
PERSPECTIVE SPECIAL SECTION

Control of Confounding and Reporting of Results in Causal
Inference Studies
Guidance for Authors fromEditors of Respiratory, Sleep, andCritical Care Journals

David J. Lederer1,2*, Scott C. Bell3*, Richard D. Branson4*, James D. Chalmers5*, Rachel Marshall6*, David M. Maslove7*,
David E. Ost8*, Naresh M. Punjabi9*, Michael Schatz10*, Alan R. Smyth11*, Paul W. Stewart12*, Samy Suissa13*,
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The 21st century has brought with it a
welcome call for increased rigor in
observational research methods (1, 2). It is
not that observational research methods are
inherently flawed—they are not (3, 4).
Observational studies can contribute valuable
evidence supporting causal associations when
designed and conducted using rigorous
methods. The “flaws” are a result of reliance
on outdated methodology, inadequate
attention to threats to validity (such as
confounding), opaque reporting of results,
lack of replication, and a failure to interpret
findings within the context of the limitations
of observational research methodology.

Aware of this situation and influenced
by our experience as journal editors, we
convened an ad hoc group of 47 editors of
35 respiratory, sleep, and critical care
journals to offer guidance to authors, peer
reviewers, and researchers on the design
and reporting of observational causal
inference studies. This guidance takes the
form of a call for investigators to consider
making major changes to their approach to
such studies. This document represents our

current best understanding of approaches to
causal inference, an active area of research.
We anticipate that best practice in this, as in
any scientific endeavor, will continue to
evolve, requiring this document to be
updated every 5 to 10 years. We believe these
changes will increase the rigor, validity, and
value of the work we publish in our journals.

What Is Causal Inference?

We first wish to make a distinction between
causal inference and prediction modeling.
Causal inference is the examination of
causal associations to estimate the causal
effect of an exposure on an outcome. We
use causal inference to answer questions
about etiology: Does long-term exposure to
traffic-related air pollution promote
obstructive sleep apnea in nonobese adults?
Does caffeine intake protect against
pulmonary arterial hypertension? Do
antidepressants reduce the risk of the acute
respiratory distress syndrome (ARDS) in
adults with community-acquired

pneumonia? Both experimental studies
(e.g., randomized clinical trials) and
observational studies (e.g., cohort, case–
control, and cross-sectional studies) can be
used to examine causal associations. We
encourage authors to design observational
studies that emulate the clinical trial they
would have designed to answer the causal
question of interest (5, 6). Causal inference
studies require a clearly articulated
hypothesis, careful attention to minimizing
selection and information bias, and a
deliberate and rigorous plan to control
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confounding. The latter is addressed in
detail later in this document.

Prediction models are fundamentally
different than those used for causal
inference (7). Prediction models use
individual-level data (predictors) to estimate
(predict) the value of an outcome. For
example, one might wish to predict an
adult’s 10-year risk of developing lung
cancer. Investigators might use machine
learning methods, penalized estimation, or
one of many other available methods
to develop a prediction model using a
dataset containing both the predictors
of interest and lung cancer event data.
A risk score calculator (or other clinically
useful tool) could then be developed,
validated, disseminated, and implemented
in practice. This document does not address
development, validation, or reporting of
prediction models.

With this background, we offer three
key principles to guide authors in the
analysis and reporting of causal inference
studies (Table 1).

Key Principle #1: Causal
Inference Requires Careful
Consideration of Confounding

Herein, we focus on how one should define
and select confounders in observational

studies that attempt to make causal
inferences. On the basis of our experience,
we have identified five approaches
commonly used by authors (Table 1). Only
two of these methods (the “historical”
approach and causal modeling), however,
aid in causal inference. The others, those
based on statistical hypothesis testing or
model fit, do not. We detail each approach
below.

Historical Approach to Defining
a Confounder
A confounder has long been defined as any
third variable that is associated with the
exposure of interest, is a cause of the
outcome of interest, and does not reside in
the causal pathway between the exposure
and outcome (Figure 1A) (8). We find this
definition reasonable, and we regard it as an
acceptable approach to address confounding
in studies of causal inference. Importantly,
as clarified later, we expect authors to
purposefully select variables that plausibly
fit these criteria on the basis of prior
knowledge rather than selecting those
variables associated with the exposure or
outcome using the available data.

Using Causal Models to
Identify Confounding
Although the historical approach described
above is acceptable for simple causal
structures, it is often inadequate to describe

the more commonly encountered causal
networks. Hence, we urge authors to
consider using causal models when testing
causal associations.

The scientific, mathematical, and
theoretical underpinnings of causal
inference, developed by Judea Pearl, James
Robins, Miguel Hernán, and others, have
evolved sufficiently to permit the everyday use
of causal models (9–17). Causal models can be
represented visually using directed acyclic
graphs (DAGs). A DAG is a graph in which
unidirectional arrows are used to represent
known causal effects (on the basis of prior
knowledge). Although investigators often feel
some discomfort in deciding what causal
effects do and do not exist on the basis of prior
knowledge, the advantage of this approach is
that it makes these assumptions explicit (and
hence transparent). In fact, all other methods
of controlling for confounding involve
implicit assumptions about causal effects,
which are not transparent to the reader.

Four simple DAGs are shown in
Figure 1. Within a DAG, a “path” is a set
of arrows connecting any two variables
(regardless of arrow direction). The causal
path of interest is the hypothesized association
between the exposure and outcome. A “back-
door path” is an alternate path between the
exposure and the outcome. Confounding is
defined as the presence of at least one “open”
back-door path between exposure and
outcome. Variables that naturally open

Table 1. Key principles

Key Principle #1: Causal inference requires careful consideration of confounding
d Preferred variable selection methods

1. Historical confounder definition with purposeful variable selection
2. Causal models using directed acyclic graphs

d Variable selection methods that do not adequately control for confounding
3. P value– or model-based methods
4. Methods based on b-coefficient changes
5. Selection of variables to identify “independent predictors”

d Do not present all of the effect estimates from a model designed to test a single causal association (Table 2 fallacy)

Key Principle #2: Interpretation of results should not rely on the magnitude of P values
d P values should rarely be presented in isolation
d Present effect estimates and measures of variability with or without P values
d Variability around effect estimates should inform conclusions
d A conclusion of “no association” should require exclusion of meaningful effect sizes
d Avoid the word “significant” in favor of more specific language.

Key Principle #3: Results should be presented in a granular and transparent fashion
d Use the STROBE statement and checklist
d Model tables after the STROBE explanation and elaboration document (30)
d Visual presentation of quantitative results

B Present individual data points when possible
B Avoid excessive lines, text, grids, and abbreviations
B Continuous data should not be presented in bar charts with standard error bars (“plunger plots”)
B Use color-blind–friendly palettes

Definition of abbreviation: STROBE = Strengthening the Reporting of Observational Studies in Epidemiology.

SPECIAL SECTION PERSPECTIVE

24 AnnalsATS Volume 16 Number 1| January 2019



back-door paths are called confounders. An
association will exist between any two
variables connected by an open path. When
an investigator “controls” for a confounder,
the back-door path will be “closed,” and the
association between the exposure and
outcome will no longer be observed.

As an example, suppose an investigator
is testing whether exercise is associated with
a reduced risk of lung cancer. In Figure 1A,
there is one causal path: exercise → lung
cancer, and one back-door path: exercise ←
smoking → lung cancer. This open back-
door path indicates the presence of
confounding, and therefore smoking is a
confounder of the causal association
between exercise and lung cancer. Note that
we define a confounder here as a variable
that, when controlled for, closes a back-door
path.

Whenmore than one variable lies along
a back-door path, control of a single
confounder on the path is sufficient to close
the back-door path. In a fully developed
DAG with many paths, control of a

small number of variables (a “minimum set”
of confounders) will often close all back-
door paths. We recommend using this
approach in causal inference studies.
DAGitty.net offers authors a simple
interface with which to construct DAGs
and identify back-door paths and minimum
sets of confounders (18).

Figure 1B adds another type of
variable—a mediator—to the DAG. A
mediator is a variable that lies along the
causal path (not a back-door path) between
the exposure and disease. Mediators are, of
course, of great interest, because they are
causes and mechanisms of disease. In
Figure 1B, the mediator is “immune
function.” At least some of the causal effect
of exercise on lung cancer risk is mediated
by the immune system: exercise → immune
function → lung cancer. A path that
includes a mediator is often called an
indirect effect or indirect causal path. In
contrast, the arrow directly connecting
exercise and lung cancer represents the
direct causal effect of exercise on lung

cancer not due to changes in immune
function.

Mediators naturally leave the indirect
causal path open. Control of a mediator
(through adjustment or other means) will
close the indirect causal path, preventing or
limiting the ability to observe an association
between the exposure and outcome (if
indeed one exists). Mediators therefore
require special attention (if they are to be
examined at all) and should not be treated
as confounders. Use of a DAG can aid
investigators in identifying mediators,
thereby avoiding control of these variables
in testing causal effects.

A discussion of “collider bias” further
illustrates the value of using DAGs. A
“collider” is a variable with two or more
antecedent causes that lie within a pathway
of interest. A collider can be identified on a
DAG when two arrows along a path both
point to a variable (Figure 1C). When both
the exposure and outcome are causes of the
collider, one may be tempted to control for
the collider. However, colliders naturally

Shift work Obstructive sleep apnea

Collider Bias

Beta-blocker use

Crackles

ARDS

Heart failure Pneumonia

M-Bias

Exercise Lung cancer

Smoking

Back-door
path

Direct causal path

Direct causal path

Confounding Mediation
Indirect causal path

Immune
function

Exercise Lung cancer
Direct causal path

Direct causal pathSleepiness

A B

C D

Figure 1. Directed acyclic graphs illustrating (A) confounding, (B) mediation, (C ) collider bias, and (D) M-bias. Each arrow represents a causal effect. (A) The
blue arrows represent an open back-door path: exercise ← smoking → lung cancer. “Smoking” is a confounder that naturally leaves the back-door path
open. Controlling for “smoking” will close the back-door path, eliminating confounding through this path. (B) The black arrow represents a direct causal path.
The yellow arrows represent an indirect causal path. “Immune function” partially mediates the association between exercise and lung cancer: exercise →
immune function → lung cancer. Control of “immune function” would be inappropriate, because it would partially close the causal path, attenuating the
observed association between exercise and lung cancer. (C ) The orange arrows represent a closed back-door path: shift work→ sleepiness← obstructive
sleep apnea. “Sleepiness” is a collider that naturally leaves the back-door path closed. Control of “sleepiness” would open the back-door path, introducing
confounding through this path. (D) The orange arrows represent a closed back-door path: chronic b-blocker therapy ← heart failure → crackles ←
pneumonia → acute respiratory distress syndrome (ARDS). “Crackles” is a collider that naturally leaves the back-door path closed. Control of “crackles”
would open the back-door path, introducing confounding through this path.
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block back-door paths. Controlling for
a collider will open the back-door path,
thereby introducing confounding.

For example, in Figure 1C we are
interested in testing the causal association
between shift work and obstructive sleep
apnea. We might be tempted to control
for sleepiness, since both shift work and
obstructive sleep apnea cause sleepiness.
However, sleepiness is a collider that
naturally blocks the back-door path of shift
work → sleepiness ← obstructive sleep
apnea. Controlling for sleepiness would
open this back-door path, introducing
confounding.

To clarify, imagine that, in reality, shift
work is not a cause of obstructive sleep
apnea. If we encountered a sleepy person
with obstructive sleep apnea, their sleep
apnea would likely be the cause of their
sleepiness, and therefore they would be less
likely to be a shift worker. Conversely, if we
encountered a sleepy shift worker, it is likely
that shift work is the cause of their sleepiness
rather than obstructive sleep apnea. We
would therefore observe that sleep apnea
occurs less commonly among shift workers
and thus report an inverse association.
This confounded association results from
conditioning on a collider (in this case, by
only examining sleepy people). The same
bias would occur if we were to adjust for
sleepiness using a regression model.

Collider bias may also be present when
neither the exposure nor the outcome
is a direct cause of the collider variable.
An example is “M-bias,” named after the
shape of the DAG (Figure 1D) (19). In
this example, we are testing the causal
association between chronic b-blocker use
and the risk of developing ARDS. We might
be tempted to adjust for the presence of
auscultatory crackles at hospital admission,
because: 1) heart failure leads to both chronic
b-blocker therapy and crackles, and 2)
pneumonia causes both ARDS and crackles.
These relationships may lead us to believe
that crackles is a confounder, whereas in
reality it is not. Instead, as Figure 1D shows,
crackles is a collider on the back-door path of
chronic b-blocker therapy← heart failure→
crackles ← pneumonia → ARDS. Adjusting
for the presence of crackles opens this back-
door path, introducing confounding.
Ignoring the presence of crackles would be
the right thing to do.

We encourage investigators who wish
to control for variables that do not close
a back-door path to ensure that these

additional variables are neither mediators
nor colliders.

DAGs do come with limitations.
They are nonparametric by nature. The
directionalities of effects are not always
known. DAGs are prone to misspecification
when there is a lack of strong background
information, and constructing a DAG can
be challenging, with even small errors
potentially leading to incorrect inferences.
Despite these limitations, DAGs lay bare the
assumptions made by the investigators,
which can then be identified and corrected
more readily during pre- and postpublication
peer review than through more opaque
methods.

This brief document cannot provide a
detailed discussion of causal inference, but
we hope that these examples encourage
authors to consider using causal models
in their research. We refer authors to a
number of excellent resources on the
topic (Table 2).

Variable Selection Methods That
Do Not Adequately Control
for Confounding
P value–based and model-based variable
selection methods (including forward,

backward, and stepwise selection) should
not be used for causal inference. These
approaches ignore the causal structure
underlying the hypothesis and therefore do
not adequately control for confounding.
Confounders and colliders are treated
similarly. Methods relying on model fit or
related constructs (such as r2, Akaike
information criterion, and Bayesian
information criterion) also have no
relevance to causal inference. These
methods rely heavily on the available
data, in which causal relationships may or
may not have been captured and may
or may not be evident. Specification
of the model and the arbitrary variables
included in any particular model will
drive observed associations with the
outcome.

Selection of variables that, when
included in a model, change the magnitude
of the effect estimate of the exposure of
interest should not be used to identify
confounders, for the reasons discussed
above.

Identification of multiple “independent
predictors” (“winners”) through purposeful
or automated variable selection is an
unacceptable approach for testing causal

Table 2. Causal inference resources

Books
Pearl J, Mackenzie D. The book of why: the new science of cause and effect. New York, NY:

Basic Books; 2018. (17)
Pearl J. Causality: models, reasoning, and inference. New York, NY: Cambridge University

Press; 2009. (16)
Hernán MA, Robins JM. Causal Inference. Boca Raton: CRC Press; 2018 (Available from:

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/)

Articles
Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology

1999;10:37–48. (10)
Greenland S. Quantifying biases in causal models: classical confounding vs collider-

stratification bias. Epidemiology 2003;14: 300–306. (9)
Hernán MA, Hernández-Dı́az S, Robins JM. A structural approach to selection bias.

Epidemiology 2004;15:615–625. (11)
Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in

epidemiologic studies. Epidemiology 2009;20:488–495. (13)
Morabia A. History of the modern epidemiological concept of confounding. J Epidemiol

Community Health 2011;65:297–300. (12)
Williamson EJ, Aitken Z, Lawrie J, Dharmage SC, Burgess JA, Forbes AB. Introduction to

causal diagrams for confounder selection. Respirology 2014;19:303–311. (14)
Hernán MA. The C-word: scientific euphemisms do not improve causal inference from

observational data. Am J Public Health 2018;108:616–619.

Websites
An online course about causal inference and directed acyclic graphs. Hernán M. Causal

diagrams: draw your assumptions before your conclusions. By Miguel Hernán. Available
from: https://www.edx.org/course/causal-diagrams-draw-assumptions-harvardx-
ph559x.

A Web-based environment for creating directed acyclic graphs: http://dagitty.net. Textor J,
van der Zander B, Gilthorpe MS, Liskiewicz M, Ellison GT. Robust causal inference using
directed acyclic graphs: the R package ‘dagitty’. Int J Epidemiol 2016;45:1887–1894. (18)
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associations. If the authors have
hypotheses about each variable, then
a separate model for each variable
should be generated using one of the
above preferred approaches. Alternatively,
a prediction model could be developed,
if prediction, rather than causal inference,
is the goal of the analysis.

Table 2 Fallacy
Causal models are typically designed
to test an association between a single
exposure and an outcome. The additional
independent variables in a model (often
called “covariates”) serve to control for
confounding. The observed associations
between these covariates and the outcome
have not been subject to the same
approach to control of confounding as
the exposure. Therefore, residual
confounding and other biases often
heavily influence these associations.
This situation is known as “Table 2
fallacy,” a term arising from the practice
of presenting effect estimates for all
independent variables in “Table 2” (20).
We strongly caution authors to avoid
presenting these effect estimates in the
primary manuscript.

Causal Association, Causal Effect, and
Claiming Causality
Readers may find it unusual that we are
using the word “causal” to describe
observed associations. When examining
associations in observational causal inference
studies, the intention is always to seek
evidence to support (or refute) a true
causal effect of the exposure on the
outcome. Of course, we often cannot
establish these causal effects from any single
study. Yet, by acknowledging the intent,
it is reasonable to use the label “causal
association” (but not “causal effect”) to
describe findings arising from an
observational study.

We therefore caution authors that
claims of causality should be avoided
without substantial evidence of a true
causal effect, as espoused by Bradford
Hill (21) and further developed by John
Ioannidis (22). It is reasonable to use the
term “effect estimate” when referring to a
causal association in an observational study,
but assertions that an exposure has an
“effect” or “impact” on the outcome, or
that the exposure “protects against” or
“promotes” the outcome, should not be
made.

A Note on Methods to Control
for Confounding
Investigators may control for confounding
either in the design or analysis of a study.
Randomization to exposure, use of an
instrumental variable, weighted regression
via propensity scores, adjustment using
multivariable regression, stratification on a
confounder, conditioning enrollment on
a confounder (restriction), and matching
on a confounder are common methods (4).
We do not make recommendations for or
against any of these methods.

Key Principle #2: Interpretation of
Results Should Not Rely on the
Magnitude of P Values

In recent years, the merits of the P value
in causal inference have been questioned
(23–26). P values are frequently misinterpreted
and misused (27). Although some disagree
(28), they provide no information about the
magnitude, direction, or clinical importance of
an association. Accordingly, we recommend
that P values only rarely be presented in
isolation (exceptions may include “omics”
studies and tests for interaction). Effect
estimates and measures of precision (e.g.,
confidence intervals or credible intervals)
should be presented in addition to (or in place
of) P values.

We recommend interpreting the
variability around an effect estimate
when making conclusions about causal
associations. For example, a rate ratio of 2.1
with a confidence interval of 0.97 to 4.2 and
a corresponding P value of 0.10 should not
be reported as “no association,” because a
rate ratio as large as 4.2 has not been
plausibly excluded, and, at least within the
study sample, an association was indeed
observed. Instead, a statement such as “The
exposure was associated with a 2.1-fold
increased rate of the outcome (95%
confidence interval, 0.97–4.2), but this
estimate is imprecise” would be sufficient.
In this example, the point and interval
estimates are informative, yet (not
surprisingly) the hypothesis test was
inconclusive. Similarly, we recommend
against using the vague labels “significant”
and “nonsignificant,” which lead readers
(and authors) to implicitly conclude that an
association is present or absent. Use of the
unqualified word “significant” tends to blur
the important distinction between statistical

significance and clinical significance. We
favor simply reporting the quantitative
findings as indicated above. The clinical,
mechanistic, or biological interpretations
of effect sizes provide greater value
and should be used in place of these
labels.

Key Principle #3: Results Should
Be Presented in a Granular and
Transparent Fashion

The STROBE (Strengthening the Reporting
of Observational Studies in Epidemiology)
statement, published in 2007, provides clear
and valuable guidance on the reporting of
results of human observational studies that
test causal associations (29). We strongly
recommend that authors adhere to the
STROBE statement when reporting results,
including the detailed guidance provided in
the STROBE explanation and elaboration
document (30). In particular, when
applicable, results should be presented in
tables modeled after those in sections 15
and 16 of the STROBE explanation and
elaboration document (30), with the following
in mind:

d In cohort studies, tabular presentation of
results should include the number of
events, person-time, incidence rates, and
unadjusted and adjusted incidence rate
ratios for each exposure level.

d In cross-sectional studies, tabular
presentation of results should include the
number of events, prevalences, and
unadjusted and adjusted prevalence ratios
for each exposure level.

d In case–control studies, tabular
presentation of results should include the
number and percent exposed for cases and
controls separately and unadjusted and
adjusted odds ratios for each case group.

We encourage authors to take a
thoughtful and careful approach to the
visual presentation of quantitative results
(31). When possible, presentation of
individual data points should accompany
measures of central tendency and variation.
The “data–ink ratio” should be maximized
by avoiding unnecessary lines, grids, and
text (31). Abbreviations should be used
sparingly. Continuous data should not be
presented in bar charts with standard error
bars (“plunger plots”) (32, 33). Authors
should use color-blind–friendly palettes.
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Final Comment to Our Authors

This document is intended to provide firm
guidance rather than absolute rules, to
raise the rigor of the work reported in our

journals, to improve the communication
of research findings, to enhance the value
and validity of the science in our field, to aid
in replication, and, most importantly, to
improve the health of those living with

respiratory disease, sleep disorders, and critical
illness. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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