm] {xrm}}r with lerm} Il2 =1
0 (1.0,0) (1,0,0)
1 4. —1.1) 4 7 (0.942809, —0.235702, 0.235702)
2 (4.242641, —2.121320, 2.121320 3 6.047619 (0.816497, —0.408248, 0.408248)
3 (4.082483, —2.857738, 2.857738) 5.666667 6.002932 (0.710669, —0.497468, 0.497468)
4 (3.837613, —3.198011, 3.198011) 5.909091 6.000183 (0.646997, —0.539164, 0.539164)
5 (3.666314, —3.342816, 3.342816) 5.976744 6.000012 (0.612836, —0.558763, 0.558763)
6 (3.568871, —3.406650, 3.406650) 5.994152 6.000000 (0.595247, —0.568190, 0.568190)
7 (3.517370, —3.436200, 3.436200) 5.998536 6.000000 (0.586336, —0.572805, 0.572805)
8 (3.490052, —3.450359, 3.450359) 5.999634 (0.581852, —0.575086, 0.575086)
9 (3.477580, —3.457283, 3.457283) 5.999908 (0.579603, —0.576220, 0.576220)
10 (3.470854, —3.460706, 3.460706) 5.999977 (0.578477, —0.576786, 0.576786)

The Symmetric Power method gives considerably faster convergence for this matrix
than the Power method. The eigenvector approximations in the Power method converge to

(1,—1,1)", a vector with unit /c-norm. In the Symmetric Power method, the convergence
1s to the parallel vector {ﬁﬂi, —ﬁfl ﬁﬁ)’, which has unit /s-norm.
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If 4 1s a real number that approximates an eigenvalue of a symmetric matrix A and x is
an associated approximate eigenvector, then Ax — Ax is approximately the zero vector. The
following theorem relates the norm of this vector to the accuracy of A to the eigenvalue.

Theorem 9.19

Suppose that A is an n x n symmetric matrix with eigenvalues A, A2, ..., A, If we have
||Ax — Ax||» = & for some real number A and vector x with ||x||; = 1. then

min |Aj —A| < &. [
I<j=n

(2

Proof Suppose that v'i”, vie L v"™ form an orthonormal set of eigenvectors of A asso-
ciated, respectively, with the eigenvalues A, A,.. ... 4,. By Theorems 9.5 and 9.3, x can be
expressed, for some unique set of constants 8y, f1,..., f,. as

n
X = Z ﬁj‘lr'{'”.
j=I

Thus

(]

-

n " n
AX — Ax|3 = (A — v = 1A — A1* = min |A; — A|°
|| 13=1{>_ B — ) > 18RI = min |3} — 5| > 18l

j=! , =] j=!

But

n
2 12 2 .
Y IBP=Ixl3=1. so &= [Ax—2ax|; > min A — Al.

=1



Inverse Power Method MAP2210

The Inverse Power method is a modification of the Power method that gives faster con-
vergence. It is used to determine the eigenvalue of A that is closest to a specified number g.

Suppose the matrix A has eigenvalues 4|, . . ., A, with linearly independent eigenvectors
vib, ... v The eigenvalues of (A — qf)_], where g = A, fori =1,2,... n, are

1 | 1

l|—q' }.g—q’ ' An— ¢

with these same eigenvectors v'!, v vi™_ (See Exercise 15 of Section 7.2.)

Applying the Power method to (A — gl)~! gives

PR

un} (A q}r) | {m |]

1
n {,r]
L) Z = JBJ {'A. ),” Upm—1

y
m _ im)y  _ Pm—1
H = V-1 = Tm—1) — 1 * (9.4)
Rl N —
= {'}L q)rrr m—
and -
L
xim — y
(m)*
-'I’Fm
where, at each step, p,, represents the smallest integer for which |"|.':””| = ||¥""]|sc. The

sequence {1} in Eq. (9.4) converges to 1/(A; — g), where

1 |
= max

|k — g| I=i=n |A; — q| ’

and A; A~ g + 1/p'™ is the eigenvalue of A closest to g.
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With £ known, Eq. (9.4) can be written as

3 m ‘} =]
1 ﬁ ;;E]—'_Z"— rB.f[J‘q] Lﬁfm]

Ak — k) m—1 )
7 ﬁibﬁ'm 1 +Z [ : q] UPm 1

N

(9.5)

Thus, the choice of g determines the convergence, provided that 1/(4; — g) is a unique

dominant eigenvalue of (A — g/)~' (although it may be a multiple eigenvalue). The closer
g 1s to an eigenvalue A, the faster the convergence since the convergence is of order

3 — —1 M . — m
0(( q9) ]‘ )=G((a q) )
(A —q)~ (A —q)
where A represents the eigenvalue of A that is second closest to g.
The vector ¥ is obtained by solving the linear system

(A qlfh{m] x M= ]}

In general, Gaussian elimination with pivoting is used, but as in the case of the LU factor-
ization, the multipliers can be saved to reduce the computation. The selection of g can be
based on the GerSgorin Circle Theorem or on another means of localizing an eigenvalue.
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Algorithm 9.3 computes g from an initial approximation to the eigenvector x'” by

x{ﬂ}rﬂx{ﬂ}
9= K{D}IX[D] )

This choice of g results from the observation that if x is an eigenvector of A with respect to
the eigenvalue A, then Ax = Ax. So x'Ax = Ax'x and

¥Ax  x'Ax

—_— 3.
Xx |xl3

If g is close to an eigenvalue, the convergence will be quite rapid, but a pivoting technique
should be used in Step 6 to avoid contamination by round-off error.

Algorithm 9.3 is often used to approximate an eigenvector when an approximate eigen-
value g is known.



Inverse Power Method

To approximate an eigenvalue and an associated eigenvector of the n % n matrix A given a
NONZEro Vector X:

INPUT dimension n; matrix A:; vector x: tolerance TOL; maximum P-umbe.mﬁitmtinni N.

OUTPUT  approximate eigenvalue jt: approximate eigenvector ¥ (with ||x||,, = 1) bra
message that the maximum number of iterations was exceeded. ~ ~ = = — =2
x'Ax

X'x

Step 2 Setk=1.

Step 1 Setg=

e W

Step 3 Find the smallest integerpwith 1 =p <n arig-lxpl = [Ixlle- |
Step 4 Setx = x/xj. -TEm——
Step 5 While (k = N) do Steps 6-12.

Step 6 Solve the linear system (A — gl)y = x.

Step 7 If the system does not have a unique solution, then
OUTPUT (‘g is an eigenvalue’, g);
STOP.

Step 8 Set 1 = y,.

e s T

I
Step 9 Find the smallest integerp with 1 =p <n a‘nd lvp| = II].-'II,JG.|
Step 10 Set ERR = |x — (v/y,)| .;

-, == =

X =¥/¥p
Step 11 IfERR = TOLthenset = (1/p) + gq;
OUTPUT (g, x);
(The procedure was successful.)
STOP.

Step 12 Setk =k + 1.

Step 13 OUTPUT (‘Maximum number of iterations exceeded’);

(The procedure was unsuccessful.)
STOP. [ |

MAP2210
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The convergence of the Inverse Power method is linear, so Aitken A method can again
be used to speed convergence. The following example illustrates the fast convergence of
the Inverse Power method if ¢ is close to an eigenvalue.

Example 3  Apply the Inverse Power method with x'” = (1. 1, 1) to the matrix

—4 ]4 ﬂ (00 (0
A 19
A= —5 13 0 with q = —x_{ﬂu TD] = .
1 0 2 xTix 3

and use Aitken’s A% method to accelerate the convergence.

Solution The Power method was applied to this matrix in Example 1 using the initial vector

x = (1,1, 1)". It gave the approximate eigenvalue ;' = 6.000837 and eigenvector
(x(12) = (1,0.714316, —0.249895)’ .
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For the Inverse Power method we consider

—3l 14 0

: 20
A—gl=| -5 &2 Hn

-1 0 —-=

With x'”’ = (1,1, 1)", the method first finds y'" by solving (A — ghy"" = x'”. This gives

33 24 84\ o5
vy = (——, -, —) = (—6.6, —4.8,1.292307692)".
) 57 5765
So
1
V]| = 6.6, xV = ﬁy“* = (1,0.7272727,—0.1958042)",
and
1 19
in _ _
=—— +— =6.1818182.
K 66 3

Subsequent results are listed in Table 9.4, and the right column lists the results of Aitken’s
A2 method applied to the ;™. These are clearly superior results to those obtained with the

Power method. [



Table 9.4

m xfirz}r P:nrz} ﬁl’m]

0 (1,1, 1)

1 (1,0.7272727, —0.1958042) 6.1818182 6.000098
2 (1,0.7155172, —0.2450520) 6.0172414 6.000001
3 (1, 0.7144082, —0.2495224) 6.0017153 6.000000
4 (1, 0.7142980, —0.2499534) 6.0001714 6.000000
3 (1, 0.7142869, —0.2499954) 6.0000171

6 (1, 0.7142858, —0.24999946) 6.0000017

MAP2210

If A is symmetric, then for any real number g, the matrix (A — g/) ™' is also symmetric,
so the Symmetric Power method, Algorithm 9.2, can be applied to (A — gI)~! to speed the
convergence to

d

Ak — 4
A—q

)



Deflation Methods

Numerous techniques are available for obtaining approximations to the other eigenvalues
of a matrix once an approximation to the dominant eigenvalue has been computed. We will
restrict our presentation to deflation techniques.

Deflation techniques involve forming a new matrix B whose eigenvalues are the same
as those of A, except that the dominant eigenvalue of A 1s replaced by the eigenvalue 0 in
B. The following result justifies the procedure. The proof of this theorem can be found in
[Wil2], p. 596.

Theorem 9.20

Suppose A1, A2.. .., As are eigenvalues of A with associated eigenvectors vV, v

and that ; has multiplicity 1. Let x be a vector with x'v{!) = 1. Then the matrix
B=A—xv"x

has eigenvalues 0, 4, A3, ..., A, with associated eigenvectors vl W@ Wl
where v/ and w'’ are related by the equation

v = (= w4 2 (X wvh,

foreachi =2.3,...,n.

LW

MAP2210

)

()

(9.6)
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There are many choices of the vector x that could be used in Theorem 9.20. Wielandt
deflation proceeds from defining

1
i
X = —1”{ﬂﬂiﬂ:’21---1‘-’?m) k] (g?}
.J'..]UJ:'
where v;-]:' 1s a nonzero coordinate of the eigenvector vl and the values a;1, ap, . . . . a;, are
the entries in the ith row of A.
With this definition,
.I 1 "
I 1 I
xvi = Tlaian, .. il (v), llé ety = —D ZGI-J,-L:,-[ ),
A MY o

where the sum is the ith coordinate of the pmductf’w“l. Since Av'! = }le':”, we have

n

E ﬂ,‘jb‘}l] = }..|1J:-']},

j=1
which implies that
1

1
SOy =1.
'Jl'lvl'

x'vil =

So x satisfies the hypotheses of Theorem 9.20. Moreover (see Exercise 20), the ith row of
B = A — v'"'x! consists entirely of zero entries.



MAP2210

If & = 0 1s an eigenvalue with associated eigenvector w, the relation Bw = Aw implies
that the ith coordinate of w must also be zero. Consequently the ith column of the matrix
B makes no contribution to the product Bw = Aw. Thus, the matrix B can be replaced by
an (n — 1) % (n — 1) matrix B’ obtained by deleting the ith row and column from B. The
matrix B" has eigenvalues A, A3,. ... A,.

If |A2] = |A3]. the Power method is reapplied to the matrix B’ to determine this new
dominant eigenvalue and an eigenvector, w2 , associated with A,, with respect to the matrix
B’. To find the associated eigenvector w'? for the matrix B, insert a zero coordinate between
the coordinates wﬁ}; and w};E}’
v? by the use of Eq. (9.6).

of the (n — 1)-dimensional vector w2 and then calculate
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Example 4 The matrix

4 -1 |
A= —1 3 -2
1 -2 3
has the dominant eigenvalue A1 = 6 with associated unit eigenvector vl — (1, —1, 1)".

Assume that this dominant eigenvalue is known and apply deflation to approximate the
other eigenvalues and eigenvectors.



Solution The procedure for obtaining a second eigenvalue A, proceeds as follows:

1| 4 2 11\
X=— _] = T -
6 i 3766
2 | |
1 I 6 @
Al 2 1 1 7 _ 2 1 |
e e S I S O 0 ol B S St A
1 2 11
3 [3] 6
and
2 | 1
4 -1 1 3 76 6 0 0
B=A-wvx=] -1 3 -2 |-6| -3 L L1 3 2 -
1 -2 3 2 _1 1 -3 -1
3 f 6

Deleting the first row and column gives

. 2 -1
y-[ 2]

which has eigenvalues 4y = 3 and A7y = 1. For A, = 3, the eigenvector w'® can be obtained
by solving the linear system

(B —30w® =0, resultingin w? = (1,—1)".

Adding a zero for the first component gives wd = (0,1, —1)" and, from Eq. (9.6), we have
the eigenvector v of A corresponding to xa = 3:

v — (31 — },1)“-'[2] + },|{x’w[2])vm

=(3-6)(0,1,-1)+6 2 11 0,1, =D | (1, -1.1) =(=2.—-1.1). =
k) T 3‘! 656 k) ¥ ] - b ]

MAP2210
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Although this deflation process can be used to find approximations to all of the eigen-
values and eigenvectors of a matrix. the process is susceptible to round-off error. After
deflation is used to approximate an eigenvalue of a matrix, the approximation should be
used as a starting value for the Inverse Power method applied to the original matrix. This
will ensure convergence to an eigenvalue of the original matrix, not to one of the reduced
matrix, which likely contains errors. When all the eigenvalues of a matrix are required,
techniques considered in Section 9.5, based on similarity transformations, should be used.

We close this section with Algorithm 9.4, which calculates the second most dominant
eigenvalue and associated eigenvector for a matrix, once the dominant eigenvalue and
assoclated eigenvector have been determined.



Wielandt Deflation

To approximate the second most dominant eigenvalue and an associated eigenvector of the
n x n matrix A given an approximation A to the dominant eigenvalue, an approximation v
to a corresponding eigenvector, and a vector x € R

INPUT dimension n; matrix A; approximate eigenvalue A with eigenvector v € R"; vector
x € ! . tolerance TOL, maximum number of iterations N.

OUTPUT approximate eigenvalue p; approximate eigenvector u or a message that the
method fails.

Step T Let i be the smallest integer with 1 =i = n and |v;| = max;<j<, |vj].

Step 2 Ifi +# 1 then
fork=1,....i—1
forj=1,...,i—1
set bkj = Qg — Ea;j.

(15

Step 3 1Ifi# 1andi #£ nthen
fork=1i.....n—1
forj=1,....1 —1
Uk+1
—aijs
i
Y
bjk = ajx+1 — —Gij+1.
w

set bkj = QA+1j —

Step 4 1fi #£ n then
fork=1i,....n—1
forj=1,....n—1
Uk+1

set by = dpy1j41 — 5 i1
i

MAP2210



MAP2210

Step 5  Perform the power method on the (n — 1) x (n — 1) matrix B" = (by;) with x as
initial approximation.

Step 6 If the method fails, then OUTPUT (*Method fails’);
STOP

else let i be the approximate eigenvalue and
w = (w,...,w,_, ) the approximate eigenvector.

Step 7 Ifi# Ithenfork=1,....i—1set w; = w;.
Step 8 Setw; = 0.

Step9 Ifi#nthenfork=i+1.....nsetw =w,_,.
Step 10 Fork=1.....n

"

setwp = (0 — A)wg + Z”Uu’j —.
j=1

(Compute the eigenvector using Eg. (9.6).)

Step 11 OUTPUT (p.u): (The procedure was successful.)
STOP. [
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EXERCISE SET 93

1. Find the first three iterations obtained by the Power method applied to the following matrices.

2 1 1 1 1 1

a 1 2 1 | b. 1 1 0 |;
11 2 1 01
Use x' = (1,-1,2)' Usex'™ = (—1,0,1)"
1 -1 0 4 1 1 1

c -2 4 =2 |: d 1 3 -1 1 |
0 -1 2 ' 1 -1 20 J
Use x'” = (—1,2,1)". 1 1 0 2

Use x'¥ = (1,-2,0,3)".

3. Repeat Exercise 1 using the Inverse Power method.

13. Use Wielandt deflation and the results of Exercise 7 to approximate the second most dominant eigen-

value of the matrices in Exercise 1. Iterate until a tolerance of 10~ is achieved or until the number of
iterations exceeds 23.
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