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Abstract. By expressing the conditional causal risk di¤erence as a sum of products
of stratum speci�c risk di¤erences and conditional probabilities, it is possible to give a
classi�cation of the types of causal relationships that can give rise to e¤ect modi�cation on the
risk di¤erence scale. Directed acyclic graphs make clear the necessary causal relationships for
a particular variable to serve as an e¤ect modi�er for the causal risk di¤erence concerning two
other variables. The directed acyclic graph causal framework thereby gives rise to a four-fold
classi�cation for e¤ect modi�cation: direct e¤ect modi�cation, indirect e¤ect modi�cation,
e¤ect modi�cation by proxy and e¤ect modi�cation by a common cause. Brief discussion is
given to the case of multiple e¤ect modi�cation relationships and multiple e¤ect modi�ers
as well as measures of e¤ect other than that of the causal risk di¤erence.
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Directed acyclic graphs have been used as causal diagrams in epidemiologic research for a
variety of purposes. Directed acyclic graphs have been used to represent causal relations
amongst variables;1�3 they have been used extensively to determine the variables for which
it is necessary to control for confounding in order to estimate causal e¤ects;1�2;4�5 more
recently they have been used by Hernán et al. to provide a classi�cation of the types of
causal relationships that can give rise to selection bias.6 In this paper we follow their work
by using directed acyclic graphs to provide a classi�cation of the types of causal relationships
that can give rise to e¤ect modi�cation. Speci�cally, we consider what relationships an
e¤ect modi�er variable may exhibit in relation to the variable constituting the cause and
the variable constituting the e¤ect. Doing so yields a structural classi�cation of e¤ect
modi�cation; the classi�cation is structural in that it makes reference to the structure of the
causal directed acyclic graph. We �rst provide some discussion of the various measures of
e¤ect used to assess e¤ect modi�cation. We will then focus on the causal risk di¤erence as
a measure of e¤ect by which e¤ect modi�cation is assessed (though much of the discussion
applies also to other measures of e¤ect as well) and we use directed acyclic graphs to provide a
classi�cation of di¤erent types of e¤ect modi�cation. Extensions to conditioning on multiple
items and to scales other than the risk di¤erence are discussed at the paper�s conclusion and
in Appendix 1.

E¤ect Modi�cation

Epidemiologists apply the term "e¤ect modi�cation" to indicate that the e¤ect of one
variable on another varies across strata of a third. There are many di¤erent measures of
e¤ect and thus also many di¤erent measures by which a variable may be an e¤ect modi�er for
the relationship between a cause and an e¤ect. There has been considerable discussion as to
which measure of e¤ect one might most naturally use in assessing e¤ect modi�cation. The
risk di¤erence, the risk ratio and the odds ratio are all frequently used in assessing e¤ect
modi�cation. In general, di¤erent measures of e¤ect will be useful in di¤erent contexts.
For example, the risk di¤erence which, within the context of e¤ect modi�cation, measures
departures from the additivity of e¤ects is arguably of greatest public health importance;7�9

while the odds ratio is the natural measure of choice for case-control studies.
Here we will focus primarily on the causal risk di¤erence as our measure of choice. By

using the causal risk di¤erence, the various relationships an e¤ect modi�er may bear to the
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variable constituting the cause and the variable constituting the e¤ect are made particularly
clear. Although we focus on the causal risk di¤erence much of the discussion applies also
to other measures of e¤ect. It should also be noted that e¤ect modi�cation on the causal
risk di¤erence scale or any other scale falls under the broader idea of "interaction." The
relationship between e¤ect modi�cation and di¤erent notions of interaction in a counterfac-
tual framework has been developed elsewhere.3;10�12 These issues are outside the intended
scope of this paper. Much of this literature concerns individual-level interaction. Directed
acyclic graphs allow for the graphical representation of population level causal relationships
and thus the causal risk di¤erence (or alternatively causal risk ratio or odds ratio) provides
the most appropriate focus for our analysis.
Before proceeding, one further issue merits discussion. It is often commented that

conditioning on intermediate variables between the exposure or intervention variable and
the outcome variable will in general bias estimates of the causal e¤ect.13�17 In considering
which variables may act as e¤ect modi�ers, we will therefore restrict our attention to variables
that are not a consequence of the exposure or intervention variable under consideration. A
variable Q will thus be said to be an e¤ect modi�er on the causal risk di¤erence scale of the
relationship between some exposure E and some outcome D if Q is not a¤ected by E and
there exists two levels of E, e0 and e1 say, such that the di¤erence between the expected
value of D over the population intervening to set the exposure variable E to e1 as compared
with intervening to set the exposure variable E to e0 varies across strata of Q.
More formally, let DE=e denote the counterfactual variable D intervening to set the

exposure variable E, possibly contrary to fact, to level e. Then the causal e¤ect of E
on D comparing two levels of E, e0 and e1, is de�ned simply as the causal risk di¤erence
E[DE=e1 ]�E[DE=e0 ]. And we thus say that a variable Q is an e¤ect modi�er for the causal
risk di¤erence of E on D if Q is not a¤ected by E and if there exists two levels of E, e0 and
e1, such that E[DE=e1jQ = q] � E[DE=e0jQ = q] is not constant in q. With this de�nition
in place, we may proceed to classify di¤erent types of e¤ect modi�cation by using causal
directed acyclic graphs.

Causal Directed Acyclic Graphs

A directed acyclic graph is composed of variables (nodes) and arrows between nodes
(directed edges) such that it is not possible to start at any node, follow the directed edges
in the arrowhead direction and end up back at the same node. A causal directed acyclic
graph is one in which the arrows can be interpreted as causal relationships and in which all
common causes of any pair of variables on the graph are also included on the graph. Thus
if a graph has nodes V1; :::; Vn and some variable U is a common cause of say V1 and V2 then
U must be included on the graph for the graph to be a causal directed acyclic graph. If,
on the other hand U were only a cause of V1 or only a cause of V2 but not both, then U
could be included on the graph or it could be left out. Its inclusion wouldn�t be necessary
for the graph to be a causal directed acyclic graph. That the graph�s edges are directed
ensures that causes precede e¤ects; that the graph is acyclic ensures that no variable can be
its own cause. If there is a directed edge from A to B then A is said to be a parent of B
and B is said to be a child of A. If there are a series of one or more directed edges such
that it is possible to begin at node A, follow the directed edges in the arrowhead direction
and end at another node B then A is said to be an ancestor of B and B is said to be a
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descendent of A. If A is a parent of B then A is a direct cause of B; if A is an ancestor of B
but not a parent of B then A is said to be an indirect cause of B (through the intermediate
variables between A and B). Additional details can be found in the work of Greenland et
al.2 Greater formalization is provided by Pearl.1

Statistical associations on causal directed acyclic graphs can arise in a number of ways.
Two variables, A and B, may be statistically associated if A is either a direct or indirect
cause of B or if B is a direct or indirect cause of A. Even if neither is the cause of the other,
the variables A and B may still be statistically associated if they have some common cause
C. Finally, the variables A and B may be statistically associated if they have a common
e¤ect K and the association is computed within the strata of K; that is to say A and B will
in generally be statistically associated given K if K is a common e¤ect of A and B. We will
graphically represent conditioning by placing a box around the variable on the graph upon
which we are conditioning.5

More formally, the statistical association between variables can be determined by blocked
and unblocked paths. A path is a sequence of nodes connected by edges regardless of
arrowhead direction; a directed path is a path which follows the edges in the direction
indicated by the graph�s arrows; a collider is a particular node on a path such that both
the preceding and subsequent nodes on the path have directed edges going into that node
i.e. both the edge to and the edge from that node have arrowheads into the node. A path
between A and B is said to be blocked given some set of variables Z if either there is a
variable in Z on the path that is not a collider or if there is a collider on the path such that
neither the collider itself nor any of its descendants are in Z. It has been shown that if all
paths between A and B are blocked given Z then A and B are conditionally independent
given Z.18�20

We need one further result in the development of the structural classi�cation of e¤ect
modi�cation below. The backdoor path adjustment theorem states that for intervention
variable E and outcome D, if a set of variables Z such that no variable in Z is a descendent
of E blocks all "back-door paths" from E toD (i.e. all paths with directed edges into E) then
conditioning on Z su¢ ces to control for confounding for the estimation of the causal e¤ect
of E on D and this causal e¤ect is given by E[DE=e] =

P
z E[DjE = e; Z = z]P (Z = z).1

Note that this is a graphical variant of Theorem 4 of Rosenbaum and Rubin21 and Robin�s
g-formula.22�23

A Structural Classi�cation of E¤ect Modi�cation

In this section we use causal directed acyclic graphs to consider what relationships an
e¤ect modi�er variable may exhibit in relation to the variable constituting the cause and
the variable constituting the e¤ect. Doing so yields a classi�cation of the di¤erent types of
e¤ect modi�cation. Before presenting the theory for the classi�cation we will illustrate the
classi�cation with a simple hypothetical example. Suppose that in a randomized trial, some
drug E for hypertension D has variable e¤ect (on the causal risk di¤erence scale) according
to the presence of some genotype X. Since the trial is randomized, E and X have no
common causes and since both E and X have an e¤ect on D the causal relationships among
these variables can be described as those on the causal directed acyclic graph given in Figure
1.
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E D

X

Figure 1. Direct E¤ect Modi�cation: E - drug exposure; D - hypertension outcome; X -
genotype, a direct e¤ect modi�er.

We could say that X is a direct e¤ect modi�er for the causal e¤ect of E on D because X is
a direct cause of D. Suppose now that information is available on the genotype C of the
mothers of the study participants. The mothers�genotype a¤ects the genotype of the study
participants but does not a¤ect hypertension of the study participants directly. The causal
relationships among these variables is represented by the causal directed acyclic graph given
in Figure 2.

E D

XC

Figure 2. Indirect E¤ect Modi�cation: E - drug exposure; D - hypertension outcome; X -
genotype; C - mother�s genotype, an indirect e¤ect modi�er.

We will show more formally below that in Figure 2, C will likely serve as an e¤ect modi�er
on the causal risk di¤erence scale for the e¤ect of E on D. This is essentially because C
a¤ects X which serves as an e¤ect modi�er for the causal e¤ect of E on D. We could thus
say that C is an indirect e¤ect modi�er for the causal e¤ect of E on D since C a¤ects D
indirectly through X. Now suppose that genotype X also determined skin pigment and that
the study information on race R is based entirely on skin pigment. The causal relationships
among these variables could then be represented by the causal directed acyclic graph given
in Figure 3.

E D

X R

Figure 3. E¤ect Modi�cation by Proxy: E - drug exposure; D - hypertension outcome; X -
genotype; R - race, an e¤ect modi�er by proxy.

Here, R will also likely serve as an e¤ect modi�er on the causal risk di¤erence scale for the
e¤ect of E on D because conditioning on R gives information on X which serves as an e¤ect
modi�er for the causal e¤ect of E on D. However, since R is not a cause of D we would say
that R is an e¤ect modi�er of the causal e¤ect of E on D by proxy. Finally, suppose that
information is available on the race of the mother which we will denote by M . The causal
relationships among the variables could then represented by the causal directed acyclic graph
given in Figure 4.

E D

XC

M
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Figure 4. E¤ect Modi�cation by Common Cause: E - drug exposure; D - hypertension
outcome; X - genotype; C - mother�s genotype; M - mother�s race, an e¤ect modi�er by

common cause.

It will be seen below that M also will likely serve as an e¤ect modi�er of the causal risk
di¤erence of E on D because conditioning on M gives information on C which a¤ects X
which serves as an e¤ect modi�er for the causal e¤ect of E on D. Because C is a common
cause of X (a variable that is a direct cause of D) and M (the variable we are conditioning
on) we might refer to M as an e¤ect modi�er by common cause of the e¤ect of E on D.
We now generalize this simple example and show that all instances of e¤ect modi�cation

can be classi�ed as falling into one of the four categories indicated above: direct e¤ect mod-
i�cation, indirect e¤ect modi�cation, e¤ect modi�cation by proxy and e¤ect modi�cation by
common cause. The classi�cation is carried out by expressing the conditional causal risk dif-
ference as a sum of products of stratum speci�c risk di¤erences and conditional probabilities
as given in Theorem 1. In Theorem 1, we assume that there are no intermediate variables
between E and D on the directed acyclic graph. In the next section, this assumption is
dropped and the result is generalized. Proofs of all theorems are given in Appendix 2.

Theorem 1. Suppose that E is a parent of D and that there are no intermediate variables
between E and D. Let X denote the parents of D other than E. Let Q be some set of
non-descendents of E and D then

E[DE=e1 jQ = q]� E[DE=e0jQ = q] (1)

=
P

xfE[DjX = x;E = e1]� E[DjX = x;E = e0]gP (X = xjQ = q):

Theorem 1 states that the causal risk di¤erence for D comparing two levels of E, e1 and
e0 say, within a particular stratum of Q is given by the sum of the expected risk di¤erences
in D conditional on X and Q weighted by the probability of X given Q where X denotes
the parents of D other than E. The formula given in (1) allows us to provide a structural
classi�cation of e¤ect modi�cation on the causal risk di¤erence scale. For Q to be an e¤ect
modi�er of the causal e¤ect of E on D it is necessary that the function G(q) = E[DE=e1jQ =
q] � E[DE=e0jQ = q] =

P
xfE[DjX = x;E = e1] � E[DjX = x;E = e0]gP (X = xjQ = q)

is not constant in q. In other words, it is necessary that the expected risk di¤erence in D
conditional on X and Q = q weighted by the probability of X given Q = q is not constant in
q. This latter expression depends on q only through P (X = xjQ = q) and so it is necessary
that P (X = xjQ = q) is not constant in q. The requirement that P (X = xjQ = q) is not
constant in q is simply the requirement that X and Q are statistically associated. In the
introductory material on directed acyclic graphs we discussed the various structures that
may give rise to association between two variables: cause and e¤ect, common causes, and
conditioning on a common e¤ect. We may thus use our knowledge of directed acyclic graphs
to consider various cases for which a potential e¤ect modi�er Q will be associated with one
or more of the variables in X. This will allow us to classify the type of e¤ect modi�cation
for any potential e¤ect modi�er Q on the graph. Our analysis will follow the hypothetical
example given above. First the conditioning variable may be among the variables in X (i.e.
it may be a parent of D) and this gives rise to what we will call direct e¤ect modi�cation
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as illustrated in Figure 1 with Q = X; second, the conditioning variable may be an ancestor
of one or more of the variables in X which gives rise to what we will call indirect e¤ect
modi�cation as illustrated in Figure 2 with Q = C; third, Q may be a descendent of one
or more of the variables in X which gives rise to what we will call e¤ect modi�cation by
proxy as illustrated in Figure 3 with Q = R; lastly, Q and one or more of the variables in
X may have a common cause which gives rise to what we will call e¤ect modi�cation by a
common cause as illustrated in Figure 4 with Q = M . Theorem 1 allowed us to transform
the condition for e¤ect modi�cation on the causal risk di¤erence scale into the necessary
condition for e¤ect modi�cation that Q and X are statistically associated. Our knowledge
of association structures on causal directed acyclic graphs then allowed us to classify di¤erent
types of e¤ect modi�cation.
The four types of e¤ect modi�cation may be distinguished in a number of ways. First, as

is clear from Figures 3 and 4 an e¤ect modi�er for the e¤ect of some exposure on a particular
outcome may not itself have a causal e¤ect on that outcome. In the cases of direct and
indirect e¤ect modi�cation, the e¤ect modi�er does have a causal e¤ect on the outcome; in
the cases of e¤ect modi�cation by proxy and by common cause the e¤ect modi�er does not.
This is because the unblocked path from Q to X that gives rise to the required association
between Q andX will be a frontdoor path from Q toX in the cases of direct or indirect e¤ect
modi�cation and will be a backdoor path from Q to X in the cases of e¤ect modi�cation by
proxy or by common cause. Second, direct e¤ect modi�cation may be distinguished from
the other three types in an important way. If one is conditioning on multiple variables which
include all the direct e¤ect modi�ers X then no other variable on the graph will continue to
serve as an e¤ect modi�er for the causal e¤ect of E on D while conditioning on X. This is
essentially because X blocks all paths from any other potential e¤ect modi�er Q to D. In a
sense, direct e¤ect modi�ers take precedence over all other types. The case of conditioning
on multiple variables is considered further in the Discussion section and in Appendix 1.
One additional comment is necessary. For the function G(q) =

P
xfE[DjX = x;E =

e1]� E[DjX = x;E = e0]gP (X = xjQ = q) to not be constant in q it is also necessary that
the function E[DjX = x;E = e1] � E[DjX = x;E = e0] is not constant in x. That is to
say it is necessary that X be an e¤ect modi�er for the relationship between E and D. This
will often, but not always, be the case. In the context of binary E and X, the expression
E[DjX = x;E = e1]�E[DjX = x;E = e0] will often not be constant in x if E and X exhibit
synergism. Exceptions to the condition that E[DjX = x;E = e1] � E[DjX = x;E = e0]
is not constant in x will occur whenever all individual response types which Greenland
and Poole classify as exhibiting "causal interdependence" are absent.10 Further discussion
of some of these issues can be found in a companion paper and elsewhere.11;12;24 Here it
su¢ ces to note that if none of the variables in X serve as an e¤ect modi�er for the causal
e¤ect of E on D then no other variable on the graph will serve as an e¤ect modi�er because
E[DjX = x;E = e1]�E[DjX = x;E = e0] is then constant in x. Theorem 1 thus allows us
to classify instances of e¤ect modi�cation but not to identify e¤ect modi�cation.
It is furthermore of note that it is possible for P (X = xjQ = q) to not be constant in q

and for E[DjX = x;E = e1]� E[DjX = x;E = e0] to not be constant in x but to still have
G(q) =

P
xfE[DjX = x;E = e1] � E[DjX = x;E = e0]gP (X = xjQ = q) constant in q (in

which case Q would not be an e¤ect modi�er for the causal risk di¤erence). This possibility
arises because the di¤erences fE[DjX = x;E = e1] � E[DjX = x;E = e0]g may cancel
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each other out perfectly. These will however be exceptional cases and in general whenever
P (X = xjQ = q) is not constant in q, e¤ect modi�cation on the risk di¤erence scale will be
manifest.
Theorem 1 made reference to a set of variables X constituted by the parents of D other

than E. If E is the only parent of D then this set is empty and it turns out that there
can then be no e¤ect modi�er on the graph for the causal e¤ect of E on D. This is stated
formally in Theorem 2.

Theorem 2. Suppose some node D on a causal directed acyclic graph has only one parent,
E, then there exists no variable on the directed acyclic graph which is an e¤ect modi�er for
the causal e¤ect of E on D.

Essentially Theorem 2 states that if the exposure E is the only variable on the directed
acyclic graph which is a direct cause of D then there can be no variable on the directed
acyclic graph which acts as an e¤ect modi�er for the relationship between E and D. This
is so because any other variable which could have an e¤ect on D must do so through E
but intervening on E will supersede any e¤ect this other variable might otherwise have had.
Note that the theorem does not state that there exists no e¤ect modi�er for the causal
e¤ect of E on D; only that there is no variable on the directed acyclic graph which is an
e¤ect modi�er for this relationship. A causal directed acyclic graph which included all the
variables on the original causal directed acyclic graph plus a number of others might have
a variable which could serve as an e¤ect modi�er for the causal e¤ect of E on D if at least
one of the additional variables were a direct cause of D (note that there may be causes of
D which were not on the original causal directed acyclic graph if these variables are not
also causes of another variable on the graph and thus not common causes of two or more
variables on the graph). We see then that for there to be an e¤ect modi�er for the causal
e¤ect of E on D on a causal directed acyclic graph, the node D must have more than one
parent.

Discussion

Several comments merit additional attention with regard to possible limitations and
extensions of the results we have considered in this paper. First, it should be acknowledged
that although e¤ect modi�cation is an important phenomenon, it is sometimes of insu¢ cient
magnitude to be of clinical or public health relevance. The theory developed in this paper
does not allow for the representation of the magnitude of e¤ect modi�cation and thus cannot
distinguish between cases in which the magnitude is or is not of substantive importance.
Directed acyclic graphs are a useful conceptual tool but cannot take the place of empirical
analysis and presentation of numerical results.
Second, e¤ect modi�cation relationships may be considerably more complicated than the

examples given in Figures 1-4. The causal diagram may, for example, involve a number of
intermediate variables. Furthermore, a variable in Q may be associated with more than one
variable in X giving rise to multiple e¤ect modi�cation relationships. Additionally, the set
Q itself may contain more than one variable thereby giving rise to multiple e¤ect modi�ers.
These and other more complex causal structures and e¤ect modi�cation relationships are
discussed in Appendix 1.
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Third, although the analysis has been restricted to the use of the causal risk di¤er-
ence as a measure by which to assess e¤ect modi�cation, most of the remarks hold true
if one considers other measures of e¤ect. For example, the causal risk ratio for the
causal e¤ect of E on D comparing two levels of E, e0 and e1, in stratum Q = q is given

by
f
P

x
E[DjX=x;E=e1]P (X=xjQ=q)g

f
P

x
E[DjX=x;E=e0]P (X=xjQ=q)g

. If X and Q are not independent then the expression

f
P

x
E[DjX=x;E=e1]P (X=xjQ=q)g

f
P

x
E[DjX=x;E=e0]P (X=xjQ=q)g

will in most cases vary in q although exceptions can occur just

as in the case of the causal risk di¤erence above. Similarly, the causal odds ratio for the
e¤ect of E on D will generally vary in levels of Q if Q is not independent of X. The analysis
however is most simple for the causal risk di¤erence.
Fourth, for an exposure E, an outcome D and a potential e¤ect modi�er Q, several

di¤erent causal directed acyclic graphs of varying complexity may represent the causal re-
lationships among these variables. One graph with E, D and Q may have a number of
additional variables; another may have only the variables E, D and Q and no others. The
one requirement that must be satis�ed with regard to the presence or absence of other vari-
ables on the graph is that any common cause of two variables on the graph must also be on
the graph. Thus, for example, in Figure 2, the variable X could have been excluded from
the graph with an arrow from C directly into D. The variable X could have been excluded
because although it is a cause of D, it is not a cause of any other variable on the graph.
In our system of classi�cation, if X had been excluded from the graph then C would then
be classi�ed as a direct modi�er of the causal e¤ect of E on D. The classi�cation of e¤ect
modi�ers will thus sometimes be relative to the particular variables included on the graph
under consideration. However, Figure 6 illustrates that indirect e¤ect modi�cation cannot
always be reduced to direct e¤ect modi�cation by excluding variables from the graph. In
Figure 6, Q1 serves as an indirect e¤ect modi�er for the causal e¤ect of E on D. However,
the variable X1 cannot be removed from the graph because it is a common cause of E and
D. Similarly, in Figure 4, M was an e¤ect modi�er by common cause which could have
been reduced to an e¤ect modi�er by proxy if X had been excluded from the graph with
an arrow from C directly into D. However, in Figure 6, Q2 serves as an e¤ect modi�er by
common cause through X2 but cannot be reduced to an e¤ect modi�er by proxy because
X2 cannot be removed from the graph as it is a common cause of E and D. How an e¤ect
modi�er is classi�ed is thus sometimes, but not always, relative to the particular variables
that are represented on the causal directed acyclic graph under consideration.
Finally, we note that the results developed in this paper allowed us to classify any given

instance of e¤ect modi�cation as one of direct e¤ect modi�cation, indirect e¤ect modi�cation,
e¤ect modi�cation by proxy or e¤ect modi�cation by common cause. The theory did
not pertain to identifying e¤ect modi�cation or to graphically representing interactions or
e¤ect modi�cation or interactions rather merely to classifying instances of e¤ect modi�cation
according to the structure of a directed acyclic graph. Theory concerning the graphical
representation of synergistic interactions for binary variables is developed in related work.25

The results in this paper classify and make clear the necessary causal relationships an e¤ect
modi�er variable may and must exhibit in relation to the variable constituting the cause and
the variable constituting the e¤ect.
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Appendix 1: More Complex E¤ect Modi�cation Structures.

As noted in the Discussion section, e¤ect modi�cation relationships may be considerably
more complicated than the examples given in Figures 1-4. Any number of variables might
lie between Q and X in Figure 2 or between X and Q in Figure 3 or between C and X
or C and Q in Figure 4; the set X may contain more than one variable; and, as discussed
below, there may be intermediate variables between E and D. However, when one considers
the relation between the potential e¤ect modi�er Q and some particular member of the set
X with which it is associated, their association will arise from one of the four alternatives
presented above. Note however that these four alternatives are not mutually exclusive. A
variable in Q may be associated with more than one variable in X and may exhibit any one
of these four relations to (or be independent of) each particular variable in X. An example
in which multiple e¤ect modi�cation relationships are present is given in Figure 5.

E

D

QC

X3

X1

X2

Figure 5. Multiple E¤ect Modi�cation Relationships: E - exposure; D - outcome; X1, X2,
X3 - other direct causes of D; Q - an e¤ect modi�er; C - a common cause.

In the rather complicated example given in this �gure, Q is an e¤ect modi�er for the
causal e¤ect of E on D indirectly through X1, by proxy through X2, and by common cause
through X3. The four-way classi�cation above is su¢ cient if attention is restricted to
conditioning on a single item. But it is also possible that a researcher is interested in two
variables considered jointly as an e¤ect modi�er for the causal e¤ect of E on D. One can
then provide a classi�cation of the e¤ect modi�cation structure for each variable in the set
Q. An example of multiple variables serving as e¤ect modi�ers is given in Figure 6.

D

Q2

C X3

E

Q1

Q3

X1

X2

Figure 6. Multiple E¤ect Modi�ers: E - exposure; D - outcome; X1, X2, X3 - other direct
causes of D; Q1 - an indirect e¤ect modi�er; Q2 - an e¤ect modi�er by common cause; Q3 -

an e¤ect modi�er by proxy; C - a common cause.

In this example, the set X (the parents of D other than E) consists of the variables X1, X2

and X3. The variable Q1 serves as an indirect e¤ect modi�er through X1; the variable Q2
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is an e¤ect modi�er by common cause through X2; the variable Q3 is an e¤ect modi�er by
proxy through X3. The variables X1, X2 and X3, if they had been conditioned upon (instead
of Q1, Q2 and Q3) would all have served as direct e¤ect modi�ers of the causal e¤ect of E
on D. Of course, more complicated arrangements are also possible in which each of the
variables in the set Q exhibits multiple e¤ect modi�cation relationships to the variables in
X and in which additional intermediate variables are present.
We have seen that X and Q may be associated either because of a cause and e¤ect

relationship (Q directly causes X, Q indirectly causes X, or X causes Q) or through a
common cause of X and Q; this led to the fold-four classi�cation of e¤ect modi�cation given
above. However, as noted in the introductory material on directed acyclic graphs, X and Q
may also be associated by conditioning on a common e¤ect of these two groups of variables.
This might occur in practice if, for example, one were interested in two variables considered
jointly as an e¤ect modi�er. Alternatively this might occur if one were interested in only
one variable as an e¤ect modi�er but, due to the sampling procedure, one intentionally or
inadvertently conditioned on a particular subset of subjects which restricted the sample to
a particular stratum of one of the causal directed acyclic graph�s variables. In such cases,
the common e¤ect being conditioned upon, say K, might open a previously blocked path
between Q and some variable in X. We might then still apply the four-fold classi�cation
given above with K now taking on the role of Q for purposes of classi�cation. It turns
out, however, that when Q is an e¤ect modi�er for the causal e¤ect of E on D because
of conditioning on a common e¤ect of X and Q, this will rule out the cases of direct and
indirect e¤ect modi�cation; e¤ect modi�cation will always be either by proxy or by common
cause. If the e¤ect modi�cation were direct or indirect (rather than by proxy or common
cause) then the unblocked path from K to X would be a frontdoor path and conditioning
on K would then block the path from Q to X (unless Q were also associated with X in ways
other than paths through K). Thus the relationship between K and X must either be that
of proxy or of common cause. The relationship between Q and K may either be that Q is
an ancestor of K or that Q and K share a common cause. In summary, when conditioning
on K, we must thus have either e¤ect modi�cation by proxy (conditioning on a common
e¤ect, with Q and K related by ancestry or by a common cause) or e¤ect modi�cation by
common cause (conditioning on a common e¤ect, with Q and K related by ancestry or by a
common cause). Examples of each of these four cases are given in the directed acyclic graphs
presented in Figures 7-10.

E D

X K

Q

Figure 7. E¤ect Modi�cation by Proxy (conditioning on a common e¤ect with Q and K
related by ancestry): E - exposure; D - outcome; X - a direct cause of D; K - a conditioning

variable; Q - an e¤ect modi�er by proxy.
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E D

X K

C Q

Figure 8. E¤ect Modi�cation by Proxy (conditioning on a common e¤ect with Q and K
related by a common cause): E - exposure; D - outcome; X - a direct cause of D; K - a

conditioning variable; C - a common cause; Q - an e¤ect modi�er by proxy.

E D

XC

K

Q

Figure 9. E¤ect Modi�cation by Common Cause (conditioning on a common e¤ect with Q
and K related by ancestry): E - exposure; D - outcome; X - a direct cause of D; K - a
conditioning variable; C - a common cause; Q - an e¤ect modi�er by common cause.

E D

XC1

K

C2 Q

Figure 10. E¤ect Modi�cation by Common Cause (conditioning on a common e¤ect with Q
and K related by a common cause): E - exposure; D - outcome; X - a direct cause of D; K -
a conditioning variable; C1, C2 - common causes; Q - an e¤ect modi�er by common cause.

Conditioning on two or more items along with the e¤ect modi�er may complicate matters
yet further but the same principles apply. It may be that Q is associated with X only by
conditioning on several other variables. Classi�cation may take place by considering the �rst
conditioning variable on a particular unblocked path between X and Q. Each consecutive
pair of conditioning items or the �nal conditioning item and Q may be related by ancestry
or by common cause. As was the case in Figures 5 and 6, multiple e¤ect modi�cation
relationships or multiple e¤ect modi�ers might also be present.
Our examples and the discussion thus far have assumed that there are no intermediate

variables between E and D on the directed acyclic graph. The results and discussion,
however, easily generalize to the setting in which there are intermediate variables between
E and D on the directed acyclic graph. Theorem 3 restates Theorem 1 dropping the
assumption of no intermediate variables between E and D on the directed acyclic graph.
The conclusion of Theorem 2 is the same as that of Theorem 1 but the conditions under
which this conclusion holds are slightly di¤erent.

Theorem 3. Let D be some node on a causal directed acyclic graph with ancestor E and
let X denote all non-descendents of E which are either parents of D or parents of a node on
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a directed path between E and D. Let Q be some set of non-descendents of E and D then
equation (1) holds.

In the presence of intermediate variables between E and D on the directed acyclic graph,
e¤ect modi�cation can be classi�ed as before according to their relationships with the set
of variables X. However, in the context of intermediate variables between E and D on the
directed acyclic graph, the set X is no longer simply the parents of D other than E but
rather all non-descendents of E which are either parents of D or parents of a node on a
directed path between E and D.
A �nal warning is necessary. Theorems 1 and 3 did not allow for Q to be a descendent

of D. Consider the example given in Figure 11 in which Q is a descendent of D.

E D

C Q

Figure 11. An example illustrating conditioning on a descendent of the outcome: E -
exposure; D - outcome; X - a direct cause of D; Q - a descendent of D.

When Q is a descendent of D then the causal e¤ect of E on D conditioning on Q is no
longer given by equation (1) because conditioning on Q provides information on D other
than that which is available through X and E. In such cases Q does not serve as a genuine
e¤ect modi�er for the causal e¤ect of E on D because it is a consequence of D.

15



Appendix 2: Proofs.

Proof of Theorem 1.
Theorem 1 is a consequence of Theorem 3 below.

Proof of Theorem 2.
Let Q be some non-descendent of E and D then E[DE=e1jQ = q] � E[DE=e0jQ = q] =

E[DE=e1 ] � E[DE=e0 ] by Theorem 3 of Pearl1 since (D
a
QjE)GE where GE denotes the

graph obtained by deleting from the original directed acyclic graph all arrows pointing into
E. Furthermore, E[DE=e1 ] � E[DE=e0 ] = E[D = 1jE = 1] � E[D = 1jE = 0] by the back-
door path adjustment theorem since there are no unblocked back-door paths from E to D
as E is the only parent of D. Thus E[DE=e1 jQ = q] � E[DE=e0 jQ = q] = E[D = 1jE =
1]� E[D = 1jE = 0] which is independent of q.

Proof of Theorem 3.
By the law of iterated expectations we have E[DE=e1jQ = q]�E[DE=e0jQ = q] =

P
x E[DE=e1 jX =

x;Q = q]P (X = xjQ = q)�
P

x E[DE=e0 jX = x;Q = q]P (X = xjQ = q). We will show that
this latter expression is equal to

P
x E[DE=e1jX = x]P (X = xjQ = q) �

P
x E[DE=e0jX =

x]P (X = xjQ = q). By Theorem 3 of Pearl1 it su¢ ces to show that (D
a
QjX;E)GE where

GE denotes the graph obtained by deleting from the original directed acyclic graph all arrows
pointing into E. Any front door path from D to Q in GE will be blocked by a collider. Any
backdoor path from D to Q in GE will be blocked by X. We thus have that E[DE=e1jQ =
q] � E[DE=e0jQ = q] =

P
x E[DE=e1jX = x]P (X = xjQ = q) �

P
x E[DE=e0 jX = x]P (X =

xjQ = q). Since X will block all backdoor paths from E to D we have by the backdoor
path adjustment theorem

P
x E[DjX = x;E = e1]P (X = xjQ = q) �

P
x E[DjX = x;E =

e0]P (X = xjQ = q) =
P

xfE[DjX = x;E = e1]� E[DjX = x;E = e0]gP (X = xjQ = q).
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