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1. PREDICTION VS. CAUSAL INFERENCE 

Learning objectives 

• Understand the distinction between model prediction and model inference 

• Recognise the main biases that impact observational research 

Multivariable linear regression modelling 

You should already be familiar with the concepts of linear regression modelling. In its most basic 

form, we have a univariate (one outcome) univariable (one ‘explanatory’ variable or covariate) 

regression model with continuous outcome. This can be extended to accommodate:  

• Multivariable (multiple covariates) models with either count, nominal or ordinal (most often 

logit or probit) outcomes;  

• Time-to-event outcomes that are parametric (e.g. Weibull) or semi-parametric (e.g. Cox 

proportional hazards) with continuous or discrete (interval censored) times; 

• Multivariate (i.e. multiple outcomes) models, with two or more outcomes analysed 

simultaneously (e.g. systolic and diastolic blood pressure).  

There are more complex statistical regression models (e.g. structural equation models), but here 

we focus on generalised linear regression models and examine potential pitfalls that lie with their 

use (and abuse) in biomedical research, particularly for observational data.  

Prediction vs. Inference 

To properly understand the issues arising with model inference, it is important first to distinguish 

between prediction and (causal) inference. What follows is a summary of the key features of 

prediction and inference for linear regression models. 

With model prediction, one is concerned with: 

• Maximising the proportion of explained outcome variation, i.e. the greater the R2 the better the 

predictive model. Whilst seeking a maximal R2 is desirable, this can be very data-specific and 

may not be replicable from one dataset to another. Furthermore, if variance reduction is all we 

seek, then ‘retro-dictors’ are as good as ‘pre-dictors’, i.e. including consequences of our 

outcome in the regression model would be as good as including its predictors! 

• Predictive models are often developed on one dataset (the training data) and evaluated on a 

different dataset (the test data); in practice, the training and test data may be a single dataset 

randomly split into two. Failure to evaluate predictive models renders their utility limited, and 

all too often an inadequate effort is made to ‘select’ models that are generalizable - greater 

emphasis being placed on model fit for a single dataset rather than model parsimony. 

• The smallest subset of covariates that yields the largest R2 is often preferred, since the model 

is then less prone to inconsistency across different datasets, especially if the covariates are 

prone to measurement error (recall: linear models assume that covariates are error-free). 

• The specific choice of covariates is unimportant, apart from minimising collinearity (see next). 

• Collinearity can be a problem for predictive models because it introduces a lack of precision, 

thereby yielding large standard errors in both the predicted outcome and covariate coefficients. 

The latter can interfere with procedures for covariate subset selection, making determination 

of a good model difficult.  
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• The greater the statistical significance of a covariate, the greater the argument that is often 

made for retaining it in the model; however, the basis of this can be questionable (see note 

below). The key point is that the size of the estimated covariate coefficient is not important per 

se; if statistical significance related to covariate coefficient size is considered, emphasis should 

be given to selection and retention of the most informative subset of covariates (i.e. in terms 

of accurately and precisely predicting the outcome). 

• No causal interpretation of any model covariates should ever be sought; the predicted outcome 

is the sole focus of a predictive model. 

• Although causal relationships are unimportant when selecting covariate subsets, to maximise 

the likelihood that the model derived for one dataset is also ‘good’ for other datasets, it can be 

helpful to select covariates that are deemed likely to have a causal relationship with the 

outcome. If there is a close call between two covariates where the procedure used to select 

variables slightly favours the covariate with a less obvious causal relationship to the outcome, 

overriding the procedure to select covariates in favour of those a potential causal link will likely 

improve generalisability of the predictive model. 

Note: It has been proven that forward or backward stepwise procedures for variable selection 

(based on statistical significance when introducing or removing covariates) does not guarantee 

that an ‘optimum’ subset of covariates is obtained (i.e. one having the largest R2). Stepwise 

procedures also typically explore covariates as if these were separate linear predictors, with no 

consideration given to nonlinear (curvilinear) relationships for each covariate or to potential 

interactions amongst all covariates. It will often require human intervention to settle what 

nonlinear relationships are required; while, with interactions, the model may become saturated 

(i.e. having more covariate combinations than observations) as well as being less parsimonious. 

Stepwise procedures are therefore inadequate for developing predictive models, and more 

appropriate methods to optimise these now exist1. It is interesting to note that many researchers 

(including statisticians) still use and advocate forwards/backwards step-wise procedures, instead 

of adopting the preferred methods now available – this is bad practice. 

With model inference, the following is of concern: 

• All putative causal relationships between covariates and outcomes (or the magnitude of any 

associations, if the direction of causality is unknown a priori) become the focus.  

• The magnitude of associations between covariates and outcomes are examined (whilst mindful 

of potential confounding [see later]).  

• Focus is on the size of specific covariate-outcome relationships, which may be inferred as 

clinically significant as opposed to statistically significant; this is described more generally 

in the literature as ‘effect size’.  

Note: Inferential interpretation of a covariate’s effect size is nearly always context specific, and 

this is not often appreciated (certainly not as much as it should be, even amongst experienced 

epidemiologists and biostatisticians). This is because each covariate-outcome relationship is 

dependent (i.e. conditional) on the adjustment set of all other covariates in the model. Effect 

sizes are always dependent upon the selected adjustment set and overlooking this can be 

misleading (it leads to what is known as the “Table 2 fallacy”, which is covered in detail later). As 

different studies adjust for different sets of covariates, effect sizes between observational studies 
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may not be directly comparable (and it therefore requires great care when undertaking a 

synthesis/meta-analysis of observational studies). 

The role of linear models in epidemiology 

Although epidemiology is concerned with producing descriptive information (such as incidence and 

prevalence rates, or profiles and population trends), statistical modelling in epidemiology is 

primarily concerned with causal inference and less with prediction (albeit with notable exceptions, 

e.g. predicting outbreaks). To that end, we focus on statistical modelling in its approach to derive 

causal inference. First, it is helpful to reflect upon how and why epidemiology has gone about the 

various applications of linear modelling in the past, though perhaps not always drawing upon (or 

appreciating fully) the distinction between prediction and inference. We then look at how much has 

changed, quite recently, to introduce the basic principles of causal inference and associated 

techniques (such as causal graphical models). Finally, we explain how these developments impact 

on our current use of linear modelling. 

Randomisation and the role of study design 

The design of a randomised control trial (RCT) aims to ensure that differences between treatment 

groups are due to the causal effect of the treatment of interest. An RCT uses randomisation to 

balance the groups, such that each treatment arm is similar in every respect (i.e. regarding 

potential biases), apart from the treatment under study. In epidemiological investigations, an 

exposure may be of interest as having a putatively causal impact; this makes investigation of an 

exposure similar to the evaluation of treatment effects in an RCT, though without the involvement 

of randomisation. To overcome this limitation in the observational setting (i.e. the absence of 

groups being balanced via randomisation), epidemiological studies have relied on a ‘top-down’ 

approach of careful study design to address potential study bias.  

For instance, case-control studies ‘match’ pairs of observations with the intention of creating 

balance across exposure groups akin to an RCT. This may be effective, depending upon the 

context; though many potential biases may remain. Another approach is the cohort study, which 

collects information prospectively, agnostic to the outcome, and thereby minimises the potential 

for biases due to what is termed ‘confounding’ (an issue we will formally define later).  

It is debatable how effective case-control and cohort study designs are at eliminating all sources 

of bias, though it is interesting to note that case-control studies typically estimate a larger effect-

size for the same exposure than do cohort studies. If the estimated effect is confirmed by an RCT, 

it is nearly always much smaller than that for either case-control or cohort studies, suggesting that 

both designs suffer biases (though perhaps cohort studies are superior to case-control studies, as 

they usually exhibit less bias associated with an inflated estimate of the causal effect). We do not 

dwell on the specifics here but note that neither study design is perfect in eradicating all potential 

biases in the way that randomisation can within a well-conducted (and appropriately randomised) 

RCT. 

A theoretical framework for causal inference 

The intention behind an RCT or epidemiological study is typically to uncover a putatively causal 

effect of treatment or exposure. A limitation throughout the history of epidemiology, however, has 

been the lack of a strong theoretical framework for causal inference in the absence of 
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randomisation … until relatively recently, at least. Attempts to embrace causal inference in 

epidemiology have therefore operated mainly through the elimination or reduction of confounder 

bias via study design (i.e. through the use of RCTs rather than observational data). A root problem 

in the absence of randomisation is that there are too many knowns and unknowns impacting upon 

the exposure and outcome. ‘Controlling’ for all potential confounders, either by study design or 

statistical sophistication (or both), has proven challenging. In part, this has been because methods 

which aid this, such as linear modelling, were beyond reach until the advent of personal computers 

towards the end of the last century. However, while linear models are now ubiquitous they do not, 

in and of themselves, address confounding. This still needs the formalisation of underpinning causal 

theory. It remains that linear models cannot address the issues of differential selection and errors 

in covariates; the latter requires more sophisticated modelling techniques, such as structural 

equation modelling (SEM).  

Heavily utilised in the social sciences, SEM is less commonly encountered in epidemiology, but it 

can readily model covariate errors and has always sought to inform causal inference. However, the 

formal theoretical framework underpinning causal inference in SEMs has developed only recently 

to become robust; the firming up of ideas for more complex empirical contexts, such as differential 

selection, remains a work in progress. Some would describe recent developments as a causal 

inference ‘revolution’, though largely taking place in the computer sciences than in epidemiology. 

In effect, theoretical developments are crossing discipline boundaries very slowly. Perhaps a 

challenge to its widespread adoption is that the underpinning philosophy of causal inference theory 

is contrary to epidemiological convention. This new theoretical framework is ‘bottom-up’ in that it 

emphasises understanding of ‘real-world’ relationships and builds on these to obtain meaningful 

causal inference, with focus on the implications of what is observed. There is also no longer any 

reliance on study design to control data generation.  

Effect size 

It is somewhat unfortunate that the term ‘effect size’ has become entrenched in the literature on 

this topic, since effect implies causation. It may well be the case that a researcher wishes to test 

a causal hypothesis. However, it may instead be the case, for instance in a case-control study, 

that causation cannot be inferred. A more appealing term would be ‘association size’, but this is 

not used in the literature, so we will continue the discussion of ‘effect size’ with this caveat in mind. 

However, often we do mean to refer to causation (even if subliminally), though the reason we 

won’t admit this to ourselves is because we are aware of the limitations of making such a claim in 

the absence of a robust causal theoretic framework. 

It is important to realise that effect size is not a panacea. It is still a statistic, and since it is 

derived from a sample, it is a random variable with sampling variation and is therefore only an 

estimate of the ‘true’ effect size. It should always be reported together with a measure of 

uncertainty, such as a confidence interval.  

Most importantly, effect size is not only affected by sample size and natural variation, but also by 

measurement error, differential selection, confounding and inappropriate statistical adjustment. 

These all distort the derived effect size such that – even when its estimate is mathematically correct 

when derived for a given study sample – its meaning may be substantially biased from the ‘true’ 

causal interpretation we give to the target population. Bias from error, differential selection, 
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and/or confounding may drown out natural sampling variation and render the meaning of a p-

value (derived from effect size accounting only for sample variation) as extremely limited. Attention 

must also be given to dealing robustly with measurement error, differential selection, and 

confounder adjustment – all within a robust causal theoretical framework.  

Biases in epidemiological studies 

At this point it should be noted that we have not stated what biases might be operating. There are 

many descriptions of these issues in standard epidemiological texts, but for simplicity and ease of 

reference we refer to 3 types of bias in epidemiological studies: error, selection & confounding. 

1. Error – the primary culprit is measurement error, typically associated with the instruments 

used to record data, though potentially caused by incorrect or inadequate application of the 

instruments. Another equally important – but often overlooked or conflated – source of error is 

within-subject biological heterogeneity (i.e. individual biological variations). 

Errors can arise due to limitations in study techniques (e.g. where data retrieval processes go 

wrong) or bad coding practices (e.g. misclassification occurring where coding criteria are applied 

incorrectly). Biological variation arises due to volatility in the clinical measure sought, where the 

value of any one measure may vary around an underlying value that is representative of the overall 

‘state’ (e.g. blood pressure may vary due to physical situation, such as resting vs. exercising, and 

is affected by context, such as ‘white coat hypertension’2); this makes the assessment of a ‘health 

state’ challenging and prone to ‘error’, though it is not the measurement instrument that is at fault. 

Both aspects of error (instrument error and biological variation) are typically conflated as one 

source of error within most statistical techniques, including standard linear modelling.  

2. Selection – as well as inherent sampling heterogeneity (i.e. the underlying statistical process 

of sampling), other factors may operate that limit the chances of capturing the relevant information 

either at all, or representatively. Subsequent statistical evaluation is mathematically correct but 

may yield estimates that do not generalise to the target population of interest.  

Simple sample selection can be addressed by statistical methodological rigour, but other forms of 

selection bias may occur, as with missing or incomplete information, where complete cases go 

unrecorded. This results in an analytical sample that does not represent the target population. 

Selection bias may operate via differential participation (e.g. disadvantaged individuals tend to 

be less inclined/able to participate in case-control studies due to various life constraints, yet this 

diminished inclination/ability to join a study might be overcome amongst cases because they 

recognise the value of research into what affects them; they make a special effort that might create 

differential participation according to characteristics other than those upon which the study seeks 

to match).  

3. Confounding – if factors other than the exposure of interest are affecting the outcome under 

study, one must question how this influences interpretation of the exposure-outcome relationship 

and account for this appropriately.  

Confounding is a term used too freely (often without formal definition by those using it), and we 

will consider this issue later. Selection and confounding biases are often conflated, especially in 

methods employed within epidemiology that seek to overcome bias in observational analyses. 

Although epidemiological study designs are well-established in exercising a ‘top-down’ approach 
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of deliberation and care in minimising biases (mainly selection and confounding biases) – achieved 

by controlling data generation to emulate the principles of an RCT – there remains the challenge 

of study conduct and data analysis that yield imperfections. This is illustrated by an article in 

Significance (the official ‘magazine’ of the UK Royal Statistics Society): of 52 epidemiological claims 

that were subjected to an RCT, none were replicated; and in 5 of the RCTs the exposure effects 

were actually reversed3. From such stark evidence, it would be reasonable to conclude that the 

scientific methods adopted by epidemiology are not well executed or simply don’t work!  

Summary 

In practice, the limitations and challenges of epidemiological study conduct and data analysis are 

well understood, and there are statistical methods available that have sought to address specific 

concerns about biases that persist despite idealised study designs. For instance, generalised linear 

regression models assume error only within the outcome, whilst most covariates in epidemiology 

will likely possess errors of some form. Ignoring this creates bias4, and this is why the error-in-

variables method has been proposed5. Propensity scores6 are also adopted to address selection 

bias and confounder bias, though this method conflates the two issues. Alternatively, instrumental 

variables7 are an improved approach to address potential confounding within a more formal causal 

framework8.  

Graphical model theory underpins a formal causal framework but has only become established as 

robust in the last couple of decades, and remains a work in progress. At present, the use of Directed 

Acyclic Graphs (DAGs; much more on these later) provides considerable clarity in revealing what 

we understand by ‘statistical adjustment’ in the context of causal inference; increasingly, we see 

how wrong we have been in the past in what we have hitherto thought to be perfectly acceptable. 

The next few lectures illustrate this.  
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2. CAUSAL INFERENCE & DIRECTED ACYCLIC GRAPHS 

Learning objectives 

• Understand the concepts of a directed acyclic graph (DAG) 

• Know the correct definition of confounding within a causal inference framework  

• Define the different roles that covariates can play in a multivariable regression model 

Causal Path Diagrams & Directed Acyclic Graphs (DAGs)  

Causal path diagrams are a visual summary of causal links amongst variables based on a priori 

knowledge, understanding, and – in the case of the relationships being tested in an analysis – 

conjecture. This visual summary of variable interrelationships is used in causal analysis and 

developed for use in expert-systems research9. Such diagrams are increasingly being adopted in 

the epidemiological community10, yet they remain relatively novel and considerably underutilised.  

Causal path diagrams may be used in a variety of ways: to think clearly about how the exposure, 

outcome, and potential confounding variables are causally related; to communicate these causal 

inter-relationships to the reader; to identify, thereby, which variables are important to measure; 

and to inform the statistical modelling process – particularly in the identification of confounders, 

mediators, and competing exposures (three roles considered in greater detail later). Causal path 

diagrams are the basis of a formal theoretical framework in which causal relationships can be 

identified and evaluated. The simplest kind of a causal path diagram is a directed acyclic graph 

(DAG). 

DAGs consist of ‘nodes’ (or ‘vertices’) that represent variables (e.g. X, Y) and ‘directed arcs’ (or 

‘directed edges’) in the form of arrows that depict direct causal effects (e.g. XY). To describe 

relationships between variables in such a diagram, we often read them like an ancestry tree and 

use kinship terminology. For example, in the diagram XMY, M is a child of X and X is a parent 

of M; M and Y are descendants of X, and X and M are ancestors of Y. Importantly, a causal path 

diagram is only called a directed acyclic graph (DAG) if no variable is an ancestor of itself (i.e. no 

loops exist). Arrows in a DAG reflect a priori assumptions about cause and effect within the specific 

context concerned, some based on firm knowledge/understanding of actual (or likely) relationships 

between variables, others based on robust empirical evidence (preferably from a source external 

to the dataset under examination; see note, below), and others on entirely speculative hypotheses 

(including the specific relationships being examined in the analyses).  

Note: These assumptions cannot (and therefore must not) be inferred empirically from the data 

on which the analyses are to be conducted, but are required a priori to select and interpret the 

correct statistical model.  

Despite the potential visual complexity of some DAGs (particularly those with more than a handful 

of variables/nodes), they are nevertheless an oversimplification of the causal relationships 

amongst variables. A DAG does not, for example, indicate whether: an effect is harmful or 

protective; effect modification (otherwise recognised as statistical interaction, which we cover 

in detail later) is occurring or not;11 or a cause is sufficient or necessary12. DAGs correspond to a 

network of variables with probability distributions (realised as the covariance structure amongst 

all variables).  
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Note: There is not an exact 1:1 correspondence between a DAG and a dataset, as there are always 

multiple network probability distributions/covariance matrices that fit a DAG, and there can be 

multiple DAGs that correspond to a network probability distribution/covariance matrix. We should 

be mindful of the distinction between the nonparametric representation of postulated/hypothesised 

causal relationships, as captured by a DAG, and the parametric realisation of the variables and 

their relationship as described by a probability density function (PDF)/covariance structure. 

One of the key strengths of a DAG is that it enables researchers to think clearly and logically about 

their research question(s), and to make explicit their assumptions about the relationships between 

each pair of variables. This visual summary (whether in the form of a DAG diagram, or an 

alternative representation of a DAG) can then be used to communicate these inter-relationships to 

other researchers, and hence it is easy to identify if, for example, any potentially important 

variables are missing from the DAG or whether any of the relationships suggested therein are 

controversial or contentious.  

Limitations of the linear model 

It is important to recognise that a DAG represents what is perceived to be happening causally (i.e. 

a hypothesised sequence of events that might fit observed data), yet when data are examined in 

a linear regression model (which is not path modelling) the implicit variable interrelationships are 

not constrained. This is illustrated in Figure 1. The a priori perception of causal relationships 

postulated by the researcher are depicted in the DAG in (a), which looks very different to how the 

variables are ‘perceived’ by a linear model, as shown in (b).  

Figure 1:  The relationship between outcome 𝑦 and five covariates 𝑥1 … 𝑥5: (a) their hypothesised causal 

relationship within a DAG; and (b) their covariance relationship in a linear model  

 (a) (b) 

   

In Figure 1, the relationship between outcome 𝑦 and five covariates 𝑥1 … 𝑥5 are considered. In (a), 

directed arrows signify the presumed causal links and the absence of arrows depict explicit 

assumptions of no direct causal relationship (in either direction). In (b), directed arrows not 

only link all covariates to the outcome, but bi-directed arrows (depicting correlation, i.e. direction 

of any cause or correlation unknown) also link all five covariates to each other. The linear model 

represents a one-to-many relationship without constraint, and the covariance matrix amongst the 

five covariates and the outcome (denoted 𝚺) is freely estimated. 

It is helpful to think about time (flowing from left to right) in line with causality, but this must be 

derived using a priori knowledge that is (as we’ve stressed earlier) external to the dataset. Using 

graphical model theory, if the data are consistent with the DAG, causality can be inferred and the 

extent of causal effect estimated. While causality cannot unequivocally be proven in observational 
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studies, even when using longitudinal data, it is nonetheless plausible to assume potential causality 

and use graphical model theory to evaluate this wherever possible.  

DAG development 

A careful and principled approach to developing a DAG should always be adopted. We wish to avoid 

a situation where one has only a vague idea of the potential causal structure, investigates the data 

via bivariate correlations or linear modelling, and then uses any discrepancies between the data 

and the DAG to revise the DAG in a cavalier fashion (i.e. with no regard for known or even likely 

causal relationships). Where study data are at odds with relationships deemed substantive and 

highly plausible, one should not immediately revise the DAG but instead seek to explain the 

discrepancy. Less certain relationships affirmed by the data are a sign of being on the right track, 

though it cannot provide guarantees that the DAG is correct. Where less certain relationships are 

not affirmed by the data, such relationships might not be substantive and the DAG may be valid 

but there are no guarantees. Relationships weakly speculated might be discarded, though this 

introduces strong assumptions and in general arcs are to be favoured in the presence of doubt. 

There is theoretical reasoning behind this strategy. 

Drawing DAGs is not straightforward. Given a handful of variables and 20 researchers, each would 

likely come up with a different DAG if unaccustomed to drawing DAGs and left to their own devices 

– we’ll have a chance to test this assertion in the workshop! We may construct a DAG using the 

online tool DAGitty (http://www.dagitty.net/) or the R package dagitty13. It takes considerable 

practice and careful thought surrounding the meaning of variables considered within the DAG 

before a consensus might be achieved amongst researchers. Once a DAG is obtained, its key role 

is the determination of what is confounding. 

The role of covariates in multivariable regression 

We have identified three broad areas of potential bias in causal inference in epidemiology: error in 

covariates, differential selection, and confounding. All three biases are important and are affected 

by context, but if one seeks causal inference, confounding is a critical concept to understand.  

Confounding  

Confounding may exist at many levels (e.g. the individual, study sample or centre, population, 

etc.), and most studies will identify more than one confounder. There are theoretical mechanisms 

by which a sufficient set of confounders is derived using DAGs (incorporated in the online tool 

DAGitty (http://www.dagitty.net/) and the R package dagitty13) to determine the correct causal 

inference of an exposure. One should always interpret a statistical regression model in conjunction 

with the DAG that determines which covariates are to be included in that model. If the DAG is 

erroneously determined (or worse, specified post hoc based on the statistical model), interpretation 

of the model is likely to be erroneous. Generally, despite its challenges, confounding can be 

addressed robustly if the correct DAGs are devised, though this must be done a priori to 

undertaking any modelling and executed systematically within a causal framework – a framework 

in which confounding has a very precise and specific definition. 

There have been various attempts at defining confounding, which broadly divide into two camps: 

‘comparability-based’ and ‘collapsibility-based’14. In terms of the former, confounding is said to 

occur when there are differences in the risk of the outcome (i.e. the disease and/or healthcare 

http://www.dagitty.net/
http://www.dagitty.net/
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practice) in the unexposed and exposed populations that are not due to the exposure, but due to 

non-exposure variables that may be referred to as confounders. This results in bias in the estimate 

of the effect of a particular exposure on the outcome15. The second definition is founded on the 

premise that in the analysis phase of a study, confounding may be reduced or eliminated by 

adjusting the analysis for, or stratifying the analysis by, potential confounders15. The latter 

definition is based solely on statistical considerations, and confounding is said to occur if there is 

a difference in the unadjusted and ‘collapsed’ estimates of the effect of exposure on disease; 

estimates are said to have been adjusted for or stratified by the potential confounder. Although 

both camps are sometimes considered indistinguishable, if confounding is correctly considered to 

be a causal concept, rather than a statistical concept, the comparability-based definition is to be 

adopted16.  

Based on graphical model theory, and consistent with the ‘comparability-based’ definition, the 

accepted view for a variable to be a confounder within a causal inference framework is that it must 

be15;17:  

• a cause of the outcome in unexposed people;  

• a cause of the exposure; and  

• unaffected by the exposure (i.e. not on the causal path from exposure to the outcome; 

covariates operating in this fashion being termed ‘mediators’). 

DAGs are invaluable for identifying variables as genuine confounders. In DAGs, we can easily 

recognise confounders as those variables that are ancestors of both the exposure (X) and outcome 

(Y) via two independent paths; for instance, in XCY, the variable C is a confounder but in 

CXY, it is not. This is the strict definition of confounding, though careless use of the term 

‘confounder’ is often adopted to describe what we now define as ‘competing exposures’ and 

‘mediators’, which we cover next.  

Note: In a linear model, confounders are correlated (i.e. collinear) with the exposure, which is 

why adjustment for confounders modifies the estimated exposure-outcome association. This is an 

example of a situation in which collinearity is a good (or at least, a useful) thing.  

It is not always possible or necessary to measure and adjust for all known confounders. DAG 

graphical model theory can be applied to search for covariate sets that qualify as ‘adjustment sets’ 

that remove all confounding. The graphical rule used to find such sets is known as the ‘back-door 

criterion’18 and is implemented automatically in the online tool DAGitty (http://www.dagitty.net/) 

and the R package dagitty13.  

Epidemiological criteria used to check if a variable is classified as a confounder should be based on 

the comparability definition (as described earlier), though this restricts how variables in a 

multivariable linear model might be viewed if causality were to be inferred. The more liberal use 

of ‘confounder’ is therefore not permitted, and new terminology is needed for the more narrowly 

defined role of different variables in multivariable linear regression. We introduce more definitions 

for these variables, and for each we describe a DAG for illustration.  

Proxies 

We first introduce the concept of a ‘proxy’ variable – one that is recorded and may act on behalf 

of another variable, which may be recordable but not present in the study data (e.g. because it 

http://www.dagitty.net/
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was overlooked during the initial study design) or not recordable and therefore ‘unobserved’ (or 

‘latent’). Proxies are important as they enable us to internalise a correspondence between what 

we have in our data and what we seek to frame in terms of ‘real-world’ concepts. For instance, 

‘education’ may be reflected differently – e.g. highest educational attainment or length of time 

spent studying fulltime or part-time, whichever is available in our dataset – yet such measurable 

variables are only proxies for ‘education’ that enable researchers to describe relationships between 

what ‘education’ encompasses conceptually in terms of cause-and-effect with respect to other 

variables in their data. There is unlikely to be a perfect correspondence (perfect correlation, 

statistically speaking) between highest level of education attained and length of time spent 

studying fulltime or part-time. Nevertheless, both measures, despite being imperfect (in effect 

suffering ‘measurement error’) allow us to capture the essence of concepts we wish to describe to 

investigate potential causal relationships in our data. This may seem obvious for variables such as 

education, but consider age: Do we mean ‘chronological age’ or ‘biological age’19? Furthermore, 

educational attainment in early life may determine biological age later in life20. Considering a DAG 

for these variables, is it obvious which is directly observed and which is a proxy? 

Less obvious, though equally important, is that some variables in a causal chain may be missing 

(i.e. not recorded in our dataset), yet their implicit presence is central to the correct drawing of 

causal paths linking variables. Consider the three variables for an individual for whom we have 

information regarding their parents, their diet during childhood, and their BMI when entering 

adulthood: ‘parental education’ (PE), ‘childhood diet’ (CD), and ‘adult obesity’ (AO). It seems 

reasonable to draw a DAG as PECDAO, where we surmise a causal chain from PE through CD 

to AO, since more educated parents are more likely to provide the kind of childhood environment, 

including dietary influences, that lead to a lower risk of obesity as individuals enter adulthood. 

Following this logic, if the information regarding individuals’ diets were absent from the study 

dataset, we may surmise PEAO. This does not mean that parental education directly causes 

obesity in offspring’s adulthood, but that the proxy of ‘childhood diet’ is not present, so we drop 

CD from the DAG and retain a causal arc from PE to AO, since CD is a descendent of PE and an 

ancestor to AO. Many hypothetical proxies may exist as decedents of one variable and ancestors 

to another variable, thereby linking the two by proxy. 

It is important to recognise how variables in our data may subliminally supplant a more complex 

array of factors we are interested in whether clinically, biologically, or from an ecological 

perspective – and necessarily so, as it facilitates the exposition of what are typically complex 

research questions. The implicit distillation processes we go through to arrive at the models we 

employ in addressing our research questions are as limited (i.e. ‘approximate’) as the models 

themselves in representing ‘truth’ (or, in other words: “all models are wrong, but some are more 

useful than others”21). We are prone to overlooking these simplifications of what our data represent 

and worrying only of completeness, measurement error, and robustness of the statistical methods 

used in their analysis (though the latter, too, is also often overlooked).  

Competing exposure 

A competing exposure is strictly not a confounder, though researchers often conflate confounders 

with competing exposures. For a variable to be considered a competing exposure, it must be:  

• a cause of the outcome, or a proxy of a cause of the outcome (i.e. an ancestor to the outcome);  
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• not a cause (or a proxy of a cause) of the main exposure; and  

• unaffected by the main exposure (i.e. not a descendant thereof). 

With no other variables in the linear model, 

the estimated association (slope) between an 

exposure and an outcome is unaffected when 

the linear model includes a competing 

exposure, since orthogonal covariates do not 

impact each other’s estimated coefficients. 

Competing exposures are unlikely to be 

completely orthogonal to the main exposure, 

especially when they are continuous 

variables, so their inclusion will change the 

estimates slightly. 

Always, however, precision is improved 

because some of the outcome uncertainty is 

effectively ‘explained’ by the competing 

exposure. 

Note: Within the population, the competing exposure and the (main) exposure are assumed to be 

causally unrelated but may nevertheless be correlated. A competing exposure may be 

correlated with the (main) exposure in the study sample for one of two reasons:  

• Although the main and competing exposures are causally unrelated at the population level, 

in the study data they may exhibit a non-zero correlation due to chance sampling. Were the 

study repeated several times, on average the estimated association between the main exposure 

and outcome is correct (hence there is no statistical bias), but for any one study sample with 

chance correlation, the estimate will be modified away from true; or  

• There is an ancestor (observed or unobserved) that causes both, creating a correlation at the 

population level and, therefore, a likely correlation within any subsample. Inclusion of the 

competing exposure will modify the main exposure-outcome relationship, which is desirable, 

as the competing exposure is then actually better understood as a proxy confounder (see 

next section). 

If a competing exposure is correlated with the main exposure in a study sample and this is due to 

chance (i.e. the first instance above), the competing exposure should not be included in the model, 

as inappropriate modification of the main exposure-outcome estimate occurs. This would trump 

any advantage of improved precision because, although the estimate would be more precise, it 

would be incorrect!  

If, however, a competing exposure is correlated with the main exposure due to an ancestor variable 

causing both exposures (i.e. the second instance above), inclusion of the competing exposure 

remains favourable (to adjust for proxy confounding), thereby removing bias and improving 

accuracy, whilst improved precision will also result (as a competing exposure) – a win-win!  

The only way to be sure that inclusion is favourable from a confounder adjustment perspective is 

to use a DAG for all variables considered relevant, available or unobserved, and determine all 

Outcome

Main exposure

competing 

exposure

The modelled relationship excluding 

the competing exposure 

Outcome

Main exposure

competing 

exposure

The modelled relationship including 

the competing exposure 
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possible adjustment sets (which can be done automatically thanks to the online tool DAGitty 

[http://www.dagitty.net/] or the R package dagitty13). The decision as to whether to include the 

competing exposure in the linear model is determined by: examination of the a priori, appropriately 

determined, DAG (which is non-parametric and can therefore only indicate which adjustment sets 

are appropriate rather than the exact nature of the variable relationships); in conjunction with 

knowledge of the data and its parametric sampling properties (which may indicate a non-zero 

correlation arising in the sample even when the DAG indicates the correlation should be zero in 

the population). 

Proxy confounder 

In the situation where the (main) exposure and any competing 

exposures are not directly causally related but are correlated due to a 

common ancestor variable that is causally related to both (maybe 

unobserved; see right), the competing exposure is a ‘proxy (of the 

ancestor that is a true) confounder’, i.e. a proxy confounder.  

Note: The true confounder need not be a parent of the outcome. This 

might seem to contradict the definition of a ‘true’ confounder, but were 

we to remove the proxy confounder from the DAG, the link between the 

true confounder and the outcome becomes direct; being an ancestor is 

sufficient to be a cause of the outcome. 

Proxy confounders are not themselves confounders, but lie on the causal 

path between confounders and either the (main) exposure or the outcome 

(but not both; else it would be a confounder).  

Proxy confounders are useful where true confounders are not observed and 

the closest we have to assessing the impact of unobserved true confounders 

is through their influence via their proxies.  

Mediators (on the causal path) 

A common challenge in epidemiology involves the (in)appropriate treatment 

of mediators in linear regression models. As mentioned earlier, mediators are 

variables that lie on the causal path between the exposure and outcome.  

Including mediators in a regression model can yield a statistical artefact sometimes known as 

Simpson’s Paradox, where it typically arose from the assessment of categorical covariates and 

did not need to invoke linear modelling. We later introduce Lord’s Paradox, which was originally 

illustrated amongst both categorical and continuous covariates, though can arise with any 

combination of covariate types. We also cover suppression, which is typically described amongst 

continuous covariates but may arise with categorical data. All three paradoxes became known 

separately in different contexts but are manifestations of the same phenomenon termed the 

reversal paradox.22 Henceforth we will describe all these forms of ‘paradox’ as the ‘reversal 

paradox’. The phenomenon was so named because the adjustment for a mediator can (though 

does not necessarily) give rise to a sign change in the exposure model coefficient. More 

importantly, even when no sign change occurs, there can be substantial bias in the inferred model 

coefficient estimate23.  

http://www.dagitty.net/
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The reversal paradox may arise in linear modelling for any combination of categorical and 

continuous variables. The problem of statistical adjustment for mediators is ubiquitous yet 

controversial and highly contested. There is, however, no actual ‘paradox’, only limited 

comprehension of the causal framework in which a linear model is to be interpreted24. Despite a 

plethora of articles outlining how it is challenging to interpret findings of regression models with 

respect to causal inference if mediators are included22;23;25-28, the practice of including them 

inappropriately in linear models persists. This is in part because some find its implications 

overstated29, though likely because many do not fully grasp causal theory24;30, which explains the 

paradox and helps interpret what is happening.  

Note: Estimated coefficients in a linear model that includes one or more mediators are not 

statistically biased, as they are correctly estimated – the mathematics of the linear model are 

expedited robustly. Instead, what is attributed to model coefficients is inferential bias (i.e. an 

incorrect inference made about the causal relationship between an exposure and the outcome).  

Summary 

Inferential bias occurs whenever insufficient care is taken to build a linear model set within a causal 

framework, where it is critical to select an appropriate combination of covariates to optimally 

‘adjust’ for confounding. If the adjustment set of model covariates for a specific exposure-outcome 

relationship is not appropriate (as per the idealised DAG for that context and associated datasets) 

no meaningful causal inference can be made of the exposure-outcome model coefficient.  

This leads nicely onto the challenges of selecting appropriate covariate subsets and interpreting 

robustly the coefficients of a multivariable linear model from a causal inference perspective. 
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3. DRAWING DAGS 
Learning objectives 
• Rehearse the principal terms used to describe each component of a DAG 

• Learn how to systematically approach the drawing/specification of a DAG 

Definition and terminology  

Within causal inference, DAGs are graphical, nonparametric representations of hypothesised causal 

relationships between measured (‘observed’) and unmeasured (‘unobserved’ or ‘latent’) variables. 

Current convention is to represent measured variables as squares or rectangles and unmeasured 

variables as circles or ellipses, although this is not universally applied. These representations of 

variables are termed ‘nodes’ (or ‘vertices’), and the causal paths between variables are represented 

by unidirectional arrows termed ‘directed arcs’ (or ‘directed edges’).  

Three key characteristics of DAGs are that:  

• causal paths between variables must be unidirectional (i.e. each of the variables connected by 

a causal path can only operate as either cause or effect, and not both);  

• a variable must not cause either itself or one of its own causes (i.e. there should be no cyclical 

paths, hence the name ‘directed acyclic graph’); and 

• while a direct path between two variables only indicates the possibility that these variables 

are causally related (even if only to a modest extent); the absence of a direct path between 

two variables reflects the absence of any such causal relationship (i.e. greater certainty and 

importance is afforded the absence of a causal path than the presence of one).  

Epidemiological utility – past, present and future 

We have seen how DAGs have substantial utility for displaying – and supporting robust analyses 

of – hypothesised causal relationships. DAGs facilitate what might be termed a ‘causal gaze’ – a 

perspective from which complex (causal) processes can be simplified, characterised in graphical 

form and then examined, disentangled, debated and resolved using an established framework of 

rules (including the three key characteristics listed above). 

DAGs also facilitate the identification of variables operating in very specific ways within any 

hypothesised causal system, each of which requires particular attention when designing statistical 

models to generate causal inference. As described in the preceding session, these include:  

• the specified (or ‘main’) ‘exposure’ (the putative cause within the ‘focal relationship’ under 

examination);  

• the specified ‘outcome’ (the putative effect / consequence within the ‘focal relationship’ 

under examination) 

• potential ‘confounders’ (covariates relating to events, processes, characteristics which, as 

specified, occur before both the exposure and the outcome, and are therefore potential 

causes of both);  

• likely ‘mediators’ (covariates relating to events, processes or characteristics which, as 

specified, occur after the specified exposure but before the specified outcome, and are 

therefore potential consequences of the specified exposure and potential causes of the 

specified outcome); and 
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• ‘competing exposures’ (covariates that are causally unrelated to the specified exposure but 

which precede, and are therefore potential causes of, the specified outcome). 

By identifying variables operating in these ways within the hypothesised causal system, DAGs have 

extensive utility in statistical modelling for causal inference by ensuring that models: 

• identify, and adjust for, those covariates specified as potential confounders;  

• do not adjust for covariates specified as likely mediators (since the adjustment for such 

variables can create bias due to the ‘reversal paradox’23); and 

• can identify and adjust for covariates specified as competing exposures, wherever such 

adjustment strengthens the model produced. 

The application of ‘graphical model theory’ to DAGs31 can further enhance adjustment for 

confounding by identifying any alternative ‘minimally sufficient adjustment sets’ of covariates 

specified as potential confounders9. This can be of great practical value in those circumstances 

where: not all of the specified potential confounders have been measured; or not all of the specified 

potential confounders can be measured with reasonable accuracy and precision (or within the 

resources available). 

Beyond these ‘early benefits’ of DAGs (i.e. improving the transparency of a priori hypotheses; 

reducing inappropriate adjustment for mediators; and enhancing the selection of confounders for 

adjustment), DAGs also have substantial potential utility for: identifying and estimating the extent 

of unobserved confounding (where the DAGs involved permit this); evaluating whether any given 

DAG (as specified) is consistent with the observed dataset(s) it was intended to represent13; and 

elucidating invalid or inappropriate analyses. 

Conceptualising variables and contextualising cause  

Although DAGs can sometimes offer simple representations of what might otherwise be complex 

causal processes, many can be challenging to draw (or, rather, to ‘specify’), not least when:  

• the variables involved represent poorly defined and/or understood concepts/constructs;  

• the variables, though measured at one point in time, reflect events, processes or characteristics 

that occurred at previous points in time; and 

• the causal processes the DAG is intended to reflect are influenced by the context(s) in which 

these occur. 

Hypothesising the potential causal relationships between each of the constituent variables (be they 

manifest or latent) requires that we not only recognise precisely what each variable represents (be 

that an event, a process, or a characteristic), but also that we have substantial understanding of 

each potential causal relationship based upon clear theoretical principles and/or robust, external 

empirical evidence. This can be extremely challenging, especially in hypothesised causal systems 

where there is incomplete understanding, limited robust external empirical evidence, or where the 

theoretical principles involved are unclear, uncertain or contested. Nonetheless, even under these 

circumstances, ‘temporality’ (i.e. the simple rule that the past precedes the present) can often 

provide a sufficient theoretical basis upon which DAG specification can proceed, providing it is 

possible to identify the temporal sequence of the variables involved. Thereafter, there is no reason 

why alternative DAGs (particularly, and preferably, when specified a priori) might be specified that 
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reflect specific uncertainties and therefore guide causal inference analyses using DAG-informed 

sensitivity analyses. 

Determining the temporal sequence of variables within a DAG requires establishing the temporal 

relationship of measurements operationalised as nodes that are fixed in time either: (a) by nature 

of the variable concerned (i.e. where the variable is ‘time-invariant’ and varies only across 

subjects/participants and not over time; e.g. sex or place of birth); or (b) by the specific point in 

time at which the variable concerned was measured (i.e. where the variable is ‘time-variant’ and 

varies not only across subjects/participants but also over time; e.g. body mass or food intake). 

Importantly, every measurement of a time-variant variable captures not only the value prevailing 

at the point of measurement, but also the cumulative ‘experience’ of that variable over the time 

preceding measurement (such that the measurement made might be considered to represent a 

value that has ‘crystallised’ at, or up until, that point in time). 

The precise time at which a time-variant variable (and the concept/construct this represents) is 

‘crystallised’ is crucial for considering where it should be placed in the temporal sequence of nodes 

that form a causal DAG. This is because temporality is key to establishing which variables (as 

manifestations in time of the ‘crystallised’ properties they reflect) can plausibly act as potential 

causes of other variables (given that only past nodes can cause subsequent nodes). Indeed, the 

very notion of time-variant variables – which may reflect properties from either the present or 

the past (or both), that have accumulated over time – can make them especially difficult to 

position within a DAG (both conceptually and functionally). A simple example of such a variable 

might be body height which might be considered a time-variant variable when measured during 

childhood, but which might appear time-invariant when measured in adulthood (having crystallised 

at the end of adolescence, thereafter remaining the same until the decline in height commonly 

accompanying senescence later in life).  

The causal relationships between variables (whether time-variant or time-invariant) may also 

change between contexts, such that a valid causal relationship in one context may be reversed in 

a second, or entirely impossible/implausible (and therefore absent) in a third. Drawing DAGs 

therefore requires not only careful thinking about the meaning of all of the constituent variables, 

but also how these are likely to be ordered, in time, within the specific context being modelled – a 

context that extends not only to the specific historical, social and physical environment concerned, 

but also to the very different ‘analytical contexts’ that exist for different study designs, sampling 

strategies, and data acquisition processes.  

Understanding any given variable, what this purportedly measures, and what this means in any 

given context, is therefore both challenging and critical to correctly specifying DAGs that are 

capable of informing robust statistical models of hypothesised causal relationships. There may be 

instances in which the level of ambiguity or a lack of knowledge and understanding means there 

is little confidence to support accurate specification of even the most hypothetical DAG. Yet the 

impossibility of knowing, a priori, everything necessary about the processes involved in any causal 

system does not mean that the resultant DAG (specified in the absence of definitive evidence) has 

nothing to offer to strengthen our confidence in causal inference modelling. This is because, while 

challenging to specify and impossible to perfect, DAGs nonetheless make the process of causal 

estimation far more transparent to both the analysts concerned and to others. By helping analysts 
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to identify (and hence avoid) some of the more obvious (and sometimes less obvious) errors that 

influence the analysis of observational data for causal inference, even ‘uncertain’ DAGs can help 

improve the analysis of causal inference. 

Drawing DAGs in four simple steps using temporal logic 

Notwithstanding the conceptual and operational issues considered above, there are four simple 

rules (based on the unassailable ‘temporal logic’ that the past precedes the present) that can help 

to improve the drawing/specification of DAGs to represent hypothesised causal processes.  

• All nodes should be considered as potentially ‘time-variant’ measures of the variable they 

represent: this ensures that the properties attributed to measured variables include those that 

may have crystallised prior to the time at which the variable was measured. 

• Simultaneously crystallising variables are likely to share common (latent or manifest) causes: 

this allows for any such ‘contemporaneously crystallising’ nodes to be correlated without being 

specific about a direct causal link, nor having to specify the direction of any such cause (if 

present). 

• Only preceding nodes act as causes of subsequent nodes: this requires nodes acting as causes 

to have properties that crystallised before those of any nodes they affect. 

• Temporality confers the potential for causality: this means that causal paths (i.e. arcs or 

edges) should only be missing within a DAG where these: do not follow temporal logic; or 

where there is robust, external empirical evidence that the given causal path does not exist. 

These four rules can be translated into a series of tasks that greatly facilitate the specification of 

DAGs based on all constituent variables (whether observed or unobserved) that are thought to be 

relevant to the focal relationship under examination: 

• First, determine when each observed variable (regardless of when measured) was likely to 

have ‘crystallised’; then specify when each unobserved variable is considered (theoretically) 

to have crystallised; and arrange both sets of (observed and unobserved) variables in a 

temporal sequence, allowing for groups of variables that crystallised at the same point in time 

to be situated contemporaneously; 

• Second, for each group of contemporaneously crystallised/situated variables, add a new latent 

(i.e. unobserved) variable operating as a common cause temporally situated immediately 

preceding the contemporaneously crystallised / situated group of variables. 

• Third, add directed arrows from all preceding variables to any subsequent variable(s), 

ensuring there are no missing arrows from any preceding variable to any subsequent variable. 

The first three steps generate what is termed a ‘forwardly saturated DAG’ (meaning that it 

includes all possible causal paths between preceding and subsequent variables). When drawn in a 

straight line (e.g. from left to right, from past to present), with variables arranged in the order in 

which these crystallised, and with causal paths delineated using curved lines, such DAGs often take 

on the appearance of an ‘onion’ (hence the colloquial term ‘onion DAG’)32.  

Importantly, a fourth step may be required when there is sufficient evidence to warrant excluding 

a directed arrow between a preceding and subsequent variable, thus: 

• Fourth, remove only those directed arrows between variables where these do not follow 

temporal logic (this should not occur if the third step, above, has been correctly implemented) 
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or where there is sound knowledge or robust, external empirical evidence that the given causal 

path does not exist. 

Summary 
After highlighting the early benefits of DAGs (in facilitating the conceptualisation of causal systems 

and processes and helping to reduce a range of common flaws and errors in the modelling of causal 

systems), we also examine several implicit and explicit conceptual and contextual challenges to 

drawing (or ‘specifying’) DAGs. These challenges relate to both: the causal meaning of what 

constitutes a ‘variable’ (and the ‘nodes’ used to represent these as markers of past or present 

events, processes, or characteristics); and the important role that context plays in determining 

what variables mean, and how they are conceptualised and operationally specified. The four key 

rules outlined, based on temporal logic, can be applied using four simple steps to draw/specify 

DAGs consistently, thereby improving intra- and inter-analyst reliability and reducing the potential 

for error. 
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4. STATISTICAL ADJUSTMENT IN MULTIVARIABLE LINEAR MODELS 

Learning objectives 

• Know how DAGs inform covariate selection in a multivariable regression model 

• Know when to adjust / not to adjust for mediators in a multivariable regression model 

• Learn how to interpret correctly the coefficients of a multivariable regression model 

Causal interpretation of multivariable linear models  

In causal inference, two variables are special: 

• exposure (or treatment); and  

• outcome (or endpoint).  

All other variables are covariates. As we have seen, covariates have a variety of different roles 

from a causal inference perspective: they can be mediators, confounders, proxy confounders, 

or competing exposures. If a suitable subset of covariates can be identified that removes 

confounding, we may proceed to estimate our causal effect using a multivariable linear model.  

In regression models, there are only two types of variables:  

• dependent variable (DV) and  

• independent variables (IVs, predictors, or covariates).  

No further distinction is made between the IVs – specifically, the exposure is by no means a 

“special” IV and is treated just like any other covariate. Thus, there is a conceptual mismatch 

between causal graphical model theory (as depicted by DAGs, which lead us to formulate a 

multivariable linear model that highlights the exposure-outcome relationship adjusted for 

confounding) and the standard perception of a regression model. This conceptual mismatch often 

leads to misinterpretation of the results from a multivariable linear model.  

Table 2 Fallacy 

One particularly widespread misconception is known as mutual adjustment, recently called the 

‘Table 2 fallacy’33, since the first table in most epidemiological articles usually describes the study 

data and the second table reports the results of a multivariable regression model where the 

erroneous efforts to illustrate mutual adjustment often appear.  

To illustrate the fallacy, let us assume that we wish to estimate the effect of X on Y. We know (e.g. 

from a DAG) that there is only one confounder, Z, so we run the regression Y~X+Z. If our 

background knowledge and the statistical assumptions of the regression (e.g. normality) hold, then 

the coefficient of X estimates the total causal effect of X on Y. The ‘Table 2 fallacy’ is the belief 

that we can also interpret the coefficient of Z as the effect of Z on Y; indeed, in larger models, the 

fallacy is the belief that all coefficients have a similar interpretation with respect to Y. 

To see why this is not true, look at the DAG that matches our scenario: ZXY 

& ZY (see right). With respect to the XY effect, adjustment for Z removes 

all confounding, but what does including X in the model mean for the effect of 

Z on Y? 
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As we can see, X is a mediator of the ZY effect, but adjustment for a mediator is erroneous when 

estimating the total causal effect; the Z coefficient in our model cannot be interpreted as such. 

Instead, we could interpret it as the ‘direct effect’ of Z on Y when X is held constant, and this may 

be stronger than, weaker than, or opposite to the total effect. It would seem, from this example, 

that we can at least interpret every coefficient as a causal effect: some total and some direct.  

To see that this can also fail, let us add another variable to our DAG. 

We include U, which affects both Z and Y (see right). Despite the 

addition of this new variable, it is still sufficient to adjust for Z to 

unconfound the XY effect, so the validity of the X coefficient is 

unchanged – can you see why? Upon examining Z in this situation, 

however, we encounter difficulties.  

The new variable U acts as a confounder of the ZY relationship, which means that we would have 

to interpret the Z coefficient as a ‘direct effect that is confounded by U’ – not exactly a helpful 

interpretation. Indeed, no single multivariable linear model could ever estimate the causal effects 

of X and Z at the same time: estimating the X effect means we must include X in the model, but 

to estimate the Z effect we must not include X.  

In general, it is impossible to identify multiple causal effects using a single linear model, and we 

can usually interpret at most one coefficient in such a model as a total causal effect. If we are 

interested in multiple causal effects, we need multiple (separate) regression models.  

In the 2nd DAG, we can obtain the effect of X from the model Y~X+Z because adjustment for Z 

unconfounds the XY effect, and we can obtain the effect of Z from the model Y~Z+U because 

adjustment for U unconfounds the ZY effect. The concept of ‘mutual adjustment’, as often 

encountered in the literature, is seriously misleading and erroneous.  

Statistical adjustment  

Within observational research, it is important to adjust for confounding to reduce potential biases. 

Other forms of adjustment may be undertaken, e.g. for competing exposures, which are not true 

confounders but can improve model precision (recall: some competing exposures might also double 

as proxy confounders). Adjusting for mediators (variables that lie on the causal path from exposure 

to outcome) presents a challenge, as this may bias the intended model inference.  

We now use DAGs to examine carefully when and how to make ‘appropriate’ statistical adjustment 

for mediators in a linear regression model. To do this we must recognise three key ingredients to 

the application and interpretation of multivariable regression models:  

• causality – the framework in which confounding is defined;  

• intervention – whether real or hypothetical, as a basis of thinking about what has meaning in 

relation to the research question that drives interpretation of the model coefficients; and  

• context – a ‘catch-all’ for remaining issues, but important for the recognition of extraneous 

factors that validate or challenge the appropriateness of methodologies adopted; an example 

is how we understand the abstract meaning of variables in our DAG (discussed at length in our 

first example that follows). 
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In 1995, Judea Pearl formulated a new calculus for application to causal graph theory coined do-

calculus34. Pearl’s calculus facilitates identification of causal effects in non-parametric models as 

well as proving useful in mediation analysis35, transportability36, and the recently emergent domain 

of meta-synthesis (the fusing of empirical results from diverse studies conducted on heterogeneous 

populations, under different conditions, to synthesize an estimate of a causal relationship in some 

target environment). We do not consider this calculus in detail but borrow the ‘do’ component, i.e. 

the concept of intervention. When considering the implications of causality in model selection and 

model interpretation, it helps to think about the role of intervention, either real or hypothetical. 

Drawing meaningful inference in observational research from a linear model then boils down to 

identifying the context in which inference has utility. This is best realised by asking: What is the 

causal consequence I am interested in? This helps target an intervention that corresponds to the 

research question.  

To illustrate, we consider two contexts in which statistical adjustment for a mediator has a different 

impact (modifying the estimated exposure-outcome relationship appropriately or inappropriately) 

and see how this relates to a hypothetical intervention. In our first context, we consider a variable 

that researchers often adjust for because they view it as a confounder, though it is a mediator. We 

discuss such contexts in which mediator adjustment biases the intended causal inference and is 

therefore inappropriate. In our second context, we consider a variable that is well-understood to 

be a mediator, yet adjusting for it is necessary to gain correct causal inference. We explore and 

explain this apparent contradiction, highlighting key differences between the two scenarios in terms 

of hypothetical interventions, indicating when mediator adjustment is appropriate or not.  

Context 1: The relation between adult blood pressure and birthweight 

In considering a potential relationship between adult blood pressure (BP) and birthweight (BW), 

researchers have questioned the validity of any association in part due to publication bias and/or 

inappropriate statistical adjustment for variables on the causal path (such as adult body size)37, as 

the latter gives rise to statistical artefact called ‘reversal paradox’23. It has also been shown that 

simultaneous adjustment for two or more intermediate measures of body size exacerbates this 

artefact27. Nevertheless, it is suggested that some intermediate measures (e.g. adult weight, AW) 

are proxies for genuine confounders that are either unmeasured or, as yet, not identified (e.g. 

genes that simultaneously affect BW, adult body size, and adult BP)29. Concern with this argument 

is that if intermediate body size measures are a proxy for unmeasured or unknown genuine 

confounding, the reversal paradox does not go away; there are adverse effects of the artefact 

induced by the reversal paradox and genuine bias-reduction due to adjustment for proxy 

confounders25. In many situations, it may be unclear, and even unresolvable, as to which direction 

and of what magnitudes these effects alter the estimated model coefficient for the main exposure; 

they may be synergistic (add to) or antagonistic (oppose and partly cancel out). In any event, the 

inferential bias from the reversal paradox never goes away. 

It helps to resolve this dilemma by asking: what is the research question; what consequence are 

we interested in; and how might we assess this via a (hypothetical) intervention?  

These issues are context specific. For instance, do we wish to understand the impact of BW per 

se or, more likely, are we interested in what BW is a proxy for? Biologically, it is unlikely that body 

mass at birth in a physical sense is at all important in relation to adult BP; rather, it is what body 
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mass at birth represents, what it reflects of foetal development, and whether this has some 

bearing on physiological status in later life. It is widely accepted that BW is a proxy for many 

things, not least in-utero nutrition (quality and quantity); and health of the foetus is also affected 

by the health of the mother (before and during pregnancy). To affect adult BP via intervention at 

the earliest stages of life, if BW is associated with adverse health outcomes in later life, one might 

seek to affect all factors reflected in the proximal value of BW. We might therefore seek to ensure 

mothers are fit and healthy before conception, as well as during pregnancy; we might seek to 

ensure mothers’ diets are balanced, containing sufficient nutrients and calories for optimal foetal 

development; and we might seek to secure a more holistic positive environment to minimise 

physical and mental stress, avoid adverse lifestyle choices (e.g. alcohol, tobacco), and minimise 

disease exposures (e.g. measles, tuberculosis). 

The complexity of BW as an exposure brings into question what it is that any unmeasured or 

unknown confounders confound: do they causally influence all or just some of the factors 

encapsulated in the proxy measure of BW? If some unmeasured or unknown confounders were 

genetics, for instance, how do genes determine environmental factors that influence BW? Apart 

from operating via biological mechanisms that drive dietary habits and/or general health-related 

behaviours (e.g. alcohol or tobacco addiction), many environmental influences of maternal and 

foetal wellbeing are determined by geographical, community, and cultural circumstances, such as 

the availability of foods and medicines (even in developed countries), the risk of exposure to 

disease or disaster – whether natural (earthquake, floods) or man-made (war) – and parochial 

norms in diet and lifestyle. This perhaps makes for an argument that any confounding, for which 

adult weight purportedly acts as a proxy, is tenuous and dilute for each potential confounder. One 

might argue that many other factors that may seem arbitrary, yet conveniently recordable, could 

similarly be considered proxy confounders and we soon become awash with possible proxies.  

We might seem to overanalyse BW as an ‘exposure’, but this discussion serves to illustrate that 

the variables we use in a linear model are an abstraction of what we hope they reflect. When 

seeking causal inference, and thus when considering the role of various measures as confounders 

or proxy confounders, the perspective adopted is subjective. Most clinical variables have utility, 

though often only approximately encapsulating the essence of our research focus. We should 

remain mindful of this when undertaking linear modelling for causal inference.  

Stepping back from important yet philosophical issues of context and 

utility / meaning of variables in our DAG, we examine what is meant 

by adjusting for mediators. We form a theoretically sound perspective 

by constructing a DAG (right), leaving aside whether intermediate 

body size captures confounding by proxy, and examine the BP-BW 

relationship as though causal, with focus on a potential intervention 

just before BW is measured.  

We ask the question: What is the effect of one unit change in BW on change in adult BP? We 

consider this with two model scenarios: one where we have BP as the outcome and BW as the 

exposure variable and no other covariates (i.e. BP~BW); the other where BP is the outcome, BW 

is the exposure variable and we include current adult weight (AW) as a ‘confounder’ (i.e. 

BP~BW+AW, ignoring that AW is not a ‘true’ confounder). Critically, we assume a causal BW-AW 
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relationship (supported by the literature), else AW is not a mediator either but rather a competing 

exposure.  

In using the model that includes AW to estimate the impact of change in BW on BP, we must 

evaluate the impact of change in BW on both AW and BP, along with the impact of an altered AW 

on BP. In using the model that includes only BW, we must evaluate the impact of BW on BP only.  

In the causal framework (BWAWBP and BWBP), it is shown mathematically that the evaluated 

impact of one unit change in BW on BP is identical for both models yet more succinctly captured 

by the BW coefficient in the BP~BW model. The BW coefficient in the BP~BW+AW model does not 

reflect the total effect of BW on BP, as it must be modified by the effect of AW on BP.  

From a causal inference perspective, asking: What is the (hypothetical) intervention-generated 

effect of one unit change in BW on the change in BP?, the model to yield the answer is the model 

with only BW included; inclusion of the intermediate AW modifies the coefficient of effect for BW 

away from the true intervention-generated effect. Since BWBP and BWAWBP (i.e. AW is a 

mediator), ‘adjustment’ for AW in the BP~BW model alters the inference sought of the BW 

coefficient (which is interpreted around the idea of an intervention on BW). 

Note 1: If BW is not causally related to AW, it is a competing exposure 

(see right) and there would be no difference between the two models in 

the coefficient estimated for BW and both models would capture the 

total causal effect of BW on BP correctly in the BW coefficient. 

Note 2: If BW is not directly causally related to BP (see right), then adjustment for 

AW should completely remove the effect of BW. 

Note 3: Both models (BP~BW and BP~BW+AW) are statistically unbiased, as 

they are correctly estimated; the second model suffers causal inference bias (the 

estimated impact on BP of a hypothetical intervention on BW is biased).  

We thus conclude that when seeking to interpret an outcome-exposure relationship causally within 

a multivariable linear model, where interpretation of the exposure coefficient is predicated on an 

intervention at the time of (or just) before the exposure assessment, then inclusion in the linear 

model of mediators biases the model inference and hence its interpretation (due to the reversal 

paradox); the exposure model coefficient does not reflect the total causal impact of any 

hypothetical intervention on the outcome.  

Context 2: Relation between sex and academic career progression 

It is generally acknowledged that there are differences between the sexes, though what is due to 

nature or nurture is still debated38. It is nevertheless widely accepted in science (and increasingly 

accepted culturally, reflected in legislation) that, notwithstanding variation within each sex, men 

and women are on average no different in their potential intellectual acuity39. It is thus reasonable 

to presume that it is entirely down to cultural differences experienced throughout life that leads to 

sex imbalance in the pursuit of different careers. Therefore, within professions for which there is 

no reliance on physique, uptake of jobs and progression through the ranks should be proportionally 

very similar. In academia, for instance, the proportion of men and women in each discipline at 

each grade should be roughly equal. This is, however, far from true (across the globe in fact). In 
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the UK, this led to the formation of an equality charter, Athena SWAN: committed to advancing 

women's careers in science, technology, engineering, maths and medicine (STEMM) in higher 

education (see: http://www.ecu.ac.uk/equality-charter-marks/athena-swan/).  

One metric used in raising awareness and used in monitoring the success of the Athena SWAN 

charter is the proportion of women at each grade, e.g. the proportion of women professors per 

discipline. An implication is that we can assess the ‘performance’ of academic institutions to 

‘promote sex equality’ through such a metric. The academic workforce today, however, is the 

product of individuals’ experiences over the years prior to their first appointment, including their 

journey through postgraduate and undergraduate training, and before that through secondary 

education, primary education, nursery, and home-life, along with the wider societal and cultural 

environment throughout their lives. When examining institutions for potential sex discrimination, 

we must take account of this. 

Contemplating how to investigate academic institutions in their ‘fairness’ to promote men and 

women equally, we can look at the proportion of successful appointments by sex at each grade, 

and then ‘adjust for’ the proportion of men and women applying each time, though this information 

is unlikely to be available. Instead, we might adjust for the proportion of men and women 

eligible for each appointment by considering discipline-specific entry-cohort sex ratios.  

One problem is that entry sex ratios may vary over time, and the lag 

between entry and each appointment widens with seniority of grade. 

For simplicity, we assume no change in discipline-specific entry-

cohort sex ratios over time and consider hypothetical data for all 

academics in STEMM subjects comprising: academic grade 

(outcome), their sex (exposure), and each discipline entry-cohort 

sex ratio (mediator); see the DAG on the right. 

The exposure (sex of the individual) precedes entry to any academic discipline and subsequent 

grades attained; each discipline entry-cohort sex ratio precedes any subsequent grade attained 

and lies on the exposure-outcome path. As to whether these relationships are causal must be 

determined. As cumulative lifecourse experiences differ by sex prior to entry into an academic 

career, the discipline entry-cohort sex ratio is a proxy for these experiences in the same way as 

birthweight was for early-life exposures. A causal link between sex and discipline, hence entry-

cohort sex ratio, is therefore implicit. In the absence of any sex discrimination, discipline entry-

cohort sex ratios should yield similar sex ratios in grade attainment, with proportions of each grade 

by each sex determined by the discipline; causality is again implicit.  

In a linear model, discipline entry-cohort sex ratio is a mediator. As per the BW~BP example, 

adjusting for discipline entry-cohort sex ratios whilst examining the grade-sex relationship might 

be suspect. On the other hand, it is compelling to ‘adjust’ for discipline differences in the workforce 

sex ratios, as alluded to. To resolve this, we ask: what is the consequence we are interested in; 

and how might we assess it via (hypothetical) intervention? The answer to these questions helps 

frame the research question: Are appointments to grade subject to sex discrimination? The process 

that then takes place to address the research question occurs when the grade is attained, which is 

after the entry-cohort sex ratio was established. The consequence of interest is ensuring fairness 

in the appointment process. Hence, we need to adjust for the entry-cohort sex ratios because they 

http://www.ecu.ac.uk/equality-charter-marks/athena-swan/
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differ at the time each appointment is made, thereby affecting the denominator of men and women 

entering the selection process.  

The fairness being assessed (upon which one might hypothetically intervene) occurs at the time 

the outcome (grade) is measured, not when the exposure (sex) is measured, and importantly after 

when the mediator (entry-cohort sex ratio) is measured. If we intervene to change establishments 

prone to sex discrimination, this would be to alter the appointment process, e.g. by ensuring that 

appointment committees are gender balanced, involving independent observers to intervene if any 

part of the appointment process fails to give equality to all candidates, or other such actions at 

the time of appointment. The critical point is that any intervention necessarily takes place at or 

just before grades are attained (or not), and therefore after the time when discipline entry-cohort 

sex ratios are established. 

As per our DAG, the total causal effect of sex on appointment status in higher education comprises 

an indirect effect mediated by societal factors that lead to a certain entry-cohort sex ratio, and a 

direct effect not mediated by such factors that preceded the application. Any policy change of 

academic institutions in the hiring process cannot hope to change the indirect effect (e.g. gender 

balanced committees cannot influence the choice of toys in nursery). What is targeted is the direct 

effect: by adjusting for the mediator, we ‘block’ the indirect effect so only the direct effect remains, 

which is the relevant effect for our intervention question. 

Summary 

The key to understanding when to adjust for a mediator in a regression model is to ask when might 

an intervention be required that best informs our research question. If the intervention occurs after 

the mediator, it is appropriate to adjust. Conversely, for mediators occurring after the intervention 

it is inappropriate to adjust. By framing research questions in terms of an intervention, it highlights 

which factors confound the intervention-outcome relationship as opposed to the exposure-

outcome relationship.  

It is not important that factors considered for ‘adjustment’ are confounders or mediators if all 

precede the intervention point. This keeps the application and interpretation of conditional linear 

modelling firmly rooted in a causal framework. It is the need to arrive at causal inference that 

leads to such rigid ways we think about and employ multivariable linear models (DAGs aid this). 

We considered two contexts: one in which adjustment for the mediator was inappropriate because 

what was to be estimated was total effect; in the other context, the desired effect was the direct 

effect, and so adjustment for the mediator was appropriate. Which effect is sought determines 

whether to adjust for the mediator or not.  

As a rule of thumb, if the exposure is also a putative intervention target, it is the total effect that 

must be estimated. In biomedical research, adjustment for mediators is uncommon since the 

exposure is often a drug or a modifiable risk factor and is thus the target of intervention.  
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5. PARADOXES IN STATISTICAL MODELLING 

Learning objectives 

• Understand how apparent ‘paradoxes’ arise due to poor comprehension of causality 

• Recognise the specific challenges with compositional data 

When is statistical adjustment misleading? 

There are situations where the ‘correct’ statistical adjustment in a linear model is not obvious, or 

indeed even tractable, and we look at some instances. The first is a problem that plagued the 

literature with confusion for decades and is an illustration of Simpson’s paradox, and the second is 

an illustration of the challenges with compositional data. 

The birthweight paradox: smoking during pregnancy and infant mortality 

The birthweight paradox is famous as a ‘paradox’, even though there is nothing paradoxical from 

a causal framework perspective. It provides an excellent illustration of problems that stem from a 

limited comprehension of causal theory and subsequent misinterpretation of incorrectly specified 

multivariable models. We examine the association between smoking during pregnancy (exposure) 

and infant mortality (outcome) whilst ‘adjusting’ for birthweight (an alleged ‘confounder’).  

A ‘paradox’ emerges because findings from the (misspecified) multivariable model are contrary to 

expectation, showing that:  

• mean birthweight is lower amongst mothers who smoke during pregnancy compared to 

mothers who do not;  

• overall infant mortality is higher amongst mothers who smoke during pregnancy compared to 

mothers who do not; whilst ‘paradoxically’,  

• examining birthweight subgroups, infant mortality rates are lower amongst mothers who smoke 

during pregnancy than those who do not.  

This was first exposed as a consequence of poor comprehension of causal inference by Hernandez-

Diaz et al.40 and Wilcox41. In October 2014, an entire edition of the IJE was dedicated to this topic. 

If data corresponding to this problem are categorised (Table 1), the phenomenon is recognised as 

Simpson’s paradox, and if data are continuous and considered within a multivariable model (Table 

2), the phenomenon is recognised more generally as the reversal paradox.  

We illustrate Simpson’s paradox with simulated data: one million mother and child pairs with data 

on birthweight, mothers’ smoking behaviour during pregnancy, and infant mortality. Table 1 shows 

that rate ratios within birthweight groups is always <1.0 whilst overall (across groups) it is >1.0. 

The reversal paradox is demonstrated in the multivariable regression model presented in Table 2, 

where the linear model that is not adjusted for birthweight yields elevated odds of infant mortality 

amongst mothers who smoke during pregnancy (OR = 1.07, 95%CI = 0.98-1.17), whilst the model 

adjusted for birthweight yields reduced odds (OR = 0.70, 95%CI = 0.64-0.77).  

The problem lies in treating birthweight as a ‘confounder’. Two potential causal relationships are 

given in the DAGs of Figure 7. There is evidence that lower birthweight children are more at risk 

of infant mortality due to causal antecedents that affect both foetal health (perhaps leading to 

premature birth) and infant health, thereby causing a greater risk of infant mortality. There is also 
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strong evidence that smoking during pregnancy causes lower birthweight, and is hence a 

descendant of the smoking exposure.  

Table 1: Simulated data to illustrate the birthweight paradox: birthweight, mother’s smoking behaviour 
during pregnancy, and infant mortality for 1 million mother and child pairs  

Birth 

weight 

Range (Kg) 

 Mothers who smoked  Mothers who did not smoke 
Rate 

Ratio  Live Births 
Infant 
Deaths 

Mortality 
Rate1 

 Live Births 
Infant 
Deaths 

Mortality 
Rate1 

(0.5,1]  2 1 500.0      

(1,1.5]  64 2 31.3  68 6 88.2 0.35 

(1.5,2]  1,394 30 21.5  2,250 59 26.2 0.82 

(2,2.5]  10,360 127 12.3  30,018 524 17.5 0.70 

(2.5,3]  30,318 188 6.2  158,876 1,453 9.1 0.68 

(3,3.5]  36,694 143 3.9  329,896 1,528 4.6 0.84 

(3.5,4]  17,406 26 1.5  275,228 692 2.5 0.59 

(4,4.5]  3,510 3 0.9  91,288 102 1.1 0.76 

(4.5,5]  244 0 0.0  11,768 12 1.0  

(5,5.5]  8 0 0.0  600 0 0.0  

(5.5,6]      8 0 0.0  

Total  100,000 520 5.2  900,000 4,376 4.9 1.07 
1 per 1000 live births 

Table 2: Regression model of infant mortality (outcome) on mother’s smoking behaviour during 
pregnancy (exposure) both unadjusted and adjusted for infant birthweight for the simulated 
data summarised in Table 1  

Model Estimate 95% CI 

Smoking exposure during pregnancy (unadjusted for birthweight)   

Non-exposed mortality rate1 4.86 4.72, 5.01 

Smoking exposure odds ratio 1.07 0.98, 1.17 

Smoking exposure adjusted for birthweight   

Base mortality rate1,2 3.32 3.19, 3.45 

Smoking exposure odds ratio 0.70 0.64, 0.77 

Birthweight odds ratio3 0.25 0.23, 0.26 
1 per 1000 live births; 2 centred on birthweight of 3.5 Kg; 3 per 1 Kg increase in birthweight 

 

Figure 7: DAGs for the relationships amongst mothers smoking behaviour during pregnancy, their infant 

birthweight and risk of infant mortality, with common unknown causes of infant mortality and 
birthweight: birthweight (a) is or (b) is not causally related to mortality 

 (a) (b) 

    

Birthweight is a mediator in Figure 7a and therefore should not be adjusted for, as the effect sought 

is the total causal impact of smoking during pregnancy on infant mortality. However, if birthweight 

does not cause infant mortality (Figure 7b), since adjusting for it as a proxy confounder introduces 

a conditional relationship between smoking and unknown confounders; the antecedent unknown 

competing exposures (Figure 7b) become correlated with the smoking exposure, which will lead to 
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a biased estimate of the causal effects of smoking on infant mortality. In the language of graphical 

model theory, conditioning on birthweight invokes the ‘back-door criterion’ by unblocking the 

‘collider’ that birthweight represents, partitioning the causal effect of smoking during pregnancy 

on infant mortality into direct (smoking-related) and indirect (due to unknown antecedent 

competing exposures). 

Compositional data 

It is important to remember that when we regress Y on X, adjusting for Z, we are asking: what is 

the relationship of X with Y whilst keeping Z constant? The assumption made is that the X-Y 

relationship is the same for all values of Z, i.e. the relationship is conditionally ‘independent’ of Z. 

We therefore need to think carefully about the implications of holding Z constant. For instance, 

what if Z=X2, i.e. we have the quadratic model: Y=0+1X+2X2? Clearly, we cannot interpret the 

coefficient for X (1) as though X2 were constant; this instead requires the joint interpretation of 

the coefficients for X and X2, i.e. 1 and 2 must be considered simultaneously when seeking to 

understand the X-Y relationship. This is perhaps not too challenging an issue if we are familiar with 

interpreting curvilinear relationships, but there are more complex scenarios that often go unnoticed 

where the same issue arises. 

A particularly challenging scenario is when data are ‘compositional’, i.e. where constituent parts 

make up the whole. For instance, leg length is associated with human health42, yet trunk length 

(including head) combined with leg length makes up total body height. Birthweight and weight 

gain combine to make current weight26 and body size measures throughout life, from conception 

(zero weight) through birthweight to current weight are compositional data, since each change in 

weight adds to create current weight43. In nutritional epidemiology, statistical ‘adjustment’ within 

a regression model for total energy intake is often considered normal (and by some essential) 

when exploring health status in relation to constituent components of diet44, yet there is limited 

appreciation that the constituents provide components of energy that add to make total energy 

intake. Research into the effects of physical activity seek to record periods of each day that 

individuals spend in sedentary behaviour, doing vigorous exercise, etc., including sleep, which all 

combine to make the complete 24-hour day45. Variations in one component must therefore impact 

upon variations in other components, since the length of the day is fixed; yet this is rarely, if ever, 

acknowledged. 

Consider the example of height and its components leg length and trunk length (head included) in 

relation to risk of coronary heart disease46. Analysis of these variables in relation to any health 

outcome (e.g. blood pressure, BP) would involve regressing the outcome on each component (plus 

additional confounders). If an analyst wanted to investigate the association with leg length, for 

instance, they might wish to be sure that any association found was due solely to leg length and 

not because people with longer legs tend to be taller. Consequently, the analyst might decide to 

‘adjust’ for height, as though this were a confounder (i.e. total height might be viewed as ‘causing’ 

leg length). There are concerns with this, however, since leg length is part of overall height, and 

we need to think carefully about what it means to increase leg length (the exposure) by say 10cm, 

whilst keeping height constant. This can only be achieved by decreasing trunk length by 10cm. 

Thus, the coefficient for leg length in such a model will be the difference in outcome between two 

hypothetical people with the same height, but where one has longer legs and a shorter trunk than 
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the other. An association could arise either because of an outcome-leg-length relationship or 

because of an outcome-trunk-length relationship.  

If the analysis were repeated using trunk length as the exposure (retaining total height as the 

alleged ‘confounder’) the coefficient would be the same magnitude but opposite in sign. An 

alternative might be to regress the outcome on leg length and trunk length (which replaces total 

height), whilst retaining any other relevant confounders. The coefficient for leg length will then be 

the difference in outcome between two hypothetical people, where both have the same trunk length 

but one has longer legs (and is therefore also taller) than the other. An association could thus arise 

either because of a relationship between the outcome and leg length or because of a relationship 

between the outcome and total height. How do we distinguish between leg length and total height, 

as to which is more strongly associated with the outcome? Perhaps both are associated with the 

outcome? If true association is between the outcome and total height only, the coefficients for leg 

and trunk length would be equal. 

This example shows how much care is needed in thinking about what it means to ‘adjust’ for a 

variable and illustrates the difficulty that arises in separating the effects of variables that are 

related structurally (e.g. height = leg + trunk). Structural relationships amongst variables in 

regression models are ubiquitous yet often overlooked; we cover this again when we discuss 

mathematical coupling (MC) and its impacts in analysis of change and use of ratio variables. 

Understanding causal relationships amongst variables explored in a multivariable regression model 

is central to the interpretation of that model. Model development should therefore be driven by a 

priori understanding of causal relationships. One can use DAGs to set out a view of causal 

relationships amongst relevant variables (recorded and not recorded). Researchers are responsible 

for making appropriate decisions regarding their assumptions reflected in their DAG. Assumptions 

must be explicit else unintended implicit assumptions may arise. As already stated, for instance, 

the absence of arcs in DAGs represents important assumptions that can sometimes be quite strong. 

Choices made in a DAG may substantially alter the variables nominated for inclusion in regression 

models, which in turn has the potential to alter model findings and subsequent interpretation.  

For compositional data, it can often be challenging to affirm with any degree of certainty whether 

components cause the whole or the whole causes the components (e.g. do leg length and trunk 

length combine to cause total height, or does total height cause both leg length and trunk length?). 

This dilemma and its associated implications are examined again when we look at compositional 

data in the context of ratio variables: we show that understanding context to inform the ‘correct’ 

model is crucial though far from straightforward, and sometimes it may be impossible to determine 

a ‘correct’ model! 

Summary 

There are many instances in observational research where multivariable models are employed and 

focus is on estimated exposure effect size interpreted to be the total causal effect of the exposure 

on the outcome. If the adjustment set of covariates employed in the multivariable model is not 

carefully and robustly justified within a causal framework, estimated effect sizes may be seriously 

misleading; there may be no optimal subset of observed covariates that allows for robust causal 

inference in some instances. Failure to work within a causal framework gives rise to considerable 

misunderstandings in the literature. 
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6. CONDITIONING ON THE OUTCOME 

Learning objectives 

• Understand the broad implications of regression to the mean (RTM) 

• Learn how conditioning on the outcome introduces statistical artefact due to RTM 

• Be aware of how investigation of longitudinal data can become conditional on the outcome  

• Recognise how to view longitudinal data correctly within a causal framework 

Regression to the mean (RTM) 

Most statisticians will likely have come across regression to the mean (RTM) and many therefore 

believe they understand it. However, the effects of RTM are more widespread than typically 

appreciated47-51. This is in part due to the narrow way in which the concept is usually taught, 

though also because RTM can operate in ways that are not obvious and are easily overlooked. 

Although RTM is typically attributed to measurement error, it is not necessarily ‘error’ per se that 

is key (which would often dilute the effect size and widen standard errors); all other occurrences 

of RTM are poorly understood. It is therefore important to examine RTM thoroughly to appreciate 

its consequences, especially in the context of multivariable statistical modelling. 

In providing a definition of RTM, most textbooks refer to the phenomenon where a variable, if 

extreme on its first measurement, tends to be closer to the centre of the variable distribution on 

a subsequent measurement. This oversimplification can lead to the incorrect view that RTM occurs 

only across repeated measures of the same variable. The implicit variation described is also most 

often attributed to measurement ‘error’, which is misleading.  

A better definition is that, following an extreme random event, the next random event is 

likely to be less extreme. The concept of ‘random’ does not involve ‘error’ of any kind. For 

instance, take two independent normally distributed variables, 𝑋 and 𝑌 (i.e. their correlation is 

zero). If, in one instance, we have a value of 𝑋 far from the mean of 𝑋 (i.e. an unusually high value 

for 𝑋), we are more likely to have a value for 𝑌 that is closer to the mean of the distribution of 𝑌, 

since 𝐸(𝑌|𝑋) = 𝐸(𝑌). RTM may thus arise for measures that are not repeats of the same subject, 

nor even the same variable, and this does not need to involve any form of error. Hence, the scope 

for RTM is enormous, and it is this that is overlooked. 

Sir Francis Galton (right) illustrated that RTM can occur across measures that are not repeats of 

the same subjects when he described RTM for the very first time in 188652. Galton collected self-

reported body heights for families. As men are on average taller than women, women’s heights 

were multiplied by 1.08. For each set of parents, Galton plotted the average of the parents’ heights 

(he called it mid-parent height) against the heights of their offspring.  

Although adult children of tall parents were taller than most, they were, on average, shorter than 

their parents. In contrast, adult children of short parents, whilst shorter than most were, on 

average, taller than their parents.  

Clearly, the same subjects were not involved in the repeated measures, as successive 

generations were being assessed. Figure 1a shows the trend of body heights across the two 

generations, grouping families according to parents’ heights by defining parents as ‘tall’ (≥68 

inches) or ‘short’ (<68 inches). The mean heights of ‘tall’ and ‘short’ parents were 69.51 and 66.66 
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inches, respectively, whereas the mean height of adult children from tall parents was 68.79 inches 

and of adult children from short parents was 67.12 inches. Human heights appeared to converge 

across generations, suggesting that after many generations there would be fewer very tall 

or very short people.  

This is where most standard texts stall at recounting this story, leaving readers only seeing half of 

what is effectively a two-part story. Using the same data, by grouping the families according to 

adult children’s heights (as opposed to parents’ heights), Figure 1b shows an apparently 

contradictory trend of heights across the two generations. Children were defined as ‘tall’ (≥68 

inches) or ‘short’ (<68 inches), with mean heights in these groups of 69.89 and 65.77 inches, 

respectively. The mean height of parents of tall children was 68.87 inches and of short children 

was 67.58 inches. Heights then appear to diverge across the two generations, suggesting that 

after many generations there would be more very tall or very short people.  

Figure 1: Trends in body height across generations: (a) mean body height of subgroups in Galton’s data 
when the families are grouped by parents’ height; or (b) by children’s height; (c) trend in body 
height across three generations when families are grouped by grandparents’ height; or (d) by 
grandchildren’s height 

 (a) (b) 

 
 (c) (d) 

 

Neither contradictory interpretation of Galton’s data is correct. Patterns in Figures 1a & 1b 

are consequences of the correlation between heights of parents and heights of children being 

imperfect (i.e. <1). RTM occurs when children’s heights are regressed on their parents’ heights, or 

vice versa, in the presence of a less-than-perfect correlation between both height variables.  

The same phenomenon can thus arise for regression between any two variables with less-than-

perfect correlation; hence, all regression suffers RTM as there rarely exists perfect correlation 

between any two variables. Furthermore, RTM is not limited to regression. Campbell and Kenny 

pointed out that any factor that makes the correlation of two variables less than perfect can cause 

RTM53. We return to these points later.  

Parents Adult Children

Tall Short

Parents Adult Children

Tall Short

Grandparents Parents Grandchildren

Tall Short

Grandparents Parents Grandchildren

Tall Short
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RTM and longitudinal data 

If Galton had obtained records of body heights of grandparents for his families, and if families were 

grouped according to grandparents’ heights, trends would look like Figure 1c; if families were 

grouped according to the grandchildren’s heights, trends would look like Figure 1d. Convergence 

or divergence becomes more notable than in Figures 1a & 1b since the correlation between the 

heights of grandparents and grandchildren is smaller than between grandparents and parents, or 

between parents and children.  

If there was a long historical record of heights for these families, and families were grouped 

according to heights of the latest generation, the trend of body heights back in time would 

converge. The positive correlation between heights of successive generations becomes smaller the 

farther back the genealogy goes.  

Figure 2 generalises this for the relationships between ancestors’ and descendants’ heights, where 

data are grouped according to whether the descendant’s height is above or below the sample 

mean. If the correlation between ancestor and descendant height is perfect and positive (i.e. ≡1), 

the two lines are parallel (Figure 2a). When the correlation lies between 0 and 1, heights appear 

to diverge looking forwards in time (Figure 2b). If the correlation is 0, there is no difference in 

mean ancestral height between the two groups (Figure 2c). If the correlation is negative, the two 

lines must cross (Figure 2d).  

Figure 2:  Representation of the generalisation of RTM between ancestor and descendant body heights: 
(a) correlation = 1; (b) 0 < correlation < 1; (c) correlation = 0; (d) correlation < 0.  

 (a) (b) 

 
 (c) (d) 

 

RTM in regression analysis 

One might anticipate that RTM occurs within regression, given the word ‘regression’ is used for 

both. Indeed, when one variable is regressed on another, and both are imperfectly correlated, RTM 

is inevitable. If this is due entirely to measurement error, this is known as regression dilution.  

Ancestor Descendent Ancestor Descendent

Ancestor Descendent Ancestor Descendent
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However, RTM should not be attributed to measurement error alone, with no regard for other 

potential factors (e.g. confounding, variation in physiological response, or exogenous factors that 

lead to imperfect correlations amongst the variables of interest). Consider, for instance, systolic 

blood pressure (SBP), which is a clinical outcome that is renowned for its lack of precision, due in 

part to measurement error though more often due to confounding or physiological variation in 

response (e.g. ‘white coat hypertension’2). This clinical measure provides a good illustration of the 

inherent underlying biological or physiological variation that can play an important yet often 

overlooked role in the occurrence of RTM.  

The role of biological / physiological variation  

Imperfect correlations often arise due to biological or physiological variation, or both47-51. For 

instance, one is likely to obtain different readings of systolic blood pressure (SBP) for the same 

individual, even when a series of measures are made over a relatively short time period. This may 

be attributed to the device used (or the person who uses the device) not being entirely reliable 

(i.e. measurement error); more likely, however, the underlying ‘true’ SBP (i.e. assuming blood 

pressure could be measured error-free) naturally fluctuates around a mean value. Fluctuation may 

be inherent due to biological (genetic) or physiological (environmental) factors, and might be short-

term (seconds), medium term (years), or long-term (across generations).  

The latter was observed in Galton’s data, with the heights of children regressed on the heights of 

their parents (Figure 3). Data points form an ellipse around the axis of equality (solid line: 𝑦 = 𝑥) 

due to imperfect correlation between parents’ and children’s heights, which is largely down to 

biological variation in heights across generations, not measurement error.  

Placing parent heights on the x-axis and 

offspring heights on the y-axis (Figure 3), 

mid-parent height regressed on the heights 

of their adult children yields a slope <1. If 

the heights of adult children were regressed 

on mid-parent heights, the slope is >1. Thus, 

there are two forms of regression: for the 1st 

the model is conditional on parents’ heights 

(dividing data as in Figure 1a); for the 2nd 

the model is conditional on children’s heights 

(dividing data as in Figure 1b).  

There are two forms of regression due to RTM. It is less important to distinguish the two forms of 

regression than to recognise the role of RTM on the estimation of the regression model coefficients 

(i.e. slope, in Figure 3). In multivariable regression, the joint estimation of multiple covariates, 

each with an imperfect correlation with the outcome, can lead to many strange consequences due 

to RTM that are poorly understood.  

Conditioning on the outcome 

If we recruit patients because they exhibit disease (e.g. hypertension), there is a danger that we 

select merely an extreme realisation of a naturally (randomly) varying phenomenon (hence the 

selection of a random variable concept is introduced again). Whilst the body seeks to maintain 

Figure 3: RTM where the mean height of children is 
regressed on the mean height of parents 

 
Sex-adjusted parents’ mean heights 

 

Sex-adjusted mean children’s heights 
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appropriate levels of systolic blood pressure (SBP), actual SBP levels vary a lot quite naturally 

(exogenous factors may be operating which might explain some of this variation, but for simplicity 

we view the variation as effectively ‘random’ noise).  

If we took 1000 individuals and recorded their SBP to select those with SBP values greater than a 

threshold to yield, say, ~10% of our sample, and if this subsample were evaluated the next day, 

on average they would demonstrate a lower mean SBP. Nothing unusual has happened; this is 

merely a consequence of RTM where conditioning is on the (randomly varying) outcome. Hence 

we need control groups and random allocation to treatment within RCTs: to contrast change that 

will occur anyhow to that which is amplified under the influence of an intervention.  

Generally, if any conditioning occurs in the evaluation of imperfectly correlated variables, RTM will 

emerge. Moreover, its effects may be hard to spot, and its magnitude unknown. We illustrate this 

for lifecourse research, evaluating longitudinal body sizes in relation to a later-life health outcome.  

Growth ‘trajectories’ 

Implicit conditioning on an outcome may lead to the (mis-)interpretation of what erroneously is 

termed a lifecourse ‘trajectory’. For instance, in the evaluation of body size throughout the 

lifecourse in relation to the risk of developing breast cancer in later life54-56, implicit conditioning is 

on later-life disease status. One might see a ‘pattern’ of risk in relation to birthweight55 (Figure 4a) 

and in relation to body mass throughout early life56 (Figure 4b), from which it might then be argued 

that higher birthweight is associated with increased risk of breast cancer55, while greater body 

mass index (BMI) at ages 7-13 is associated with reduced risk of breast cancer. Intriguingly, the 

latter is mitigated (i.e. the protective effect diminishes) if ‘statistical adjustment’ is made for breast 

density (as assessed by a mammogram)56.  

Figure 4: (a) Cumulative breast cancer incidence rates by age and birthweight (reproduced from55); (b) 
Association hazard ratios (HRs) and 95% confidence intervals by age between breast cancer 
and body mass index unadjusted and adjusted for breast density (reproduced from56). 

 (a)  (b) 

  

We examine this scenario in a causal framework and draw a DAG (Figure 5); the total causal effect 

of birthweight on cancer risk cannot be estimated by covariate adjustment, as we do not have any 

measured genetic data. Furthermore, body sizes after birth and adult breast density are mediators 

of the birthweight-outcome relationship (introducing the risk of reversal paradox if adjustments 

are made for intermediate body sizes). Some might argue that breast density is an appropriate 

‘proxy confounder’ for the unmeasured (maybe unknown?) genetic effects, i.e. a similar argument 
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to that of adjusting for current body size in the birthweight-blood-pressure relationship. However, 

the DAG indicates that statistical adjustment should never involve breast density, which 

points to the approach adopted in Figure 4b as inappropriate.  

Even if the genetics information were known, attributing any meaningful interpretation to the 

impact of each BMI variable is challenging. For BMI age 7, for instance, adjustment involves only 

birthweight; for older BMI exposures, adjustment involves all preceding BMI measures. Yet again, 

we have multiple models, each indicating the total causal effect of body size at specific ages, with 

no overall ‘holistic’ take on the impact of a ‘growth trajectory’, no summary synopsis of how growth 

throughout the lifecourse affects the risk of breast cancer. 

The big challenge 

It is a holistic approach that some have sought to address, though introducing more problems than 

have been solved to date. How to both disentangle and yet overall summarise the causal effects 

of a time-varying exposure (e.g. body sizes) on a later-life outcome remains challenging. Methods 

for lifecourse research data are constantly under development, some not yet published while others 

only recently so57. With a paucity of well-developed methods, spurious approaches have been made 

to investigate lifecourse data; some have reverted to simple graphical display of their data, from 

which inference is drawn relying heavily only on intuition, which unfortunately overlooks RTM. Two 

examples appear in the New England Journal of Medicine58;59. To understand these, we must first 

understand z-scores, as used by these publications. 

Z-scores 

The standard score is the signed number of standard deviations by which a value of an observation 

or data point is above or below the mean value of an observed measure: values above the mean 

are positive, while values below the mean are negative. The standard score is a dimensionless 

quantity obtained by subtracting the population mean from an individual raw score and dividing by 

the population standard deviation. This process is called standardising or normalizing (not to be 

confused with the use of ‘normalizing’ that refers to types of ratios; see later lectures) and standard 

scores are also called SD-scores, z-scores, z-values, and standardised variables. They are most 

frequently used to contrast an individual’s measure to the population standard distribution (which 

need not be normal, though often normality is assumed and they are then also known as ‘normal 

scores’). Computing a z-score requires knowing the mean and standard deviation of the population 

from which a data is sampled; where only the sample is available for estimates of the population 

mean and standard deviation, the standard score yields the Student's t-statistic. 

Figure 5: DAG of unobserved (latent) genetics and observed birthweight and BMI several ages up to age 
29 in adulthood, breast density, and breast cancer. 

𝐵𝑊 𝑊𝑡7 𝑊𝑡17 𝐺𝑒𝑛𝑒𝑡𝑖𝑐𝑠 𝑊𝑡29 
𝐵𝑟𝑒𝑎𝑠𝑡 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 
𝐵𝑟𝑒𝑎𝑠𝑡 
𝐶𝑎𝑛𝑐𝑒𝑟 
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The false ‘trajectory’: misinterpretation of a graphical display 

One NEJM article examined impaired glucose tolerance (IGT) amongst men and women aged 26-

32 years in relation to their standardised (i.e. SD-score) BMI throughout life, plotting the results 

for those with IGT/diabetes (Figure 6)58. From graphical presentation only, the authors state 

that individuals with IGT/diabetes “had a low body-mass index up to the age of two years, followed 

by an early adiposity rebound (the age after infancy when body mass starts to rise) and an 

accelerated increase in body-mass index until adulthood”, from which they conclude: “crossing into 

higher categories of body-mass index” after age two is “associated with these disorders”58.  

Figure 6: Body mass index by age for individuals with impaired glucose tolerance or diabetes developed; 
reproduced from58 

 

Another NEJM article, entitled “Trajectories of growth among children who have coronary events 

as adults”59 charts childhood growth for 8760 people born in Helsinki in 1934-1944. It was noted 

that amongst those who had had an adult coronary event, they had been, on average, small 

at birth, thin at age two, and thereafter rapidly put on weight (Figure 7). The authors conclude: 

“the risk of coronary events is more strongly related to the tempo of childhood gain in body mass 

index (BMI) than to the BMI attained at any particular age.”  

Figure 7: Mean z-scores for Height, Weight, and Body Mass Index (BMI) in the first 11 years after birth 

among (A) boys and (B) girls who had coronary heart disease as adults; reproduced from59 
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In both articles, selection was made of individuals already suffering the condition of interest, 

for which investigation was then made of prior “growth trajectories”. What is missing from Figures 

6 and 7, that helps understand the problem, is corresponding data on non-affected individuals. 

Similar data were made available for a limited period on the DOHaD conference website.  

Data show patterns anticipated for affected and 

non-affected individuals, examined using BMI 

standardised scores at each age (Figure 8).  

If the groups with and without disease were 

identical in size, the resulting pattern for non-

affected individuals would be a mirror (about the 

zero-axis) of the pattern for affected individuals, 

since standardised scores sum to zero at each 

time point. With more non-affected individuals, 

this group mirrors the pattern for affected 

individuals with smaller amplitude.  

Note: There appears a data coding error around 60 months, as the mirroring is not correct. 

It is widely accepted that cardiovascular disease, IGT, and type 2 diabetes are linked to obesity60, 

and the strongest association with body size (e.g. BMI) occurring prior to and concurrent with the 

onset of disease. Therefore, this information, along with the similarity of Figure 8 (and Figures 6 

and 7) to Figure 2d, outlines the critical issues:  

• Graphical summary of such data is conditional on the outcome, since data are divided 

according to the outcome. 

• Dividing data on the outcome is tantamount to dividing data on the most recent exposure 

measure, due to their strong association / correlation. 

• Inferences from articles derived only from inspection of the graphical summary of data 

divided this way58;59 yield the same invalid, contradictory interpretations as Galton’s data.  

So-called body-size ‘trajectories’ by age for diseased and non-diseased groups ‘appear’ to converge 

when looking back over age, just as in Figure 2d where lines joining data points crossed. Although 

we cannot dismiss potential associations between later-life outcomes and “early adiposity rebound” 

or rapid compensatory growth at earlier ages, we must recognise that such patterns, as in Figures 

6-8, arise due to RTM and conditioning on the outcome even with no genuine causal link.  

To interpret Figures 6-8 correctly, recall that each data point is a bivariate correlation between the 

later-life outcome and exposure at each assessment occasion. Figures 6-8 thus display a series of 

bivariate correlations. It is not at all apparent why these data points should be joined by a line, as 

it gives the erroneous impression of an underlying dynamic, from which one might mistakenly infer 

that the relative position of each data point has meaning in terms of change in exposure associated 

with the outcome. The joining of bivariate corrections with lines and using the term ‘trajectory’ is 

seriously misleading. Figures 6-8 only state that:  

• Birth size is negatively associated with the IGT and diabetes – a familiar finding attributed 

already to birthweight in relation to cardiovascular diseases and related conditions (the 

association is reversed for cancer55). 

Figure 8: BMI SD-score by age for individuals with 
(black) or without (red) impaired 
glucose tolerance (IGT)  
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• Adult (current) body size is positively associated with the IGT and diabetes – a familiar finding 

attributed already to adult obesity in relation to cardiovascular diseases and related conditions 

(the association is reversed for cancer56). 

• Intermediate body sizes must be associated with cardiovascular diseases (and cancer) with a 

pattern that interpolates between the relationships for birth size and adult body size (not stated 

explicitly previously, but this is implicit already). 

• The correlation between body size and outcome (cardiovascular or cancer) must be zero at 

some intermediate age (a statistical consequence with uncertain clinical implications). 

Focus is sometimes given to the age at which the ‘crossing’ of z-scores occurs, as though this were 

a ‘critical’ development period with clinical meaning. There may be no causal link between the 

later-life outcome and body size at the age of crossing z-scores, since the data summaries in 

Figures 6-8 are consistent with influences on the later-life outcomes arising only from birth size 

(for all that it bestows via in-utero ‘programming’61;62) and adult body size immediately prior to 

the outcome occurring; i.e. there need be no attributable influence from body sizes in between 

birth and adult body size, beyond the latter being established by growth throughout the lifecourse. 

The influence of higher-than-average body sizes throughout life might cause nothing more than 

over-weight just prior to the onset of cancer.  

Summary 

Assertions of causality inspired by graphical summary of correlations conditioned on the later-life 

outcome are erroneous. Statistical analyses that formalise such data summaries suffer RTM, with 

the magnitude of adverse impacts unknown. Despite warnings against such practices63, they 

continue unabated64. 

Generally, conditioning on an outcome is potentially dangerous from the perspective of statistical 

inference. More generally, conditioning in any statistical analysis must be considered carefully. 

Within multivariable regression, conditioning is implicit and should be framed within a causal 

framework where causal inference is sought. 
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7. CONDITIONAL DATA ACQUISITION  

Learning objectives 

• Understand the causal implications of implicit conditioning in data acquisition or selection 

• Appreciate the potential pitfalls of ‘routine’ data without due consideration of its provenance  

Implicit conditioning 

We have seen that exogenous (implicit) conditioning on an outcome (i.e. by sub-setting data based 

on outcome values) impacts severely on the robustness of causal interpretation sought from a 

multivariable model when association is sought between longitudinal exposure data and a later-

life outcome. Conditioning on the outcome is explicit, as only individuals with the condition of 

interest are selected for analysis. However, sample selection more generally can be influenced 

implicitly, in ways not immediately apparent.  

As statistical inference is generally focused on sample selection and associated sample variability 

(which is why we use measures of confidence to frame estimated relationships subject to sampling 

variation), study design and data acquisition more generally are critical to ensure robust statistical 

and causal inference. In addition to requiring that a sample is ‘representative’ of the population it 

purportedly represents, it is similarly vital that there are no statistical artefacts generated because 

of the data acquisition process – this last point is often overlooked and depends heavily on study 

design and conduct. This issue will only become a growing problem in the big data era, as data 

acquisition and its provenance are not as carefully considered as with traditional epidemiological 

study designs, for instance; most observational studies are unlikely to be as stringent in processing 

data as say the case-control or cohort study designs tend to be.  

Looking forward, we are likely to be engaged in the analysis of increasing volumes of observational 

data that are collated through all kinds of acquisition processes; sample selection processes will 

be increasingly complex and, in some instances, not fully understood. It is in these instances that 

we need to appreciate the role of sample selection and the implicit conditioning that this context 

brings. We examine a situation in which the cavalier consideration of data selection is a potential 

root cause of complete lack of validity in analyses that follow.  

Geographical analysis of disease incidence  

To illustrate the importance of carefully reflecting upon the sample selection process and potential 

implicit conditioning, we examine research that investigates the link between population mixing 

and childhood leukaemia, as this has generated equivocal and contradictory results, perhaps due 

to inadvertent conditioning on the outcome65. Any analytical approach to this research question 

uses predefined geographical clusters to quantify the exposure (i.e. population mixing) and a 

measure of the outcome (i.e. number of childhood leukaemia cases); common to both exposure 

and outcome is the area population in which each measure is recorded.  

The population mixing hypothesis proposes that the immune systems of children resident in more 

isolated and/or less densely populated communities are likely to have been exposed to a less 

diverse range of infectious agents than those resident in less isolated and/or more densely 

populated communities; and that such children are therefore more likely to develop leukaemia 

once exposed to novel infections transmitted by inward-migrants from elsewhere66. 
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There are two principal analytical approaches considered to examine the relationship between 

population mixing and childhood leukaemia: (i) selecting areas according to specific characteristics 

and comparing the incidence of childhood leukaemia in these areas to that expected on the basis 

of the national average; or (ii) deriving a multivariable regression model of region-wide data to 

model characteristics associated with the incidence of childhood leukaemia.  

Note: Were region-wide data used to create two ratio variables – one for a measure of population 

mixing per capita and one for the number of childhood leukaemia cases per capita – these two 

ratios would be mathematically coupled and their analysis by simple correlation would comprise 

both a spurious component (due to MC) and a genuine component (if any true association existed). 

Fortunately, in this instance, neither the sub-region or region-wide analytical strategies invoke MC 

using correlation or regression, as neither analyse the two ratio variables directly. The sub-region 

analytical strategy is selective of areas according to one or more observed ratio variables and 

contrasts this to the national expected ratio variable, but the analysis does not involve correlation 

or regression explicitly. The region-wide analytical strategy uses Poisson regression to calculate 

the partial correlation between the numerator (number of leukaemia cases) and exposures 

(population measures of population mixing), whilst ‘adjusting’ for population counts (typically 

logged and set as the ‘offset’ in Poisson), as proposed by Pearson, Neyman and Fisher67-69.  

Issues with the ‘sub-region’ analytical strategy 

Some studies that used the ‘sub-region’ approach were instigated due to the apparent ‘cluster’ of 

leukaemia cases in an area70, which aims to verify an ‘excess’ of cases, rather than testing against 

the null hypothesis, resulting in endogenous selection bias71. In some instances, it is unclear how 

such specific proxies for population mixing were chosen and thus difficult to determine whether 

these areas were also selected for investigation due to clusters, or suspected clusters, of cases. 

Examples of these specific population mixing proxies include the influx of servicemen to an area72 

and migration due to forestry developments73. This makes these studies difficult to reproduce and 

compare, and has resulted in the use of a wide variety of time frames being considered.  

Often, several distinct time frames (or time frames combined) are investigated within a single 

study and it has been suggested that a deficit of cases in a time period immediately after a period 

of excess is a result of the suggested leukaemia-causing agent being mainly immunising after an 

epidemic74; by choosing time frames this way, they can be manipulated to show greater or smaller 

excess cases, but apparent deficits after a period of excess could also be a result of regression to 

the mean50. Where studies report an ‘excess’ of cases, this is not consistently in the same age 

group and often a single study will report on multiple age groups as well as age groups combined 

(where the ‘excess’ may or may not remain); these studies often include multiple tests, introducing 

associated issues. 

Methods for evaluating the two approaches 

The issues with the ‘sub-region’ approach may seem clear when stated, yet the population mixing 

hypothesis is founded on studies performed this way, whereas the ‘region-wide’ approach does not 

consistently support many ‘sub-region’ findings. It is therefore worth examining these two principal 

analytical strategies from a statistical standpoint in order to evaluate the robustness of evidence 

underpinning the population mixing hypothesis. We did this using simulations under the null 

hypothesis, i.e. whereby only the size of the population drives the incidence of cases. This means 
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that we evaluate the type I error rate (i.e. the rate at which false positive results are generated) 

and assess bias and flaws inherent to each approach. Simulations were informed by real-world 

data (i.e. using the correlation structure and approximate distributions of the variables in a real 

dataset) and the use of proxies for ‘population mixing’ that were introduced in the first study on 

the topic66: population density (all those capable of spreading a leukaemia causing agent); and 

inward-migration (the relative number of new arrivals capable of bringing such an agent with them, 

expressed as the proportion of migrants within the population): 

• Population Density = Total Population/Area (km2); 

• Proportion of Inward-Migrants = Inward-Migrants/Total Population. 

Simulations were also compared to the analyses of the real-world data in which, according to the 

hypothesis, an association should exist between population mixing and childhood leukaemia.  

The ‘sub-region’ approach selects areas for analysis (in our example, electoral wards) based on 

extreme values of the population mixing proxies (low population density and high proportion of 

inward-migrants) or high incidence of childhood leukaemia compared to that expected given the 

national average. We generated 15 scenarios in which areas for analysis are selected according to 

all possible sequences of these three variables. The ‘region-wide’ approach generated Poisson 

regression models of childhood leukaemia incidence with population density and/or proportion of 

inward-migration as covariates. 

Findings from a simulation 

Based on 10,000 iterations of the simulation and corresponding analyses on the real-world data 

using the ‘sub-region’ approach we show that, in randomly selecting wards with high incidence 

rates solely or in combination with other characteristics, an overall higher than expected incidence 

of childhood leukaemia is consistently observed (Figures 3 and 4). In contrast, results drawn from 

the ‘region-wide’ approach conflict, suggesting a ‘protective’ effect of high inward-migration and a 

‘detrimental’ effect of low population density of childhood leukaemia incidence (Figure 3). 

We demonstrate the problem of ‘targeted’ selection, which arises from implicitly conditioning on 

the outcome, i.e. where attention is given to areas with a high incidence of childhood leukaemia 

and these areas are subsequently selected to evaluate the association of childhood leukaemia with 

population mixing. The problem arises because it is difficult to be sure that selection according to 

the choice of population mixing characteristics is not affected (subliminally) by some knowledge of 

the outcome. The problem is exacerbated in this case due to the apparent clustering of the outcome 

within geographical areas, as when there is variation in the size of areas; in such instances, there 

is inevitably larger variation in the occurrence of cases. It would therefore be expected that the 

variation in leukaemia incidence is greater in areas with small populations and smaller in areas 

with large populations and there need be no causal explanation for apparently high incidence rates 

in areas with small populations; this can merely be the result of sampling variation75;76. It is human 

fallacy to overlook this and instead naturally seek causal inference77. If there appears to be a high 

incidence of cases in a particular sub-region over a specified time period, this could draw attention 

to the kind of misleading analyses outlined here, whilst this high incidence may not be maintained 

in any subsequent time period. Analyses on region-wide data (whole or randomly selected), on the 
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other hand, guarantees that conditioning on the outcome is avoided, as too therefore are any 

consequent biases we have highlighted for the sub-region analyses.  

Figure 3:  Percentage of statistically significant results at the 5%-level by strategy for both simulated 
and observed data. ‘Subsample’ selection strategy results were analysed using the binomial 
exact test, and the direction of the bars indicate whether the estimated probabilities of the 
significant test results were greater (>0) or less than (<0) the national average. ‘Region-wide’ 
strategy results were analysed using Poisson regression, and the direction of the bars indicate 
whether statistically significant coefficients were greater (>0) or less than (<0) the null of 
zero. 

 

Figure 4:  Percentage of statistically significant results at the 5%-level using the ‘subsample’ selection 
strategy for both simulated and observed data; direction of bars indicates whether the estimated 
probabilities of the significant test results were greater than (>0 on graph) or less than (<0 on 

graph) the national average. Pop Den = population density, In-Mig = inward-migration, Inc = 
childhood leukaemia incidence. 

 

The substantive contrast between findings that condition on the outcome and all other analytical 

strategies illustrates that a genuine negative effect might be erroneously reversed due to the wrong 
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analytical approach. Combined with the risk of publication bias, where disproportionate attention 

is given to positive findings, much of the existing literature that conditions on the outcome when 

examining ‘population mixing’ would severely skew the ‘evidence’ in favour of a positive 

effect if this were not true, or even if the opposite were true.  

It has been reported that there is evidence of publication bias78 and there is no way of knowing 

when manuscripts have been rejected due to showing a null (or opposite) association. If the entire 

dataset for a region is unavailable, sampling of small areas must be random and region-wide to 

avoid (subliminally) conditioning on the outcome of interest. Failure to adopt a ‘region-wide’ 

analytical strategy for investigating the association between childhood leukaemia and population 

mixing will likely yield false findings. 

Mathematical coupling (MC) amongst model covariates 

Mathematical coupling (which is covered in detail in Chapter 9) arises for the geographical analysis 

of the population mixing hypothesis, which is why analyses on region-wide data (whole or randomly 

selected) reveal a modest bias: i.e. the small but notable skew towards higher than expected 

childhood leukaemia incidence (i.e. more significant p-values than expected). This is due to the 

regression model including mathematically coupled ratio variables as covariates: a small but non-

zero bivariate correlation arises between the outcome (number of cases) and each exposure 

(population mixing ratio variable) due to the confounder (total population) being involved in the 

construction of each exposure variable (Figure 5).  

Figure 5:  Graph representing the simulated relationships of the dataset. Causal relationships are 

represented by solid arrows and implied causal relationships are represented by dashed 

arrows. 
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Summary 

It is human nature to go with what ‘feels right’ and not to question what at face value supports or 

coincides with our intuition. It is human nature to see patterns where none exist, or to attribute 

cause to what is simply random fluctuation of naturally occurring events. Even if factors operate 

to affect outcomes in one direction or another, random variation is prone to exaggeration and it is 

human nature to interpret such exaggeration as though it has a cause. It is perfectly reasonable, 

for instance, to observe a football team have remarkable success one year, only to do disastrously 

the following year, and to ascribe to this all manner of explanations apart from random variation 

(i.e. regression to the mean)! The same can be said for science: if focus, or disproportionate 

attention, is given to a specific issue, unusual or extreme outcomes may be observed, but they 

need not have any sound causal origins and could well be a statistical quirk and product of the 

data generation processes. 

Attention to some patterns may be skewed simply due to the data acquisition process. If data 

collected for one purpose are used for another, or data acquired in a certain way is more likely to 

feature specific structures due to the underlying data generation or data acquisition processes, 

then statistical artefact will arise. This may seriously distort any meaningful causal interpretation. 

With an exponential growth of information available and the commensurate big data revolution, 

without careful consideration and reflection upon the provenance of the plethora of data that will 

no doubt be subject to extensive ‘fishing’, we are likely to be provided with many misguided claims 

of ‘robust’ associations; despite the distinction between prediction (as primarily used for big data) 

and causal inference, it will be human nature to attribute erroneously cause and effect! 
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8. UNEXPLAINED RESIDUALS MODELS 

Learning objectives 

• Understand the implications of causal inference in seeking implicit conditioning in models 

• Be aware of one sophisticated attempt to model longitudinal data that introduces problems 

Explicit conditioning 

Within multivariable regression, the inclusion of multiple variables explicitly involves the notion of 

conditioning because the estimated coefficient of any one variable in the model is conditional on 

the simultaneous consideration of all other variables in the same model.  

We recall that, when we regress 𝑦 on 𝑥 whilst adjusting for 𝑧, we are asking: What is the relationship 

of 𝑥 with 𝑦 whilst keeping 𝑧 constant? The assumption made is that the 𝑥-𝑦 relationship is the same 

for all values of 𝑧, i.e. the relationship is conditionally ‘independent’ of 𝑧. We need to think carefully 

about the implications of holding 𝑧 constant. For instance, when 𝑧 = 𝑥2 (i.e. we have the quadratic 

model 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2) we do not interpret the coefficient for 𝑥 (𝛽1) as though 𝑥2 were constant, 

but instead consider the joint interpretation of both coefficients for 𝑥 and 𝑥2. In such a scenario, 𝛽1 

and 𝛽2 would be considered simultaneously when seeking to understand the 𝑥-𝑦 relationship.  

This may be familiar and it is straightforward to interpret curvilinear relationships that can also be 

visualised, but not all implications of conditioning within multivariable regression are as trivial. We 

examine a situation in longitudinal data analysis where a sophisticated form of conditioning is used 

to address the problem of collinearity, which can arise in longitudinal data. However, this method 

introduces more problems than it resolves, since it fails to consider the causal framework in which 

it seeks to operate. This is an example of the pitfalls of sophisticated methodology used in the 

absence of any careful reflection on the role of causal inference. 

This example arises for what is termed ’unexplained residuals’ models, also known in parts of 

the epidemiology literature as conditional models, though this name is less helpful since, as 

noted previously, all multivariable models are explicitly ‘conditional’. 

‘Unexplained residuals’ (UR) models 

UR models have been proposed as a way of evaluating the relationship between an exposure 𝑥 

measured longitudinally (e.g. 𝑥1, 𝑥2, … 𝑥𝑘, for 𝑘 repeated measures) and a future outcome 𝑦 (often 

referred to as a distal outcome); such a relationship is represented in Figure 1 as a DAG.  

Accurately modelling such a scenario may 

help identify and quantify important periods 

of change or growth in 𝑥 that affect the 

outcome 𝑦. Using multivariable regression, 

researchers would (ideally) treat each 

longitudinal measure as a separate exposure 

that is confounded by all prior exposure 

measures; the total number of models would 

thus be equal to the total number of time 

points at which the exposure is measured.  

Figure 1: DAG of longitudinal exposure (i.e. 𝑥1, 𝑥2, … 

𝑥𝑘, for 𝑘 repeated measures) in relation to 

distal outcome 𝑦 
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As repeated measures are likely serially correlated, some models could potentially suffer from high 

levels of collinearity. We are mindful of (non-parametric) causal relationships amongst variables 

prior to analysis, but concern arises that (parametric) collinearity may be sufficient to impact 

adversely on multivariable regression model precision for those models containing two or more 

exposure variables.  

UR models are proposed to address these concerns, as well as purportedly to quantify the total 

causal effect for each measurement of the exposure within a single model79.  

Explaining UR models 

The simplest longitudinal scenario involves two exposures, 𝑥1 and 𝑥2, and a distal outcome, 𝑦. To 

estimate the total causal effect of each exposure variable on 𝑦, the following two standard 

regression models (𝑦̂𝑠
(𝑖)

, for 𝑖 = 1,2) would typically be constructed: 

 𝑦̂𝑠
(1)

= 𝛼̂0
(1)

+ 𝜶̂𝒙𝟏
(𝟏)

𝒙𝟏 Eq.1 

 𝑦̂𝑠
(2)

= 𝛼̂0
(2)

+ 𝛼̂𝑥1
(2)

𝑥1 + 𝜶̂𝒙𝟐
(𝟐)

𝒙𝟐 Eq.2 

For each model, we interpret only the estimated coefficient of the last measurement as a total 

causal effect, as all previous values of the exposure would be mediated by later values, thereby 

potentially invoking bias due to the reversal paradox23. To bypass the need for several models, it 

has been suggested that the information contained within these two separate models may be 

captured in one overall regression model by using ‘unexplained residuals’79. It is claimed that such 

a model allows the researcher to quantify the effects on the outcome of the initial exposure 𝑥1 and 

subsequent changes in 𝑥 within a single model.  

The modelling process requires two relatively straightforward steps:  

1. 𝑥2 is regressed on 𝑥1 (i.e. 𝑥2 = 𝛾0
(2)

+ 𝛾𝑥1
(2)

𝑥1 + 𝑒𝑥2), which produces a measure of each 

observation’s ‘expected’ value of 𝑥2 as predicted by its value of 𝑥1. The difference between 

expected and actual values of 𝑥2 (i.e. 𝛾0
(2)

+ 𝛾𝑥1
(2)

𝑥1) amounts to the residual term 𝑒𝑥2.  

2. 𝑦 is regressed on the initial exposure 𝑥1 and subsequent residual term 𝑒𝑥2:  

 𝑦̂𝑟
(2)

= 𝜆̂0
(2)

+ 𝝀̂𝒙𝟏
(𝟐)

𝒙𝟏 + 𝝀̂𝒆𝒙𝟐
(𝟐)

𝒆𝒙𝟐 Eq.3 

The ’unexplained residuals’ (UR) model (Eq.3) is meant to have the following advantages79: 

• It produces the same predicted outcomes as the standard regression model in Eq.2 that 

includes both 𝑥1 and 𝑥2 (i.e. 𝑦̂𝑠
(2)

= 𝑦̂𝑟
(2)

); 

• The estimated model coefficient values produced by individual standard regression models 

(Eq.1 and Eq.2) are equal to those estimated within the UR model (i.e. 𝛼̂𝑥1
(1)

= 𝜆̂𝑥1
(2)

 and 𝛼̂𝑥2
(2)

=

𝜆̂𝑒𝑥2
(2)

), allowing for multiple coefficients to be interpreted as total causal effects within a single 

model; 

• It provides insight (via the coefficient 𝜆̂𝑒𝑥2
(2)

) into the additional influence of 𝑥 increasing more 

than expected upon 𝑦; and 

• The initial exposure 𝑥1 and residual increase 𝑒2 are mathematically independent (i.e. 

orthogonal). 
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Succinctly, the two models 𝑦̂𝑆
(2)

 and 𝑦̂𝑈𝑅
(2)

 are algebraically equivalent, but 𝑦̂𝑈𝑅
(2)

 does not suffer 

collinearity and makes interpretation of the separate influence of the initial measurement of the 

exposure 𝑥 (i.e. 𝑥1) and subsequent changes in 𝑥 more straightforward than do (multiple) standard 

regression models 𝑦̂𝑆
(1)

 and 𝑦̂𝑆
(2)

.The approach outlined here may be extended to any number of 

measurements of an exposure variable and the same properties will be upheld, further minimising 

the impacts of collinearity.  

A causal framework 

Within a causal framework, the unique properties of UR models are easy to visualise. In many 

respects, a UR model is akin to a structural equation model (SEM)80, which is a (linearly) parametric 

DAG. In Figure 2, we order the nodes temporally and add the UR terms and appropriate regression 

coefficients (representing the estimated direct effects between pairs of variables) to our original 

DAG that includes no additional confounding variables (Figure 1). The coefficients amongst 

measurements of 𝑥 are obtained via the regression of each measurement of 𝑥 on all previous 

measurements 𝑥1, … , 𝑥𝑖−1, whereas the coefficients between measurements of 𝑥 and the outcome 𝑦 

are obtained via the standard regression model which includes all measurements of 𝑥. In this way, 

each endogenous node on the graph (except 𝑦) in Figure 2 is represented as a linear combination 

of all preceding nodes and an error term. 

From Figure 2, we can see why the 

UR modelling process works in the 

absence of additional confounding.  

If we naively model 𝑥1, 𝑥2, … , 𝑥𝑘 

simultaneously, only the coefficient 

of the final measurement 𝑥𝑘 could 

be interpreted as a total causal 

effect on 𝑦; the coefficients of 

𝑥1, … , 𝑥𝑘−1 would represent only the 

direct effects of each measurement 

on 𝑦, as all future measurements 

would fully mediate the respective 

relationship. In graphical model 

language: all ‘backdoor’ paths18 

would be blocked by preceding 

measurements.  

By modelling 𝑥1, 𝑒𝑥2, … 𝑒𝑥𝑘 (as in a UR model), we encounter no mediation problems since, by 

construction, the UR terms remain wholly independent of the other terms in the model. In fact, by 

placing the UR model in a causal framework, we can see that the UR terms 𝑒𝑥2, … 𝑒𝑥𝑘 are essentially 

instrumental variables (IVs)81 for 𝑥2, … 𝑥𝑘, respectively, produced by the modelling process. 

Take 𝑥2 as an example, where 𝑘 = 3. The total effect of 𝑥2 on 𝑦 encompasses the direct effect from 

𝑥2 → 𝑦 and all indirect effects (of which there is only one in this scenario): 𝑥2 → 𝑥3 → 𝑦. Table 1 gives 

the total effects of 𝑥2 on 𝑦 and of 𝑒𝑥2 on 𝑦 (calculated via the method of path coefficients82), with 

both total effects decomposed into their respective direct and indirect effects. From Table 1, we 

Figure 2: A (linear parametric) DAG depicting 𝑘 longitudinal 

measurements of exposure 𝑥 (𝑥1, 𝑥2, … 𝑥𝑘, for 𝑘 

repeated measures), one distal outcome 𝑦, and a time-

invariant confounder 𝑚, with regression coefficients 

and UR terms added. 
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see that the total effect of 𝑥2 on 𝑦 is equal to the total effect of 𝑒𝑥2 on 𝑦; this is because there are 

no direct paths between 𝑒𝑥2 and 𝑦, and all indirect paths pass through 𝑥2 (with the coefficient of 𝑒𝑥2 

on 𝑥2 being equal to one). 

Exposure: Path:  Effect size: Total effect: 

𝑥2      

   Direct: 𝑥2 → 𝑦  𝛼̂𝑥2
(3)

  
𝛼̂𝑥2

(3)
+ 𝛾𝑥2

(3)
∙ 𝛼̂𝑥3

(3)
  

   Indirect: 𝑥2 → 𝑥3 → 𝑦  𝛾𝑥2
(3)

∙ 𝛼̂𝑥3
(3)

  

𝑒𝑥2      

   Direct: n/a  

𝛼̂𝑥2
(3)

+ 𝛾𝑥2
(3)

∙ 𝛼̂𝑥3
(3)

     Indirect: 𝑒𝑥2 → 𝑥2 → 𝑦  1 ∙ 𝛼̂𝑥2
(3)

  

  𝑒𝑥2 → 𝑥2 → 𝑥3 → 𝑦   1 ∙ 𝛾𝑥2
(3)

∙ 𝛼̂𝑥3
(3)

  

Table 1:  Total effect of 𝑥2 on 𝑦 estimated by a standard regression model compared to total effect of 

𝑒𝑥2 on 𝑦 estimated by an equivalent UR model (Figure 1b, with 𝑘 = 3). 

Additional confounders 

Researchers have extended the original UR model by adjusting for additional confounders (other 

than prior measurements of the exposure 𝑥), but until recently83;84 there has been no thorough 

discussion or analysis of this issue. Additional confounding (over and above all prior exposures) 

may be either time-invariant (Figure 3a) or time-variant (Figure 3b); incorrect adjustment for 

either can lead to biased causal inferences84.  

Figure 3: DAG of longitudinal exposure (i.e. 𝑥1, 𝑥2, … 𝑥𝑘, for 𝑘 repeated measures) in relation to distal 

outcome 𝑦, with: (a) one time-invariant confounder 𝑚; and (b) 𝑘 time-variant confounders 

𝑚1, 𝑚2, … , 𝑚𝑘. 

  (a) (b) 

 

UR models only produce equivalent coefficients to those of standard regression models when a 

time-invariant confounder is adjusted for during steps 1 and 2 in the model-creation process; if 

the time-invariant confounder is adjusted for only in step 1 (i.e. when generating each UR term 

𝑒𝑥𝑖) or only in step 2 (i.e. in the overall UR model 𝑦̂𝑘
(2)

), model estimates may be inferentially biased 

(though not statistically biased). 

Additionally, UR models can accommodate a time-variant confounder, although the process is more 

intensive. UR terms must be created for the confounder itself, with each term adjusted for all 

previous values of the time-variant confounder and the exposure; UR terms must also be created 
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for the exposure, adjusted for all previous values of the exposure and all previous and current 

values of the time-variant confounder. The outcome is modelled as a function of the initial value 

of the exposure and all its subsequent UR terms, and the initial value of the confounder and all its 

subsequent UR terms. As with a time-invariant confounder, if these (substantial) adjustments are 

not made, model estimates may suffer inferential bias, resulting in incorrect causal claims. 

Whereas the individual standard regression models are functions of highly correlated, causally 

linked longitudinal exposures, the composite UR model is instead a function of mathematically 

independent ‘competing exposures’. 

Interpretability issues 

Whilst UR models reduce collinearity, this is found generally to be quite modest as most longitudinal 

data may be relatively sparse across large time intervals and therefore not highly collinear. Further, 

despite claims to the contrary, these models offer no additional insight into periods of change in 

an exposure in relation to a distal outcome85. Perhaps most importantly, the explicit conditioning 

of each UR term on all previous terms renders independent interpretation of coefficients impossible 

and leads to a nonsensical situation in which variables in a UR model are interpreted as 

simultaneously increasing and being held constant. 

More philosophically, terms in a UR model are independent of one another as an artefact of ordinary 

least-squares regression, though this is unlikely to be an accurate representation of real-world 

exposure variables. Many of these, such as body size, exhibit a consistent, cumulative presence 

that is only manifest at the discrete time points at which it is measured; these measurements are 

thus distinct only because of the discretisation of time within the measurement processes adopted. 

Moreover, in auxological studies, the phenomenon of so-called compensatory (or ‘catch up’) growth 

has been well documented, with accelerated growth being observed in individuals who begin with 

a low value of some measure, e.g. birthweight. Therefore, although convenient and mathematically 

sound, it may be unrealistic to model a longitudinal exposure in a way that implies complete 

independence between its initial value and all its subsequent changes. Moreover, the process of 

creating UR models leads to artificially reduced standard errors, which may mislead researchers 

about the true precision of the estimated total effect sizes. 

Summary 

Focusing on the perceived ‘problems’ with collinearity, without paying sufficient attention to the 

causal framework in which we are operating, only distract from staying clear-headed about the 

robust application of multivariable regression models that yield meaningful causal interpretation. 

It remains imperative amidst any form of statistical wizardry that we are anchored to our notions 

of what constitutes robust causal inference. ‘Unexplained residuals’ models may seem to overcome 

collinearity, providing mathematically reduced standard errors, but this is both misleading (smoke 

and mirrors) and can lead to the loss of any meaning if not applied carefully. There is no actual 

gain in causal insight obtained from UR models, and merely presenting a series of separate model 

estimates in a single model runs the risk of misinterpretation. 
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9. MATHEMATICAL COUPLING: ANALYSIS OF CHANGE WITH RESPECT TO BASELINE 

Learning objectives 

• Understand mathematical coupling (MC) in the analysis of change with respect to initial value 

• Know strategies to overcome MC in the analysis of change with respect to initial value  

Mathematical Coupling 

In its simplest form, mathematical coupling (MC) is the phenomenon where the null hypothesis 

is distorted due to an algebraic relationship between two or more variables that are analysed 

by correlation or regression. Due to this distortion, any test of the null hypothesis (i.e. that the 

regression coefficient is zero) will be biased86, as will any corresponding inferences87-89. Hypothesis 

testing becomes invalid because coupled variables are no longer mathematically independent.  

MC most noticeably occurs when a new variable is constructed from a mathematical transformation 

of another, e.g. through addition, subtraction, multiplication or division86;87;89-93. Examples include 

change variables (e.g. change between baseline and follow-up) and ratio variables, either where 

one variable is divided by another (e.g. prevalence proportions) or divided by a function of another 

(e.g. body mass index [BMI], where weight in kilograms is divided by height in meters squared). 

MC then arises if these constructed variables are analysed with respect to any of their component 

variables using correlation or regression (e.g. comparing two prevalence rates, which share the 

same denominator, or predicting BMI from height). The effects of MC are known and have been 

stated in a range of clinical domains94;95, yet its consequences remain frequently overlooked. We 

examine the issue of MC for ratio variables later, but for now, we look at the context where one is 

interested in the relation between change and initial value. 

The relation between change and initial value 

The most widely recognised illustration of MC arises in the analysis of change with respect to initial 

value. The relation between initial disease status and change following an intervention has 

attracted considerable interest in clinical research. What seems a relatively simple issue is 

deceptively complex, and the obvious strategies for analysing such data are highly problematic96.  

For instance, we ask: Do individuals with higher 

initial systolic blood pressure (SBP) experience 

greater SBP reduction following intervention?  

We are therefore asking if there is a differential 

effect, where changes in SBP depend on 

patients’ initial SBP level (Figure 1).  

One could test the relation between change and 

initial value using correlation or regression, yet 

this would be inappropriate for the reasons 

previously explained.  

Despite many articles and medical statistics textbooks warning against correlating or regressing 

change on initial value, many researchers (including many statisticians) still overlook the problem 

and/or are not aware how MC can cause bias. For instance, a decrease in the oxygenation index 

has been ‘shown’ to be proportional to baseline oxygenation index in infants with persistent 

Follow-up

SBP

Baseline

Figure 1: Response to treatment for hypertension: a 
baseline differential means that changes in 
SBP following treatment depends upon an 
individual’s initial SBP level 
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pulmonary artery hypertension undergoing nitric oxide therapy97; changes in plasma concentration 

of plasminogen-activator inhibitor type 1 (PAI-1) are correlated with PAI-1 concentration before 

treatment in postmenopausal women treated with oral oestrogen therapy98; change in 

CD4(+)Ki67(+) T-cells is significantly correlated with the change in total CD4(+) T-cells in HIV-

infected subjects undergoing antiretroviral therapy99; percentage change in bone mineral density 

in the spine is highly correlated with baseline values in women receiving either hormone 

replacement therapy or (perhaps this should have been a giveaway?) placebo100; the percentage 

of patients with 3-month Barthel scores ≥95 are highly correlated with the percentage with small 

artery disease and the percentage using tobacco101; and there is a strong, negative correlation 

between height and BMI102.  

At first glance, it is far from clear what the problem is, which is perhaps why so many researchers 

continue to make the same analytical mistakes. Many of those who recognise there are problems 

with analysing change with respect to baseline (statisticians included), often mistakenly attribute 

the problem entirely to regression to the mean (RTM); the issue of mathematical or causal coupling 

is then overlooked completely. We have previously examined the impacts of RTM and note that it 

is not only RTM that gives rise to the problems outlined here. 

Explaining the impact of MC for the relation between change and initial value  

In a seminal article in 1962, Oldham warned against testing the effect of anti-hypertensive therapy 

with respect to baseline blood pressure103. One of his arguments, subsequently repeated many 

times since86;104, is that for two independent random numbers (e.g. 𝑧 and 𝑦) with identical standard 

deviations, there will be a strong correlation (averaging 1 √2⁄ ≈ 0.71) between their difference (𝑧 −

𝑦) and either variable (positive if correlated with 𝑧; negative if correlated with 𝑦). The regular 

assumption that the null is zero is entirely untrue. Any estimated relationship between change and 

baseline or follow-up will comprise an element of artefact plus an element of true effect (if non-

zero); since the artefact is sizeable, it will likely dominate the true effect. Oldham set out to explain 

this as follows.  

Let 𝑥𝑏 be pre-treatment (baseline) values and 𝑥𝑓 post-treatment (follow-up) values. The Pearson 

correlation between change (𝑥𝑏 − 𝑥𝑓) and pre-treatment value (𝑥𝑏) is given by103: 

 𝐶𝑜𝑟𝑟[𝑥𝑏 − 𝑥𝑓 , 𝑥𝑏] = 𝜌(𝑏−𝑓)𝑓 =
𝑠𝑏−𝜌𝑏𝑓𝑠𝑓

√𝑠𝑏
2+𝑠𝑓

2−2𝜌𝑏𝑓𝑠𝑏𝑠𝑓

 Eq.1 

where 𝑠𝑏
2 is the variance of the 𝑥𝑏, 𝑠𝑓

2 is the variance of 𝑥𝑓, and 𝜌𝑏𝑓 is the correlation between 

baseline (𝑥𝑏) and follow-up (𝑥𝑓). If 𝑠𝑏
2 and 𝑠𝑓

2 are equal, Eq.1 reduces to: 

  𝜌(𝑏−𝑓)𝑓 =
1−𝜌𝑏𝑓

√2
.  Eq.2

 

Eq.2 shows that unless 𝜌𝑏𝑓 is unity, 𝜌(𝑏−𝑓)𝑓 will never be zero; when 𝜌𝑏𝑓 < 1 (which is highly 

likely for repeated measurements on the same individuals) the correlation between baseline and 

change will always be positive. In fact, if 𝜌𝑏𝑓 ≈ 0, i.e. there is very poor correlation between pre- 

and post-treatment values (or we have random numbers with equal standard deviation), the 

positive association between baseline and change will be large (1 √2⁄ ≈ 0.71).  
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In biomedicine, since both 𝑥𝑏 and 𝑥𝑓 are always subject to measurement error and/or biological 

variation, 𝜌𝑏𝑓 < 1 and 𝜌(𝑏−𝑓)𝑓 > 0. Under H0 (where change is not related to initial value) the 

correlation of change with initial value will never be zero. The same is true for the regression of 

change on initial value – the model coefficient is never zero. This effect is striking, and for even 

modest sample sizes it will be statistically significant; however, this will likely be nothing but 

artefact. 

Oldham’s method 

Oldham suggested that testing the hypothesis that treatment is associated with baseline should 

be carried out by plotting change against the mean of the pre- and post-test values, and not 

against the baseline values. For instance, if pre-treatment (baseline) SBP is denoted as 𝑥𝑏 and 

post-treatment (follow-up) SBP as 𝑥𝑓, SBP reduction following an anti-hypertensive medication will 

be 𝑥𝑏 − 𝑥𝑓, and mean SBP will be (𝑥𝑏 + 𝑥𝑓) 2⁄ . To address whether greater baseline SBP is related to 

a greater reduction in SBP following treatment, Oldham’s method tests the correlation between 

𝑥𝑏 − 𝑥𝑓 and (𝑥𝑏 + 𝑥𝑓) 2⁄  instead of testing the correlation between 𝑥𝑏 − 𝑥𝑓 and 𝑥𝑏. The Pearson 

correlation between change and average is103:  

 𝐶𝑜𝑟𝑟[𝑥𝑏 − 𝑥𝑓 , (𝑥𝑏 + 𝑥𝑓) 2⁄ ] =
𝑠𝑏

2−𝑠𝑓
2

√(𝑠𝑏
2+𝑠𝑓

2)
2

−4𝜌𝑏𝑓
2 𝑠𝑏

2𝑠𝑓
2
 Eq.3 

where 𝑠𝑏
2 is the variance of 𝑥𝑏, 𝑠𝑓

2 is the variance of 𝑥𝑓, and 𝜌𝑏𝑓 is the correlation between baseline 

(𝑥𝑏) and follow-up (𝑥𝑓).  

The numerator in Eq.3 indicates that Oldham’s method is a test of the difference in the variances 

between the repeated measurements, where the two variances may also be correlated (captured 

in the denominator). If there is no difference in the variances of pre-treatment SBP (𝑥𝑏) and post-

treatment SBP (𝑥𝑓), the correlation from Oldham’s method will be zero, i.e. the treatment effect 

(SBP change) is not associated with the mean SBP value (and hence not associated with baseline 

or follow-up values, as explained below).  

The rationale behind Oldham’s method is that if, on average, a greater reduction in SBP is observed 

for greater values of SBP at baseline, then post-treatment SBP values will become ‘closer’ together, 

i.e. the post-treatment variance (𝑠𝑓
2) will shrink and be smaller than the pre-treatment variance 

(𝑠𝑏
2). Conversely, if there is a differential effect (either due to a differential effect of treatment, 

or a differential physiological response to treatment, i.e. greater or smaller effects in those with 

greater or lesser disease severity, respectively), this will manifest as a change of variances 

between the first and second measure. If there is no difference in the variances before and after 

treatment, there is little or no evidence of a differential effect.  

MC remains between the change, 𝑥𝑏 − 𝑥𝑓, and the mean, (𝑥𝑏 + 𝑥𝑓) 2⁄ , because each expression 

contains terms in common with the other (𝑥𝑏  and ± 𝑥𝑓), but this specific approach nullifies the impact 

of MC. To understand why a test of the relation between change and mean yields a correct null 

hypothesis, one must appreciate that the sum of any two variables with equal variances is always 

uncorrelated to the difference between them. This can be shown using vector geometry105, though 

such insights are left for extra-curricular reading! 
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Oldham’s strategy has been proposed previously, as early as 1939 by Morgan and Pitman106;107, 

though specifically in the context of testing the equivalence of two variances. Much later, in 1985, 

the same approach also became the basis of the Bland and Altman approach for comparing two 

methods of measurement108, though it may not be immediately recognised as a solution to MC.  

Note: The problem has been addressed by the hypothesis being re-framed in terms of testing the 

difference in variances, rather than simply correlating or regressing change with baseline.  

A multilevel solution to the relationship between change and initial value 

MC is removed completely if one models the repeated measures (baseline and follow-up) using 

multilevel modelling109;110. This approach also allows for the inclusion of additional covariates and 

more than two measurement occasions (i.e. studies with multiple follow-up occasions). Critically, 

however, time must be centred (see below).  

Considering the blood pressure scenario for illustration, initial and post-treatment SBP measures 

are at the lower level of the multilevel model and individuals are at the upper level. The model 

covariate Time represents the initial and post-treatment measurement occasions, and the 

correlation between the variance of the random intercept and the variance of the random slope for 

the covariate Time indicates the relation between baseline disease status (intercept) and treatment 

effect (slope). The model is:  

 SBP𝑖𝑗 = 𝛽0𝑖𝑗 + 𝛽1𝑗𝑇𝑖𝑚𝑒𝑖𝑗 Eq.5 

Different parameterisations of Time yield different results, and model misspecification will lead to 

the same consequences as with MC111. For instance, when Time is coded as 0 (initial) and 1 (post-

treatment), the correlation between the random intercept and random slope is equivalent to the 

correlation between change and baseline (𝜌𝑓−𝑏,𝑏 adopting earlier notation), since the random slope 

variance is estimated from differences between baseline and follow-up, 𝑓 − 𝑏, whilst the random 

intercept variance is estimated at baseline, 𝑏. If Time is coded in reverse, i.e. -1 (initial) and 0 

(post-treatment), the correlation between random intercept and random slope is equivalent to the 

correlation between change and follow-up, for similar reasoning. Only if Time is centred, i.e. -/+ 

0.5 (initial / post-treatment), is the correlation between random intercept and random slope 

equivalent to Oldham’s method (𝜌𝑓−𝑏,(𝑏+𝑓) 2⁄ ), since the change variance is estimated as before, but 

the intercept variance is now estimated at the point midway between baseline and follow-up, i.e. 

at their mean value of (𝑓 + 𝑏) 2⁄ .  

It is common for analysts to employ multilevel models but fail to centre their time variable; this 

matters if the covariance for the random intercept and slope is to be interpreted!  

Summary 

MC is ubiquitous, yet despite impacting research in many instances, its consequences are poorly 

recognised. MC for the analysis of change with respect to initial value can be overcome by using 

multilevel models, provided there is careful consideration of model parametrisation.  
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10. MATHEMATICAL COUPLING: ANALYSIS OF RATIO VARIABLES 

Learning objectives 

• Understand how mathematical coupling (MC) may occur for ratio variables 

• Know strategies that might overcome MC for ratio index variables with common denominators 

Mathematical Coupling 

As stated previously, mathematical coupling (MC) is the phenomenon where the null hypothesis 

is distorted due to an algebraic relationship between two or more variables that are analysed 

by correlation or regression. Most noticeably, MC occurs when a new variable is constructed by the 

mathematical transformation of others, including multiplication or division86;87;89-93. The most 

ubiquitous example that involves multiplication / division is body mass index (BMI), where weight 

in kilograms is divided by height in meters squared. MC arises if constructed variables are analysed 

with respect to any of their component variables using correlation or regression (e.g. examining 

the relationship between BMI and height). We examine the motivation for the use of constructed 

ratio variables, and initially highlight the pitfalls this can generate due to MC. Later, we consider 

the many broader causal implications of composite variable confounding. 

Ratio index variables 

A ratio index variable is a new variable derived from the division of one variable by another. In 

epidemiology, one is often concerned with prevalence and incidence (counts of total cases per 

population and counts of new cases per population per unit time, respectively), which are ratios 

that capture the relative extent of a condition (e.g. prevalence of obesity, incidence of mortality) 

by accounting for differences in population sizes. In medicine, many variables are generated as 

ratios to capture human features (e.g. obesity), acknowledging that humans vary due to genetic 

predisposition (e.g. height). Hence, such ratios seek to capture a relative construct (e.g. BMI as a 

measure of weight relative to height-squared). The concept of what is relative in both contexts is 

seeking to standardise a measure with respect to a perceived ‘norm’, such as average body height 

or a typical cross-section of society.  

The potential for MC when constructing and evaluating ratio variables by correlation or regression 

is huge, but is largely overlooked. The implications of MC amongst ratio variables are numerous 

and far reaching, yet almost no attention is given to the artefacts generated within epidemiology, 

or observational research more generally. 

Explaining the impact of MC for ratio variables 

To illustrate, consider three random variables (𝑥, 𝑦 and 𝑧) that are uncorrelated with each other 

and have identical standard deviations. It can be shown that the correlation of 𝑥 𝑧⁄  with 𝑦 𝑧⁄   0.5112. 

Put simply, a strong correlation will exist between two variables when divided by the same 

denominator, even if they otherwise have nothing in common. As with the analysis of change, the 

assumption that the null is zero for the correlation or regression of ratio variables that share a 

common denominator is entirely false. Any estimated relationship will comprise an element of true 

effect (if non-zero) plus artefact; the latter will again be sizeable and likely dominate.  

Some of the most important outcomes and exposures in epidemiology are ratios, which is why the 

impacts of MC are so crucial. For instance, MC will occur via the common denominator of population 
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at risk when investigating the relationship between incidence rates of two or more diseases (e.g. 

cancer and diabetes), or when investigating the relationship between the incidence of a disease 

and the prevalence of an exposure for that disease (e.g. asthma and the proportion of overcrowded 

households). For modest sample sizes, a highly significant association can be observed, even if the 

relationship is entirely artefact.  

Potential solutions to MC due to common denominators 

This problem first came to light over a hundred years ago when Pearson warned would-be-analysts 

to be wary of a ‘spurious correlation’ that arises between two ratio variables with a common 

denominator112. The term mathematical coupling did not appear in Pearson's paper, as the term 

was not coined until many years later90.  

To tackle the problem, Pearson suggested that analysts should calculate the partial correlation 

between numerators (disease counts) whilst ‘adjusting’ (within a regression model) for the 

common denominator (population counts), rather than analysing the two ratios directly67. Poisson 

regression automatically advocates this approach by encouraging analysts to model counts with a 

denominator ‘offset’ included as a model covariate (logged to match the Poisson log-link). 

Consequently, Poisson multivariable regression avoids the adverse impacts of MC, though this is 

merely fortuitous and not by intentional design. 

Following Pearson’s warning, Neyman reiterated that ratio variable numerators and denominators 

should be separated and analysed as Pearson suggested, seeking partial correlations68. In 1947, 

Fisher set out to ‘illustrate the extreme simplicity’ of dealing with ‘problems concerned with the 

relation of a part to the whole’69;113, advocating the same solution as Pearson and Neyman, though 

his paper serves to illustrate only the complexity of such problems69;113.  

The importance of a causal framework 

Fisher used data that contained the body and heart weights of cats from a group of digitalis assays. 

Since body-weight comprises heart-weight, their ratio is compositional. Fisher adopted body weight 

as the dependent variable and heart weight as the independent variable. This may seem reasonable 

from a physiological viewpoint if the heart is thought to be the driver of circulation and its size 

therefore determines capacity for growth, driving total body size. However, if body size determines 

the volume of blood required, this would determine the required size of the heart to service 

circulation. From this perspective, body weight would be the ancestor to heart weight, requiring 

the implied regression model to be the opposite to that proposed by Fisher. Since one variable 

comprises the other, their causal relationship is impossible to resolve unequivocally.  

Thinking causally presents a bigger problem, however, when one considers the role of sex. It is 

reasonable to assume that sex determines both heart weight and body weight because genes that 

determine sex are likely to influence body development in a way as to influence both heart weight 

and body weight. Asking if there are sex differences in the relationship between heart weight and 

body weight, as Fisher did, then sex is the exposure of interest, regardless of how we view the 

causal relationship between heart weight and body weight: within a regression model, one weight 

will be the outcome and the other is a mediator. In any causal framework considering heart weight, 

body weight and sex, it will always be inappropriate in a multivariable model seeking to examine 

the causal effect of sex to include heart weight as a covariate if body weight is the outcome, or 
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vice versa. Fisher's original question is therefore intractable within a multivariable model due to 

the conflict the model generates within a causal framework – something that escaped this giant of 

statistics because a formal understanding of causal inference, as described through graphical 

model theory, had not been developed back then.  

Other ratio variable constructs 

MC arises amongst constructed ratio variables if each possess common components as numerator 

or denominator, i.e. 𝑥 𝑧⁄  is also coupled with 𝑧 𝑦⁄  and 𝑧 𝑥⁄  is also coupled with 𝑧 𝑦⁄ . Coupling will 

similarly occur if either numerator or denominator is a function of common elements. For instance, 

𝑤 ℎ2⁄  is coupled to any expression of 𝑤 or ℎ. If 𝑤 = 𝐰𝐞𝐢𝐠𝐡𝐭 and ℎ = 𝐡𝐞𝐢𝐠𝐡𝐭, 𝑤 ℎ2⁄ = 𝐛𝐨𝐝𝐲 𝐦𝐚𝐬𝐬 𝐢𝐧𝐝𝐞𝐱.  

The proposed solution when there are common denominators is to decouple the denominator, 

and ‘adjust’ for it directly within a multivariable regression analysis to obtain the partial correlation. 

Other examples of MC will need different solutions, though how to proceed may not be immediately 

apparent.  

Summary 

MC is ubiquitous, yet despite impacting research in many instances, its consequences are poorly 

recognised. MC amongst variables that are ratio generated with common denominators can be 

approached differently, whereby the ratio variable components are separated and the common 

denominator is treated as a separate covariate within a multivariable regression model. However, 

this only proves informative if the resulting regression model makes sense in a causal framework, 

i.e. the common denominator is a confounder of the exposure of interest, and not a mediator, as 

was the problem in Fisher’s paper advocating the separation of ratio variables into their 

components. Rubin recently argued that Fisher’s advice might not be wise for every instance, since 

the model assumptions can often be violated114;115. If we have doubts and concerns with statistical 

‘giants’ such as Fisher, then these problems are clearly not trivial, which perhaps explains why 

confusion and controversies persist. 

Although widely employed in biomedical research, constructed ratio variables are problematic and 

present many challenges. This points to the concern that any composite variable, i.e. a variable 

that is constructed through addition, subtraction, multiplication or division of other variables, is 

potentially problematic when seeking to place the composite variable within a causal framework. 

This leads on nicely to the issues of composite variable confounding. 
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11. COMPOSITE VARIABLE CONFOUNDING  

Learning objectives 

• Understand how composite variable confounding (CVC) arises  

• Recognise implicit CVC from the construction of composite variables 

• Understand how to address CVC for the analysis of change with respect to baseline exposures 

Composite variable confounding  

Composite variable confounding (CVC) is a form of bias that results from the naïve analysis 

and interpretation of composite variables (such as change variables, ratio variables, and other 

constructed variables) without separately considering the causal influences and consequences of 

each individual component. Mathematical coupling can therefore be considered a special case of 

CVC, where the composite variable has been analysed in relation to one of its own components, or 

a function thereof (See Figure 1: panel A + B). But any variable that has been constructed from 

two or more other variables (whether exposure or outcome) is prone to create problems from CVC. 

To avoid this, each constituent component should be considered individually within a causal 

framework. Even where no bias due to explicit mathematical coupling is introduced, the conflation 

of different causal relationships into a single summary measure that is then analysed within a 

multivariable regression model can create substantial interpretational challenges (as we will see in 

the example below).  

When causal inference is sought, the causal structure of a dataset should be postulated a priori, 

which we can depict using a DAG. DAG-data consistency can be evaluated prior to statistical 

evaluation13 and for each exposure-outcome relationship of interest, we can identify sets (formally 

known as the ‘minimally sufficient adjustment sets’) of variables that control for confounding. The 

regression coefficient of the ‘exposure’ variable of interest may then be interpreted as an estimate 

of the total causal effect (notwithstanding the problems of measurement error, missing data, 

and residual confounding, etc.). Although it is increasingly recognised that robust causal estimates 

require use of a robust causal framework, such practices remain uncommon. CVC is therefore likely 

to arise often, yet will be poorly recognised, and there are likely many important instances that 

have not yet been uncovered.  

Illustration for the construction of a change variable 

To illustrate CVC, we examine the evaluation of a composite change variable, though the principle 

extends to many other instances of constructed variables, including ratio variables such as BMI. 

A key issue within the analysis of change is that the change variable is treated as a single concept, 

when in fact ‘change’ comprises information about both baseline and follow-up; each should 

therefore be considered separately within a causal framework. Formally, the change ‘effect’ is 

captured entirely by the follow-up outcome alone. This is immediately apparent when considering 

the context of an RCT. Since there is no relationship between the baseline 'exposure' (the 

intervention) and the baseline outcome (values of which have been randomised between the 

treatment arms), it is entirely sufficient to examine the relationship between the intervention and 

the follow-up outcome. For observational data, a relationship between the baseline exposure and 

outcome is however very likely. The creation of a change variable, by subtracting follow-up from 

baseline, is an attempt to resolve this unwanted correlation and obtain a relative or ‘standardised’ 
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measure of change. This approach was developed long before the development of modern causal 

inference methods; use of which now make the potential issues rather obvious. 

Figure 1:  Schematic examples of composite variable confounding. The causal relationship under test is 
marked with an asterisk sign (*). Panels A and B depict two examples of mathematical coupling. 
In A, the focal relationship (X1-X0 ~ X0) is biased by a dependency between the composite 
outcome (X1-X0; e.g. weight change) and the exposure (X0, e.g. baseline weight) resulting from 
the outcome having been algebraically constructed from the exposure. In B, the focal relationship 
(Y/N ~ X/N) is biased by an explicit dependency between the composite outcome (Y/N, e.g. 
prevalence of depression) and the composite exposure (X/N, e.g. prevalence of obesity), 

resulting from both having been algebraically constructed from a shared denominator variable 
(N, e.g. regional population). Panels C, D, and E depict how composite variable confounding can 
occur even without the explicit problems of mathematical coupling. In C, the focal relationship 
(Y1-Y0 ~ X0) is biased by a dependency between the composite outcome (Y1-Y0, e.g. change in 
anxiety levels) and the exposure (X0, e.g. baseline sleep quality) resulting from the exposure and 
the follow-up outcome (Y1, e.g. follow-up anxiety levels) being mutually determined by the 

baseline outcome (Y0, e.g. baseline anxiety levels). In D, the focal relationship (Y1-Y0 ~ X0) is 

biased by a dependency between the composite outcome (Y1-Y0, e.g. change in physical activity) 
and the exposure (X0, e.g. uptake of a new physical activity intervention) resulting from the 
exposure and the follow-up outcome (Y1, e.g. follow-up physical activity) being mutually 
determined by an unobserved confounder (U; e.g. socioeconomic position). In E, the focal 
relationship (Y1-Y0 ~ X0) is unbiased, but the coefficient is highly misleading. It neither represents 
the total causal effect of the baseline exposure (X0, e.g. baseline waist circumference) on the 

follow-up outcome (Y1, e.g. follow-up serum insulin concentration) nor the causal effect of the 
baseline exposure on the follow-up outcome conditional on baseline outcome (Y0, e.g. baseline 
serum insulin concentration). The regression coefficient instead represents a competing sum of 
the two causal paths (shown in blue and black), which may commonly be negative; it is not clear 
when this estimate would be anything other than misleading! 
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waist circumference. We focus less on the clinical relevance of this example and more on the 

insights it offers about CVC and the benefits of thinking within a causal framework.  

A typical dataset would contain the exposure variable (waist circumference) at baseline (e.g. WC0), 

the outcome (serum insulin concentration) at baseline and follow-up (e.g. IC0 and IC1), and a 

derived change variable (e.g. ΔIC = IC1- IC0). For this example, we will explore and interpret the 

coefficient produced from a linear model of change in outcome regressed on baseline exposure 

(ΔIC ~ WC0) for a series of scenarios. This would typically be interpreted (explicitly, or more often 

implicitly) as the total causal effect of baseline waist circumference on the change in insulin 

concentration.  

Figure 2: Causal scenarios for the relationship of change in insulin concentration (∆IC=IC1-IC0) 
regressed on baseline waist circumference WC0. In part 1, IC0 is a competing exposure for the 

effect of WC0 on IC1. (1A) WC0 causes follow-up insulin IC1 but not baseline insulin IC0; (1B) 

WC0 causes follow-up insulin IC1 but not baseline insulin IC0; WC0 and IC0 are caused by one 
or more unobserved (i.e. latent) factors, collectively denoted U. In part 2, IC0 is a confounder 
for the effect of WC0 on IC1. (2A) IC0 causes both WC0 and IC1; WC0 does not cause IC1. (2B) 
IC0 causes both WC0 and IC1 and WC0 causes IC1. (2C) IC0 causes both WC0 and IC1; WC0 does 
not cause IC1; WC0 and IC0 are caused by one or more unobserved (i.e. latent) factors (U). 
(2D) IC0 causes both WC0 and IC1; WC0 causes IC1; WC0 and IC0 are caused by one or more 
unobserved (i.e. latent) factors (U). In part 3, IC0 is a mediator for the effect of WC0 on IC1. 

(3A) WC0 causes IC0 and IC0 causes IC1 but WC0 does not cause IC1. (3B) WC0 causes both 
IC0 and IC1, and IC0 causes IC1. (3C) WC0 causes IC0 and IC0 causes IC1; WC0 does not cause 
IC1; WC0 and IC0 are caused by one or more unobserved (i.e. latent) factors (U). (3D) WC0 
causes both IC0 and IC1, and IC0 causes IC1; WC0 and IC0 are caused by one or more 
unobserved (i.e. latent) factors (U). In all scenarios, change in insulin (ΔIC) is explained entirely 
by IC0 and/or IC1, and is not caused by any other variables, hence the arcs to ΔIC, and the 

composite variable itself, are shown in grey. 
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IC0 as mediator: 
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Scenario 2C: As with Scenarios 2A and 2B, the estimated effect of WC0 on IC1 is confounded by 

the causal effect of IC0 on WC0 and IC1, but there is now additional confounding by one or more 

unobserved variables (U) that influence IC1 via their effects on IC0. Since there is no causal effect 

of WC0 on IC1, the estimated effect for the composite outcome ΔIC will be entirely due to 

confounding, and cannot be interpreted as the total causal effect. 

Scenario 2D: As with Scenario 2C, the estimated effect of WC0 on IC1 is confounded by the causal 

effect of IC0 on WC0 and IC1 and one or more unobserved variables (U) that influence IC1 via their 

effects on IC0. On this occasion, however, there is a causal effect of WC0 and IC1. Alas, by analysing 

the composite outcome ΔIC, this will be conflated with the confounded effects of IC0 on WC0 and 

IC1 and of the confounded effects of U on WC0 and IC1 through IC0, so the coefficient cannot be 

interpreted as the total causal effect. 

Scenario 3A: This scenario is unaffected by confounding but the coefficient is highly misleading. 

The causal effect of WC0 on IC1 is entirely mediated through IC0. Alas, by analysing the composite 

outcome ΔIC, this effect must compete mathematically with the causal effect of WC0 on IC0 so the 

coefficient cannot be interpreted as the total causal effect. Without a separate effect of WC0 on 

IC0, the coefficient here will always be negative, since the diluted effect on IC1 acting through IC0 

will be smaller than the full effect acting directly on IC0.  

Scenario 3B: As with Scenario 3B, this scenario is unaffected by confounding but presents a high 

risk of severe interpretational bias. The causal effect of WC0 on IC1 is partly mediated through IC0. 

Alas, by analysing the composite outcome ΔIC, this effect – and the unmediated effect of WC0 on 

IC1 – must compete mathematically with the causal effect of WC0 on IC0. The coefficient cannot 

therefore be interpreted as the total causal effect. Depending on the relative sizes of the mediated 

and unmediated effects, the coefficient in this situation may often be negative. 

Scenario 3C: As with Scenario 3A, the causal effect of WC0 on IC1 is entirely mediated through 

IC0, but there is also confounding by one or more unobserved variables (U) that influence IC1 via 

their effects on IC0. The coefficient cannot therefore be interpreted as the total causal effect. By 

analysing the composite outcome ΔIC, the true causal effect must compete mathematically with 

the causal effect of WC0 on IC0 and the confounded association between WC0 and IC0 due to U. 

Depending on the relative sizes of these effects, the coefficient in this situation may often be 

negative. 

Scenario 3D: As with Scenario 3B, the causal effect of WC0 on IC1 is partly mediated through IC0, 

but there is also confounding by one or more unobserved variables (U) that influence IC1 via their 

effects on IC0. The coefficient cannot therefore be interpreted as the total causal effect. By 

analysing the composite outcome ΔIC the causal effects of WC0 on IC1 (both mediated and 

unmediated through IC0) must compete mathematically with the causal effect of WC0 on IC0 and 

the confounded association between WC0 and IC0 due to U. Depending on the relative sizes of 

these effects, the coefficient in this situation may often be negative. 

Alternative analytical strategies: interpretation of in the model: IC1 = β 0 + β1WC0 + …  

If the analytical focus is shifted from the composite outcome ΔIC to the follow-up outcome IC1, the 

problems of CVC can be avoided. Considering the underlying causal framework in each scenario 

can then provide insight on how best to analyse the effect of WC0 on IC1.  
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In Scenario 1B, IC0 is a proxy confounder for the unobserved confounder(s) U of the relationship 

between WC0 and IC1. The total causal effect of WC0 on IC1 could therefore be estimated by 

adjusting for IC0 as a proxy confounder (i.e. IC1 ~ WC0 + IC0). Residual confounding is likely, 

however, as we are not adjusting for the true confounders directly.  

In Scenarios 2A and 2B, IC0 confounds the relationship between WC0 and IC1. The total causal 

effect of WC0 on IC1 could therefore be estimated by adjusting for IC0 (i.e. IC1 ~ WC0 + IC0). 

In Scenario 2C and 2D, IC0 is both a proxy for the unobserved confounder(s) U, and a genuine 

confounder of the relationship between WC0 and IC1. The total causal effect of WC0 on IC1 could 

therefore be estimated by adjusting for IC0 as both genuine and proxy confounder (i.e. IC1 ~ WC0 

+ IC0). Residual confounding is likely, however, as we have not adjusted for the true confounders 

U directly. 

In Scenarios 3A and 3B, IC0 is a mediator of the relationship between WC0 and IC1. The total causal 

effect of WC0 on IC1 could therefore be estimated in the univariate model without adjustment for 

IC0 (i.e. IC1 ~ WC0) 

In Scenarios 3C and 3D, IC0 is both a proxy for the unobserved confounder(s) U and a mediator 

of the relationship between WC0 and IC1. Here, there is no robust analytical means for obtaining 

the unconfounded total causal effect of baseline WC0 on IC1. Without further adjustment, the 

estimate is confounded by U, but adjusting for IC0 as a proxy confounder would be erroneous, and 

would risk invoking the reversal paradox23. To obtain a robust estimate, we would have to obtain 

additional information on U, either by collecting further data or deriving estimates from the 

literature (and performing simulations). 

Summary 

CVC is ubiquitous, yet despite impacting research in many guises, its consequences and even its 

existence are hardly recognised. In the example, the standard analytical strategies are highly 

problematic, and more thoughtful approaches are needed that place the separate components of 

composite variables within a causal framework. To illustrate CVC, we examined the analysis of 

change, but there are many other instances where a composite variable is analysed as a single 

concept with insufficient consideration given to the unique causal relationships of the composite 

variable’s constituent components. There are likely many undiscovered scenarios affected by CVC 

and solutions may not always be apparent.  

In our ‘toy’ example, we did not dwell on the specific clinical context, but made a general point of 

how CVC arises. However, in most genuine clinical situations where a composite measure of change 

is evaluated in relation to baseline exposures, there are few conceivable observational instances 

where the baseline exposure is totally unrelated to the baseline outcome. If the exposure is 

believed to cause the outcome at follow-up, it seems most likely that the baseline exposure would 

also cause the outcome at baseline (i.e. Scenario 3B in Figure 2). That said, reality may often be 

closer to that of Scenario 3D (Figure 2), where there is unmeasured confounding. The latent 

confounding may also have a direct causal impact on the follow-up outcome, making the true effect 

even more difficult to observe. In any event, there seems no obvious alternative analytical strategy 

for regressing follow-up outcome on baseline exposure to ensure we obtain a robust estimate of 

the total causal effect of baseline exposure on change, as depicted by the follow-up outcome 
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measure. In general, it is often impossible to obtain the total causal effect without carefully 

considering and measuring all the relevant confounding variables.  

A limited appreciation of CVC means we encounter many analyses that yield meaningless and/or 

misleading findings. It is therefore vital to be vigilant and committed to robust practices of causal 

inference. Problems with CVC - including mathematical coupling - are potentially amongst the most 

ubiquitous and severe methodological errors in biomedical research. 
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13. SPARSE OUTCOMES & MIXTURE MODELLING 

Learning objectives 

• Be aware of statistical challenges in modelling sparse count data (i.e. an 'excess' of zeros) 

• Understand the importance of data generation to guide model parameterisation and selection 

Modelling count data with ‘excess’ zeros 

In a variety of research domains, where the outcome is counts, it is common to find an ‘excess’ of 

zeros relative to standard count distributions; this occurs regularly in epidemiology. Ridout et al. 

have reviewed several methods to address excess zeros, particularly in relation to the Poisson 

distribution116. The zero-inflated Poisson (ZiP) model117-119 is one such strategy, where the 

overall distribution is a mixture of two distributions: one with a central location (i.e. mean) of zero 

(i.e. a ‘spike’ of zeros) and the other with a non-zero central location to be estimated empirically 

(i.e. a regular Poisson that may depend upon covariates)120. The proportion of each distribution 

are determined empirically and may be thought of as separate models. The zero-inflated 

binomial (ZiB) model is another strategy121;122, akin to the ZiP model, but with a bounded number 

of counts. The ZiP and ZiB models have been used extensively in many research domains and are 

amongst the most often considered, though there have been recent developments with generic 

mixture models, also known as latent class models or discrete latent variable models.  

A generic mixture model determines several latent classes or subgroups of data, the optimum 

choice of which is typically informed by log-likelihood statistics. Model parameters of each class, 

along with their contribution to the combined outcome distribution, are determined empirically. 

ZiP/ZiB models are limited forms of mixture models: a mix of exactly two distributions where one 

comprises entirely zeros. Mixture models extend beyond the zero-inflated models to allow any 

number of distributions, where no one distribution is constrained to be identically zero (i.e. there 

is no ‘spike’ of zeros, unless the model empirically determines one distribution to have a mean of 

zero, which amounts to the same thing).  

In examining mixture models, we consider the following (frequently overlooked) statistical issues 

that have relevance to all complex modelling strategies: 

• The choice of outcome distribution is crucial. 

• Over-dispersion should always be considered. 

• Predicted outcomes can have greater clinical relevance than likelihood statistics. 

• Covariates in the distribution model must be considered in the class membership model. 

Adopting a Poisson distribution for all count outcomes is naïve, as the Binomial distribution may 

be better; over-dispersion can be a consequence of clustering that arises implicitly, even if the 

data are not obviously hierarchical or clustered; assessing model-fit by likelihood statistics 

overlooks clinical context in judging a model; and omitting covariates from the class membership 

model that are considered in the distribution model imposes constraints that may lead to biased 

models. Moreover, both likelihood statistics and predicted outcomes may not indicate an ‘ideal’ 

model, since different model parameterisations can yield near-identical fit statistics and near-
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identical predicted outcomes; model selection must then be aided by knowledge of the data 

generation process.  

Dental Example Dataset 

In dental research, an established indicator of a person’s oral health status involves counting the 

number of decayed (d/D), missing (m/M), and filled (f/F) deciduous ‘milk teeth’ (t) or permanent 

teeth (T), yielding the measure of dmft or DMFT123. The dmft count may range between 0 and 20, 

whereas the DMFT count may range between 0 and 32. Amongst healthy individuals, or during the 

early stages of dentition development, there is potential for an excess number of zero dmft/DMFT 

counts. For illustration, we consider a prospective study in the Brazilian urban area of Belo 

Horizonte during the early 1990’s, which examined different dental caries prevention methods 

amongst 797 school children aged 7 years at the start of the study123. Data were recorded for the 

eight deciduous molars only, so dmft counts ranged between 0 and 8. The research focus was how 

different intervention methods prevent caries incidence (new lesions). Interventions comprised: 

(1) oral health education; (2) enrichment of the school diet with rice bran; (3) mouthwash with 

0.2% sodium fluoride (NaF) solution; (4) oral hygiene; (5) all the interventions combined; or (6) 

none of the interventions (control). The proposed outcome was change in the dmft count from 

baseline.  

There are limitations to this study because school allocation, although random, involved only one 

school per intervention arm, which is insufficient for adequate cluster-randomisation; thus, 

baseline differences in mean dmft across intervention groups may not have been due to chance. 

The authors purportedly sought to accommodate baseline mean differences in disease levels 

amongst schools by using ANCOVA, though you should recall that this only accommodates within-

group heterogeneity whilst assuming between-group baseline mean differences are minimal due 

to randomisation. As too few schools were randomised, observed baseline mean outcome 

differences amongst groups were found, which could yield biased results (i.e. Lord’s paradox124-

126). As the original study findings are questionable, these data are only considered for illustrative 

purposes. Skrondal and Rabe-Hesketh analysed the follow-up data only127 to illustrate the use of 

generic mixture models. We examine the same data to explore these methods too, though we do 

not seek to draw any meaningful inferences. 

Statistical considerations of model parameterisation  

Choice of distribution 

Böhning et al.123 used their data to argue that ZiP models are useful in evaluating intervention 

effects on dental caries when data exhibit an excess of zero counts. However, Skrondal and Rabe-

Hesketh questioned the use of the Poisson distribution in this instance, as the outcome adopted 

represents the number of dmft (‘successes’) out of a total of eight deciduous molars (‘trials’)127. 

The ZiB model was compared with the ZiP model, which revealed that the latter typically predicted 

unrealistically long tails and the former performed better. The binomial outcome is preferred in 

this instance, as the count index is bounded at eight.  

Over-dispersion 

Over-dispersion (i.e. where the outcome distribution has a heavier tail than expected) is a common 

issue in surveys where units are cluster-sampled (e.g. children nested within schools, as in the 
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example data). Many situations arise where count data form an implicit hierarchy or clustering, 

even if not intentional or by design. For instance, in conducting a survey, each field worker forms 

a cluster; this may give rise to over-dispersion that is overlooked. When the Brazilian dental data 

were examined following the models proposed by Böhning et al. (i.e. ZiP) and by Skrondal and 

Rabe-Hesketh (i.e. ZiB), along with over-dispersed equivalents, the latter consistently performed 

better as per likelihood-based model-fit criteria. 

Choice of model-fit criteria: beyond likelihood statistics 

The likelihood statistics often considered when determining model fit are the Bayesian Information 

Criterion (BIC) and Akaike’s Information Criterion (AIC), both of which incorporate a measure of 

model parsimony to provide a trade-off between model complexity and how well the model fits the 

data128. These likelihood-based model-fit criteria are recommended, though criteria based on the 

difference between observed and predicted outcomes should also be considered, with relevance to 

clinically relevant thresholds along the outcome scale. For instance, the transition from zero to one 

represents onset of disease in longitudinal data and increased prevalence of disease in cross-

sectional data. The tails of a distribution indicate disease progression for longitudinal data and 

disease extent for cross-sectional data. The crossing of any ‘critical’ threshold might distinguish 

between ‘high’ or ‘low’ risk groups for targeted intervention. A threshold may represent a point of 

no return (e.g. mortality or tooth loss in the dental example). Generally, model fit assessment 

should have clinical relevance and ought to be more than evaluation of log-likelihood statistics.  

Class prediction in zero-inflated models 

Extending standard ZiP/ZiB models to include class prediction by covariates involves replacing the 

parameter for the two-distribution proportions (depicting the extent of belonging either to the zero-

bin or to the standard distribution) with a function of the available covariates, just as the standard 

distribution is a function of covariates120. The class membership model is a logistic regression model 

with covariates. Standard or over-dispersed distributions may apply. 

An enormously overlooked issue is that ZiP/ZiB models are in fact problematic if covariates in the 

distribution (non-zero) part of the model are not considered as class predictors (i.e. to determine 

whether individuals belong to the zero-bin or the distribution part of the model). There is no explicit 

discussion of this in the literature until that by Gilthorpe et al.120. This is fundamental, since the 

proportion of zero counts (i.e. the proportion of disease-free children in the example dataset) is 

otherwise constrained and erroneous models may arise, leading to inappropriate interpretations of 

the data. To illustrate, data were simulated (similar in nature to those observed in dental caries 

studies) to reveal the extent of bias that results if covariates that are deemed necessary in the 

distribution part of ZiP/ZiB models are not also considered as class predictors.  

Consider the covariate sex and two-stage data simulation where dmft outcomes comprise 50,000 

boys and 50,000 girls: 20% of the boys have a dmft of zero, with the rest taking values from a 

Poisson distribution with mean 2; 80% of the girls have a dmft of zero, with the rest taking values 

from a Poisson distribution with mean 1. Extending the model with sex predicting class membership 

is therefore essential, though typically overlooked. We examine how unreliable the standard ZiP 

model is for this scenario. Results are presented in Table 1.  
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The number of girls in the zero-bin is poorly predicted by the ZiP model (22.87%, far from the 

simulated true of 80%). The distribution mean for girls is also far from true (estimated as 0.27, 

opposed to the true value of 1.00). For girls, the incorrectly specified ZiP model yields considerable 

deviation from truth in terms of size, shape and central location of the distribution, yet overall 

predicted counts are indistinguishable from those simulated.  

Table 1: Model-fit criteria for the ZiP model undertaken with the simulated data 

 Simulated True ZiP Estimated 

Log-Likelihood  -100,088 † -111,700.74 

BIC  200,212 † 223,436.02 

AIC  200,184 † 223,407.48 

Observed – Predicted zero counts  0 1,573.74 

Girls   

Proportion in the Zero-bin  80% 22.87% 

Distribution mean dmft count (95% CI)  1  0.27 (0.26, 0.28) 

Boys   

Proportion in the Zero-bin  20% 22.87% 

Distribution mean dmft count (95% CI)  2  2.03 (1.97, 2.07) 

ZiP – standard zero-inflated Poisson model with sex as a covariate in the non-zero part only (not as a 
class predictor); BIC – Bayesian Information Criterion; AIC – Akaike’s Information Criterion; †true log-
likelihood, BIC and AIC are based on the asymptotic likelihood, which was maximised numerically. 

Different parameterisations and inferences are feasible whilst predicted counts hardly differ with 

no sizeable difference in likelihood-based model-fit criteria; it is thus difficult, if not impossible, to 

decide upon an ‘ideal’ model using model-fit criteria alone. This issue is not limited to zero-inflated 

models.  

Generic mixture models 

Zero-inflated models are a special case of the generic mixture model. The most general form of a 

mixture model is where each class adopts the standard distribution (i.e. not constrained to be zero) 

and class membership is potentially informed by covariates and becomes a multinomial logistic 

regression model128. Many model options are available, though not all are interpretable; in some 

instances, models may not be identifiable. For instance, if a covariate impacts differently within 

each latent class, and if class membership is predicted by this covariate, model interpretation is 

challenging (even if the model is identifiable) because circularity arises regarding the conditionality 

of the relationship of covariate parameters in the distribution parts and the class membership part 

of the same model.  

Distinguishing between different model parameterisations 

We illustrate the problems that can arise when seeking to distinguish between different model 

parameterisations of both zero-inflated and generic mixture models by re-evaluating the Brazilian 

dataset123. We consider a range of standard binomial, zero-inflated, and generic mixture models 

(for the complete set of models see Gilthorpe et al.120). We consider binomial models since the 

outcome is bounded above, and we allow for over-dispersion since the study data are inherently 

clustered (children within schools). Table 2 summarises observed and predicted counts for the best 

model from each of the standard binomial, zero-inflated and generic mixture models (the 

best of each type was always over-dispersed).  
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Table 2: Binomial regression models: observed and predicted counts of dmft along with model fit criteria 
assessments 

Dmft N  oB  oZiB_CP  o2LCiB_CP 

0 231  217.29  230.45  227.35 

1 163  189.08  156.15  169.70 

2 140  146.75  151.17  137.68 

3 116  104.64  117.24  114.26 

4 70  68.40  76.08  80.15 

5 55  40.22  41.21  43.99 

6 22  20.41  17.95  18.05 

7 -  8.18  5.73  5.07 

8 -  2.02  1.03  0.75 

Total 797  797.00  797.00  797.00 

Class size  -  †15.36%  ‡44.62% 

Log-Likelihood  -1,402.61  -1,393.78  -1,386.48 

BIC  2,872.03  2,914.49  2,906.57 

AIC  2,825.22  2,825.56  2,812.96 

oB: over-dispersed binomial model; oZiB_CP: over-dispersed zero-inflated 
binomial model with the same covariates in the non-zero part and 
predicting class membership; o2LCiB_CP: over-dispersed 2-class mixture 
model with class independent covariates predicting class membership; 
†size of the zero-bin for zero-inflated models; ‡size of the 2nd latent class.  

The BIC and AIC model-fit criteria do not agree as to the best model; they agree on the worst – 

the zero-inflated model – which is the best for the predicted number of zeros. Outcome-specific 

model-fit criteria do not generally agree with likelihood-based model-fit criteria, which highlights 

the important role that of clinically relevant model-fit assessment criteria have.  

Nevertheless, given the disparities amongst all model-fit criteria, it seems difficult to choose an 

‘ideal’ model. There are few differences in predicted counts, demonstrated by contrasting the two 

models with reasonable predicted outcomes (oZiB_CP and o2LCiB_CP): expected counts (predicted 

probabilities for all 36 types of children, i.e. 6 interventions × 2 genders × 3 ethnicities) are close 

(=0.98), and a Bland-Altman plot129 reveals no systematic bias (Figure 2).  

Figure 2:  Bland-Altman plot of contrast between oZiB_CP and o2LCiB_CP 

 

Thus, selecting a ‘preferred’ model is less than obvious using likelihood-based model-fit criteria or 

predicted outcomes. Each model parameterisation has potentially different interpretation and 

blindly settling upon one could give rise to misleading inferences of the data. To inform model 

selection, we turn to a priori knowledge of the data generation process.  
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Data generation informs model parameterisation / selection 

We ask whether zero-inflated models and generic mixture models might reflect different underlying 

processes generating the data. Model selection could then seek to distinguish between modelling 

strategies according to a priori hypotheses of data generation. This requires context-specific 

appreciation of the data being modelled. We consider how dental caries occur, i.e. how the dataset 

was generated, and which model is more plausible clinically. 

Clinical context 

For biomedical data in general, and caries data specifically, we consider the distinct roles of disease 

onset and progression in relation to observed data distributions, and look at how this might inform 

model choice. For instance, caries disease onset requires one tooth to become decayed, filled, or 

extracted (i.e. a dmft increment from 0 to 1). Thereafter, an increment to this score requires a 

second tooth to suffer a similar fate. It is known that some teeth and some tooth surfaces are 

more prone than others to the effects of the cariogenic environment (i.e. the level of oral hygiene 

maintained: amount and frequency of starch/sugar-rich snacking). For instance, first molars are 

more prone to caries than second molars; upper teeth more prone than lower teeth; pit and fissure 

surfaces are more prone than approximal or smooth surfaces130.  

The nature of the cariogenic exposure is also important, since different teeth have different caries 

risk depending on their morphology and position in the mouth relative to the salivary gland ducts 

and accessibility for tooth brushing. Moreover, teeth erupt or are shed (exfoliated) at different 

times, and the ‘risk set’ thus varies over time (i.e. the period ‘at risk’ may vary from one tooth to 

the next). Amongst adults, teeth may also be extracted for reasons that have little to do with caries 

(orthodontics), thereby initiating the diseased state for reasons unrelated to subsequent caries. 

Caries onset and progression might therefore have different underlying risks131, for which 

there is substantial support in the dental research literature131-133. Selecting between zero-inflated 

and generic mixture models is informed by a priori knowledge of the causal processes underlying 

caries data generation.  

Hypothetical underlying data generating scenarios 

One hypothesis is that the cariogenic environment of the individual does not depend on whether a 

tooth has already been affected, hence it is reasonable to assume that underlying latent risks of 

disease onset and subsequent progression are identical. Whilst differences occur across individuals, 

generic mixture models are then suitable to describe ‘subtypes’ of individuals.  

Another hypothesis is that underlying latent risk of disease differs across teeth or tooth surfaces, 

and there is a dual process of risk for disease onset and progression. A mixture of two outcome 

distributions would be manifest, where one has a central location of zero, and a ZiB model would 

be suitable to describe caries patterns.  

Where underlying complexity warrants it, both hypotheses and modelling strategies may be valid 

and one adopts a generic mixture model with each latent class subdivided into a zero-bin and 

standard distribution. 

To see how zero-inflated models and generic mixture models capture different mechanisms of data 

generation, consider Figure 1. 
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Figure 1:  Hypothetical risk models for the onset and progression of dmft 

 Figure 1(i) Figure 1(ii) 

  
Gradients represent the strength of underlying risks for disease onset and progression; A: period with no underlying risk 
of disease; B: period where disease-free individuals are susceptible to disease onset; C: period where individuals with 
existing disease are susceptible to disease progression; LC1: latent class one, sub-group of individuals with high risk of 
disease onset and progression; LC2: latent class two, sub-group of individuals with low risk of disease onset and high risk 
of disease progression; LC3: latent class three, sub-group of individuals with medium risk of disease onset and low risk of 
disease progression.  

Figure 1(i) represents the situation where: (A) initially there is no latent risk (e.g. prior to any 

teeth erupting); (B) individuals experience the risk of disease onset, i.e. on course to yielding a 

non-zero dmft/DMFT score, though initially have a zero score; and (C) individuals with disease 

experience the same underlying latent risk of disease progression as for disease onset. Since there 

is a period where some teeth are not at risk of disease, the estimated underlying risk of disease 

onset (the dotted line) appears different to that for the risk of disease progression, even though 

the ‘true’ underlying latent risks are identical for the ‘at risk’ period.  

Figure 1(ii) represents the situation where there are three latent sub-types of individuals, each 

with varying latent risks of disease onset and disease progression. For latent class one (LC1), the 

latent risk of disease onset and progression are identical. For latent class two (LC2), the underlying 

risk of disease onset is less than that of disease progression. The third latent class (LC3) exhibits 

the opposite, in that the underlying risk of disease onset is greater than that of subsequent disease 

progression. LC1 and LC2 exhibit near identical underlying latent risks of disease progression 

despite having different underlying risks of disease onset. When the period ‘not at risk’ is included, 

the estimated underlying latent risks of disease onset and progression appear to differ for LC1, 

whilst they appear similar for LC3 – both contrary to ‘true’ and entirely due to the ‘not at risk’ 

period being misclassified or misinterpreted.  

External information: balance of evidence  

Given the overwhelming evidence in the dental research literature that risks of caries onset and 

progression differ, it is the most appropriate strategy to adopt zero-inflated models. Consequently, 

the ‘preferred’ model for the Brazilian dataset is the over-dispersed zero-inflated binomial model 

with the same covariates in the non-zero model part predicting class membership (oZiB_CP).  

This was the least favoured model as per the likelihood-based model-fit criteria, but most 

favoured as per the number of predicted zero counts, highlighting the synergy between clinical 

model-fit criteria and data generation informing model selection. This also reveals how misguided 

it might be to favour likelihood-based model-fit criteria in selecting ‘preferred’ models. Generally, 

it is misguided not to introduce contextual knowledge and allow this to drive model selection.  
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Discussion 

Böhning et al. rightly argued that one needs to consider carefully the problem of excess zeros in 

dental data. A Poisson distribution is not ideal if counts represent the number of successes (dmft) 

out of a finite number of trials. Binomial outcomes are preferable for bounded count data. Further, 

where data are inherently clustered (even if not by intent), over-dispersion ought to be considered.  

For zero-inflated models with class membership not also predicted by covariates in the distribution 

part of the model, there is potential for bias due to unintended implicit constraints. Adopting 

context-specific model-fit criteria for predicted outcomes has clinical relevance and chimes with 

the underlying data generation process. However, there may be no discernible model differences 

in terms of either likelihood-based model-fit criteria or predicted outcomes between certain zero-

inflated and generic mixture models. The challenge is how to select an ‘ideal’ model. In general, a 

priori knowledge of data generation helps inform model parameterisation and model selection to 

yield meaningful model inference.  

The issues outlined here for count data can occur for other outcome distributions. In general, model 

building and selection is not only a matter of model fit, but also an issue of contextualisation that 

requires a prior appreciation of the data generation processes.  
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14. LONGITUDINAL EXPOSURES & LATENT VARIABLE MODELLING 

Learning objectives 

• Appreciate the challenges in modelling time-varying longitudinal exposures  

• Be aware of latent growth curve models (LGCMs) and growth mixture models (GMMs) 

• Respecting the data generation process in modelling random structure  

Longitudinal exposures  

Longitudinal patterns of clinical or anthropological attributes are often explored in epidemiology to 

identify how early-life experiences might influence later-life morbidity or mortality: this is lifecourse 

research. Methodological challenges arise since what is oftentimes a longitudinal outcome becomes 

a time-varying exposure; the outcome is now a measure downstream of the series of exposures 

(the exposure may be recorded right up to and including the time of the outcome). This specific 

exposure-outcome framework creates challenges within standard regression regarding causal 

inference and model estimation.  

Causal inference is challenging as there is uncertainty in how to interpret a longitudinal exposure; 

we question if we are focusing on ‘critical periods’ (for targeted intervention), ‘accumulated impact’ 

(overall dose-response, with interest in cumulative exposure), ‘trajectories’ (sequenced or ordered 

combinations of events that impact differently if experienced at different stages of life and/or in 

different time order and/or in combination with other experiences), or other complex features of 

longitudinal exposure with causal implications. There are recent developments to address some of 

these questions134;135 that avoid the methodological flaw of conditioning on the outcome prior to 

seeking to interpret ‘trajectory’ plots (we described this earlier as invoking RTM). Model estimation 

is challenging due to issues of nonlinearity and the potential for homoscedasticity (i.e. non-constant 

error structure), combined with the many ways we might elicit ‘features’ of the data, as per the 

various causal inference questions just highlighted. There are pros and cons to the methods to 

model longitudinal exposures, with no one proving ideal for all circumstances. 

Multilevel modelling (MLM) is a common method of estimation for longitudinal measures in 

health research136;137, whilst methods based on structural equation modelling (SEM)80 are used 

in the social sciences, which include latent growth curve modelling (LGCM)138;139 and growth 

mixture modelling (GMM)140; methods that are becoming popular in biomedical research141. 

Under certain conditions, MLM can be specified in an SEM framework using LGCM. Their similarities 

and differences are not just of technical interest but of practical value, revealing how flexibly one 

can model longitudinal data. For those familiar with MLM or LGCM, but not both, comparison of the 

two methods aids comprehension of the lesser known method.  

For illustration, we use data from a study on the associations between a child’s body growth and 

their mother’s blood aflatoxin levels during breastfeeding in a group of 200 African children142. We 

initially examine longitudinal measures of the children’s body weights and later discuss how the 

SEM framework allows us to relate changes in body weight (longitudinal exposure) to changes in 

mothers’ blood aflatoxin levels (longitudinal outcome). The study data has three measures of 

children’s body weight and their mothers’ blood aflatoxin levels at birth, 3 months, and 8 months. 

Repeated measurements form the lowest level (level-1) of a multilevel hierarchy, with nesting at 

the highest level (level-2) by children for weight and by mothers for blood aflatoxin levels.  
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Multilevel modelling 

Known also as mixed effects modelling, random effects modelling, or hierarchical linear 

modelling143;144, this approach has mainly been used in epidemiological research to deal with 

hierarchical data structure (e.g. patients nested within doctors or within geographical areas), but 

another application of MLM is to analyse longitudinal data, treating the repeated measurements as 

the lowest level137. The basic MLM of a growth trajectory for weight, for instance, is given by:  

 𝑊𝑡𝑖𝑗 = 𝛽0𝑖𝑗 + 𝛽1𝑗𝑇𝑖𝑚𝑒,  Eq.1 

where 𝑊𝑡𝑖𝑗 is body weight measured on occasion 𝑖 (𝑖 = 1, 2 … 𝑇) across 𝑇 measurement time points 

(or 𝑇 ages, e.g. 0, 3 and 8 months in the African study example), for individual 𝑗 (𝑗 = 1, 2, … 𝑁) with 

𝑁 total individuals (e.g. 𝑁 = 200 in the African study dataset), and 𝛽0𝑖𝑗 / 𝛽1𝑗 are multilevel regression 

coefficients given by: 

 𝛽0𝑖𝑗 = 𝛽0 + 𝑢0𝑗 + 𝑒0𝑖𝑗; 𝛽1𝑗 = 𝛽1 + 𝑢1𝑗 Eq.2 

where 𝛽0 is the overall mean intercept (at 𝑇𝑖𝑚𝑒 = 0); 𝛽1 is the overall mean gradient of the weight 

growth trajectory; 𝑒0𝑖𝑗 is the residual error term at level-1 representing the difference between 

observed and predicted weight on each occasion for each individual; 𝑢0𝑗 and 𝑢1𝑗 are residuals at 

level-2 representing, respectively, intercept and slope differences between observed mean weight 

trajectories for each individual and the overall mean weight trajectory for everyone. Parameters 

describe a population mean trajectory and how individuals deviate from that trajectory. Eq.1 

assumes that growth in weight is linear and individual linear growth trajectories are estimated for 

everyone separately. Combined, Eq.1 and Eq.2 define a multilevel model referred to as a random 

coefficient model, since the regression coefficients exhibit random variation about their mean 

(across occasions and across individuals). More detailed explanations can be found elsewhere109.  

Latent growth curve modelling (LGCM) 

LGCM is an application of SEM to longitudinal data138. Repeated 

measures of a variable (e.g. weight) are modelled as a function 

of latent factors analogous to random effects of multilevel models, 

with time-specific latent errors. Figure 1 is the LGCM path diagram 

of the MLM in Eq.1, with three observed weight variables and five 

latent variables: 𝑒0 to 𝑒2 are residual error terms for the successive 

measurements of body weight, 𝑢0 and 𝑢1 are residual errors for 

the two latent variables 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑆𝑙𝑜𝑝𝑒, where 𝑢0 and 𝑢1 may 

be correlated. Each latent factor and error term is assumed to be 

independent and identically normally distributed.  

Numbers associated with arrows are ‘factor loadings’ depicting 

regression-like association. Loadings for residual errors are fixed 

to be 1, so errors are on the scale as the observed or estimated 

latent measures. 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 to weights loadings are unity to indicate 

that associations between them are equally scaled. Loadings for 

𝑆𝑙𝑜𝑝𝑒 to 𝑡0, 𝑡1 and 𝑡2 represent the times at which the weights were 

recorded. 

Figure 1: SEM representation 
of LGCM  
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Equivalence and differences between MLM and LGCM 

For MLM and LGCM to be equivalent, two criteria must be satisfied145: 

• The longitudinal measures must be observed at identical times for each measurement occasion; 

known as interval homogeneity (e.g. birthweights are recorded on the day of birth, weight 

at age 3 months is recorded say exactly 90 days after birth, and so on). 

• Random slope factor loadings must reflect exact intervals between longitudinal measures (e.g. 

for our example factors loadings could be age in months: 0, 3, and 8; or age in months centred 

around the mid observational time: -4, -1 and 4; or rescaled in any way: 0.000, 0.375, 1.000).  

In practice, for most longitudinal data, measurement intervals vary across individuals, even where 

efforts are made to minimise this (e.g. when seeking to measure weights at age 3 months, some 

children will be older and some younger than 90 days, with discrepancies of days or weeks). Thus, 

most longitudinal health data will experience interval heterogeneity. MLM can accommodate this 

easily, as time of each individual measure is the value of 𝑇𝑖𝑚𝑒 in Eq.1; this may vary for everyone. 

In contrast, factor loadings in Figure 1 are set to be identical for everyone, and study data are then 

assumed to be exactly or approximately interval homogeneous for the LGCM in Figure 1. 

If factor loadings 𝑡0, 𝑡1 and 𝑡2 are not all set, and only the first 

and last are set to the start and end times of the measurement 

period, factor 𝑡1 is estimated as part of the modelling process.  

This facilitates the modelling of nonlinear growth (even though 

the latent slope is linear); in effect time is ‘distorted’ to reflect 

nonlinearity.  

For instance, if factors 𝑡0 and 𝑡2 are set to 0 and 8 (age at birth 

and 8 months, respectively), and if 𝑡1 were estimated to be 3, 

the model would reflect linear growth (Figure 2a); but if 𝑡1 were 

estimated as 5, the model then reflects nonlinear growth that 

is accelerating (Figure 2b); and if 𝑡1 were estimated as 1.5, the 

model would reflect nonlinear growth that is decelerating 

(Figure 2c). 

The distortion of the time axis achieved by the freely estimated 

factor loading for 𝑡1 allows for nonlinear change despite only 

modelling a latent linear term. This flexibility of LGCM is 

superior to MLM for modelling nonlinearity, but relies upon all 

measures being interval homogeneous, which is rarely true for 

most longitudinal health data.  

Growth mixture modelling (GMM)  

GMM is an extension of LGCM where growth factors may vary across a specified number of latent 

classes. GMM allows for the evaluation of subgroups, and their unique patterns of change, in 

relation to a later-life outcome, without invoking the adverse impacts of RTM that would arise from 

a priori conditioning on the outcome or other exogenous variables. GMM is growing in popularity 

in biomedical research due to their potential to identify clinically meaningful subgroups, each with 

a specific longitudinal ‘pattern’ of the exposure. 

Figure 2: Graphical interpretation 
of LGCM factor loadings 
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Figure 3 is an extension to the SEM in Figure 1, with the latent 

variable 𝐶 affecting the latent variables 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑆𝑙𝑜𝑝𝑒; when 

𝐶 = 1, the model in Figure 3 is equivalent to that in Figure 1. 

For models where 𝐶 ≥ 2, the GMM allows for identification of 

subgroups, each with a unique pattern of change described by 

separate latent 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑆𝑙𝑜𝑝𝑒 variables for each mixture 

(Figure 4).  

Mixtures are an inherent part of the random structure (as with 

ZiP/B models). In specifying 𝐶, one affects the 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑆𝑙𝑜𝑝𝑒 

estimated for each mixture, thereby influencing overall random 

structure in the model.  

Conversely, in specifying how random effects are modelled via 

the latent 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑆𝑙𝑜𝑝𝑒 variables (e.g. by constraining the 

correlation between 𝑢0 and 𝑢1 to be zero), one also influences the 

‘ideal’ number of mixtures and their composition. 

Individuals are classified by estimating posterior probabilities of class membership. If models with 

2 or more classes provide a better explanation of the data than a single class model, this suggests 

that the population comprises subgroups with their own underlying change process. Subgroup 

membership is interpreted as an important feature related to later-life outcomes. Selecting a model 

with the ‘correct’ number of classes becomes central to GMM interpretation. 

Figure 4: Illustration of the application of a growth mixture model to longitudinal data: (a) the individual 
parameterised growth curves; (b) 3 derived mixtures (modal assignment). 

  
 (a) (b) 

Challenges with GMM development 

In seeking a suitable GMM, it is common practice to estimate multiple models specifying a different 

number of latent classes and then to decide on which model is ‘best’. One approach is to constrain 

the factor variances of all latent classes to be zero, referred to variously as latent class growth 

analysis146, group-based trajectory modelling147, or semi-parametric growth modeling148. 

At the other extreme of model parsimony, one freely estimates all variance and covariance terms 

separately for each latent class. It is also common to select either homo- or heteroscedastic models 

by, respectively, constraining or freely estimating the latent error variances across time points, 

Figure 3: SEM representation 
of GMM  
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with additional flexibility that the error variances are identical or different across the classes. For 

an increasing number of mixtures, convergence issues arise when there are too many freely 

estimated parameters. A common solution is to simplify the model through parameter constraints. 

Arbitrary constraints may not reflect the underlying data generation process and problems arise if 

modifications to the random effects inadvertently introduce unwanted constraints141. Constraints 

have unintended consequences, leading to an autoregressive structure that affects the formation 

of mixtures and ultimately affects model interpretation based on the derived mixtures149. This is 

exacerbated if longitudinal changes within individuals are gradual compared to differences between 

individuals, as for most growth measures; this is not widely appreciated and since it is common to 

apply parameter constraints to aid convergence or to improve model parsimony, this problem is 

ubiquitous.  

If too many variance and covariance terms are set to zero, autocorrelation emerges amongst the 

time-specific latent errors, since individual growth curves are consistently above or below the class-

specific mean curve, and this is more likely if the exposure exhibits greater between- than within-

subject heterogeneity (Figure 5). Growth measures are prone to ‘tracking’, i.e. where individuals 

that initially lie high (or low) in their centile score relative to the population distribution tend to 

remain high (or low) in their centile score thereafter. Although an individual’s growth trajectory 

may cross population centiles over the longer term, for a short period at least trajectories may be 

relatively stable (Figure 6).  

Figure 5: An illustration of individual growth (red dots) and class mean parameterised curve (black line) 

for: (a) greater within than between heterogeneity; (b) greater between than within 
heterogeneity. 

 
 (a) (b) 

Figure 6: Example GMM with 2 mixtures: (a) blue and red lines depict classes (modal assignment), thick 
lines depict class means, black line is population mean; (b) individual (back line) ‘tracks’ red 
class mean.  

   
 (a) (b) 

If variance and covariance terms must be constrained to aid model convergence, or if parsimony 

is preferred to aid interpretation, one strategy is to model explicitly the emergent autocorrelation 

structure of the random effects within mixtures149.  
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Modelling change on change 

We conclude by examining how LGCM can explore the relationship between both a longitudinal 

exposure and a longitudinal outcome. We revisit the African study that examined growth in relation 

to mother’s (log-transformed) blood aflatoxin levels for 200 children during breastfeeding142 

(Figure 7). Aflatoxin is a fungi-generated toxin that contaminates food world-wide150. In developing 

countries, if storage of food is not well developed, toxins contaminate grain stock and is ingested 

by mothers who pass them on to their children via breastfeeding151. It is therefore speculated that 

aflatoxin exposure might impair human growth and development152;153. 

We investigate this using the SEM in Figure 7, using an 

LGCM for both longitudinal exposure (aflatoxin blood 

level, log-transformed) and longitudinal outcome (child 

body weight). Each latent factor and error term has 

arrows depicting errors, though these are not drawn as 

latent variables. The joint model explores how initial 

and changing levels of mothers’ aflatoxin levels affect 

child growth, whilst adjusting for maternal confounders 

(e.g. mother’s BMI, age, parity, etc.). 

Factor loadings 𝑎0, 𝑎1 and 𝑎2 reflect children’s age when 

weight is recorded (0, 3 and 8 months) and loadings 𝑡0, 

𝑡1 and 𝑡2 reflect the times when aflatoxin levels are 

measured (0, 3 and 8 months). We set loadings for 𝑎0, 

𝑎1 and 𝑎2 to 0, 0.375 and 1 (i.e. rescaled) so the latent 

variables 𝐼𝑛𝑡𝑊𝑡 and 𝑆𝑙𝑜𝑝𝑒𝑊𝑡 model linear weight change. 

As log-transformed aflatoxin levels did not change 

linearly154, we set factor loadings for 𝑡0 and 𝑡2 to 0 and 

1, leaving 𝑡1 to be estimated, so the latent variables 

𝐼𝑛𝑡𝐿𝑛𝐴 and 𝑆𝑙𝑜𝑝𝑒𝐿𝑛𝐴 model nonlinear change in aflatoxin 

exposure. Homoscedasticity was assumed. 

Summary 

In the analysis of longitudinal exposures, identification of patterns or critical periods that might 

explain later-life outcomes is a rich and exciting area of research, yet fraught with challenges63. 

Modelling random structure is important, but needs to be considered carefully. Choice of modelling 

strategy, and identification of meaningful subgroups if GMM is adopted is not straightforward, as 

misspecification of random effects can lead to different and therefore likely incorrect conclusions. 

Nevertheless, the potential utility for many settings, especially with increasing availability of large 

and complex ‘big data’, makes it important to consider carefully robust strategies of modelling 

longitudinal observational data with methods that ensure robust causal inference. 
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Figure 7: Children’s bodyweight modelled 
in relation to mother’s blood 
levels of aflatoxin; measures at 

birth, 3 months and 8 months. 
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15. STRATIFICATION ON MEDIATOR VARIABLES 

Learning objectives 

• Appreciate some model complexities that are feasible with latent variable models 

• Learn how to evaluate mediator interactions without modelling mediators directly 

Latent variable models 

Multilevel models are latent variable models with a continuous latent variable for each upper level 

of the data hierarchy, for which distributional assumptions must be made (e.g. Normal). A discrete 

latent variable incorporated in a single-level model yields a mixture model, as with ZiP/ZiB models. 

It is possible to combine multilevel and mixture models by considering a discrete latent variable at 

more than one level. This permits several complex model configurations, each relating to different 

assumptions, with different interpretations, not all of which have analogues to continuous latent 

variable models or standard multilevel models; some parameterisations may not be identifiable or 

identifiable models may not always be interpretable.  

We ask: What is the relation between 3-year (median) mortality and socioeconomic background 

(SEB) of patients and how does this vary with respect to tumour stage of disease at diagnosis?  

We use routinely collected data of patients registered with colorectal cancer where patients are 

nested within hospital Trusts. Patients with colorectal cancer (ICD-10 codes C18, C19 and C20155) 

diagnosed 1998-2004 and resident in the Northern and Yorkshire regions were identified from the 

Northern and Yorkshire Cancer Registry and Information Service (NYCRIS) database. Patient age, 

sex, tumour stage at diagnosis (using the Dukes classification156), diagnostic centre (Trust), and 

whether or not the patient received treatment were extracted. Socioeconomic background (SEB) 

was defined at the 2001 enumeration district level of residence (super output area) using the 

Townsend Index of multiple deprivation157 and matched to patients using their postcode of 

residence.  

The outcome is mortality (alive/dead) 3 years after diagnosis (corresponding to median survival). 

Patients may be treated at different Trusts throughout their care: 90% were treated in the same 

Trust as they were diagnosed and 75% remained with this Trust throughout. We chose to analyse 

the data by Trust of diagnosis to include all patients, whether treated or not, and this maintained 

a reasonable proportion of patients whose treatment was initially received within the same Trust 

as they were diagnosed. Data for 24,455 patients were available for analysis.  

We seek the causal impact of SEB on 3-year survival 

(see DAG in Figure 1) and would like to stratify on 

tumour stage of disease.  

In estimating the outcome-exposure relationship in a 

multivariable regression model we should adjust for 

competing exposures age and sex (to improve model 

precision); however, stage of disease is a mediator 

(as too is treatment), which prohibits inclusion of this 

covariate in the regression model, thus preventing 

𝑆𝑒𝑥 

𝐴𝑔𝑒 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

𝑆𝐸𝐵 

𝑆𝑡𝑎𝑔𝑒 𝑇𝑥 

Figure 1: DAG showing variable relationships  
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stratification as was initially sought. To address this, we consider an alternative modelling strategy.  

If stage is adjusted for in the multilevel model seeking to determine the SEB-mortality relationship, 

it introduces bias due to the reversal paradox23. With some analyses adjusting for stage and others 

not making this error perhaps explains why findings into the impact of SEB on cancer mortality 

vary; some studies find a significant relationship between worsening SEB and increased cancer 

mortality158;159, whilst others find no such association160;161. Furthermore, regression analysis gives 

rise to biased results when model covariates (such as stage at diagnosis) are measured with error 

or have missing values162, exacerbated within product interaction terms163, e.g. when investigating 

the role of SEB across different levels of stage at diagnosis. Stage often suffers a large proportion 

of incomplete data. Variable quality of pathology can lead to patients being classified incorrectly164. 

There is also potential bias in the grading of stage, as the quality of pathology sometimes leads to 

patients being ‘under-staged’165: for the tumour to be classified at stage C, lymph nodes must be 

involved, yet the number of lymph nodes retrieved is highly variable and if few nodes are available 

this limits the likelihood of identifying node involvement, so the tumour may instead be classified 

at stage B. As this impacts the treatment received, since patients diagnosed with a stage B tumour 

may not receive beneficial chemotherapy166, hence the motivation to stratify any SEB-survival 

relationship by stage. The recording of stage has also changed over time and if a tumour is initially 

graded at stage C, but clinical evidence of metastatic disease is found, current policy is to ‘up-

stage’ the tumour to stage D. Including stage as a covariate and exploring its statistical interaction 

with SEB thus has the potential to introduce large bias, even were the reversal paradox not of 

concern.  

Latent variable stratification on a mediator 

We explore a multilevel latent class model (MLLCM) that allows for subgroups of patients such 

that the relation between survival and SEB might vary across classes. The latent class model may 

include stage of disease to help differentiate classes as per any differences in stage classification. 

The resulting latent classes correspond to patient features that can be labelled post-hoc as per any 

covariate such as stage (e.g. early- or late-stage disease at diagnosis) or the outcome (e.g. ‘good’ 

or ‘poor’ survivors), with attention in this instance favouring the former.  

When stage is included as a class predictor, and is omitted from the standard regression model, 

rather than as a fixed-effect covariate, resultant patient classes will yield a graduated mortality 

risk analogous to that observed for different stages of disease. This allows the relationship between 

mortality and the exposure SEB to vary across patient classes, introducing an implicit ‘interaction’ 

between stage at diagnosis and SEB, without risk of bias due to reversal paradox or measurement 

error on the stage covariate.  

Patient classes will be derived without stage (or any other covariate) as a class predictor and a 

graduated differentiation across patient classes will therefore be analogous to stratification by 

stage of disease. In effect, this renders stage as a redundant covariate altogether (though not that 

palatable amongst those who strive hard to improve the coding quality of staging!).  

Discussion 

When investigating the relationship between patients’ socioeconomic circumstances and cancer 

mortality, individual measures of deprivation are rarely available, especially when using routine 
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data. Indices of SEB, such as the Townsend Index157 and the Index of Multiple Deprivation167, are 

all that is usually available. These indices are measured at the small-area level, such as electoral 

ward or super-output area. This can lead to the ecological fallacy168 if area-based findings are 

extrapolated to individuals living in each area. For this reason, another level should be introduced 

(the small-area level) and this would be ‘cross-classified’ with Trusts, i.e. patients from one small 

area might attend different Trusts and similarly patients from one Trust may be drawn from 

different small areas of residence. Similarly, instead of the binary outcome, survival analysis (e.g. 

using Cox proportional hazards regression) would be used instead. All these more complex model 

extensions are possible. 

By not modelling stage as a mediator, we can avoid the reversal paradox and minimise bias due 

to measurement error and/or incomplete data, but stratification on this variable is then not 

available using standard regression methods. With stage included as a class predictor, bias due to 

the reversal paradox is certainly reduced though may not be completely eradicated. However, as 

patient classes may be derived without stage as a class predictor, if similar differentiation across 

patient classes is observed, then stage may be deemed redundant; if this is not palatable to those 

who prefer to use this variable, then at least the latent class approach will have reduced bias than 

the traditional approach.  
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16. A CAUTIONARY NOTE ON STATISTICAL INTERACTION 

Learning objectives 

• Appreciate the distinction between statistical interaction and biological joint effects 

• Be aware of the importance of linearity and scale in multivariable regression  

• Appreciate the importance of effect size over significance testing for statistical interaction 

• Be aware of the futility of most power calculations for statistical interaction 

Statistical vs. biological interaction 

Statistical interactions are often used in multivariable regression models to explore the joint effects 

of putative causal agents in relation to a single outcome, yet the statistical process is frequently 

misunderstood or misinterpreted. Different language used, such as effect modification or even 

confounding, is misleading. Effect modification is an explicit parametrisation of causal action that 

need not be entirely linked to a single statistical interaction, whilst confounding is a distinct concept 

that may or may not involve statistical interaction169. Consequently, attempts are made to interpret 

statistical interaction as though representing biological interaction, yet the two concepts need not 

be linked170-173. Statistical interaction is a well-defined mathematical concept, yet its 

interpretational issues lie in the contrast between parametric realisations bestowed by a statistical 

model upon the implied underlying stochastic nonparametric causal mechanisms.  

Distinction between model parameterisation and causal process is critical. Our world unfolds based 

on immutable physical and biological laws that cannot be transformed, merely observed and 

described through experimentation. Statistical models may represent these experiments, though 

model construct is a matter of choice, with parameterisations often adopted out of convenience. It 

is important to reflect upon biological effects in a causal framework and to explore contexts in 

which this is meaningfully summarised by a multivariable model; explicit interpretation of biological 

mechanisms follow only if the model has a direct biological analogue, else there is at best implicit 

biological interpretation. Care must be taken relating biological processes to aspects of a statistical 

model and vice versa. This is particularly well illustrated in the exploration of joint effects of genes 

and environmental risk factors on disease, though generalises to all forms of statistical interaction.  

Mapping biological process onto a statistical model 

Genetic and environmental effects may operate mechanistically in different ways. For instance, a 

genetic polymorphism may ‘program’ a condition to occur absolutely, e.g. cystic fibrosis occurs 

definitively as a consequence of the CFTR polymorphism on chromosome seven174. Alternatively, 

individuals might merely have a greater predisposition of developing a condition, e.g. deep vein 

thrombosis (DVT) is more likely but not definitively a consequence of Factor V Leiden genetic 

mutation on chromosome one175, whilst DVTs also occur amongst normal individuals. Mechanisms 

by which an outcome occurs likely involves multiple stages in biology, of which some are necessary 

and sufficient, whilst others modify the likelihood of occurrence. It is thus necessary to distinguish 

between explicit causal mechanisms that are understood biologically and implicit causality that is 

an abstraction or oversimplification of the more complex real world. Both may be described by a 

DAG and evaluated statistically within an appropriate model, but the latter DAG need not map onto 

any biological process precisely, which is important for the causal interpretation of joint action.  
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Consider DVT and exposure to the combined oral contraceptive pill (COCP). Genetically normal 

individuals develop DVT, though risk is elevated amongst individuals with Factor V Leiden genetic 

mutation175. Amongst women, exposure to the COCP yields an elevated risk of DVT176. Considering 

the joint action of genetic mutation and combined pill, the putative causal process is best captured 

by an underlying risk of developing DVT, i.e. a continuous probability between zero and one: the 

genetic and environmental exposures operate jointly to affect the risk of DVT, yet both exposures 

and the outcome are typically taken to be binary. This has implications on model interpretation. A 

statistical model depicts this via a logistic model. Simplification of the underlying biology is fine, 

but what becomes of the biological interpretation of the gene-environment statistical interaction?  

Model parameterisation 

There is no concept of statistical interaction (or even linearity) within the nonparametric causal 

framework of a DAG; these concepts enter centre stage only when we build our model. The choice 

available to us when employing statistical regression is often driven by mathematical convenience, 

not underlying biological processes. Statistical interaction is both linear and scale-dependent; these 

features are critical in meaningful interpretation of statistical interaction.  

A linear model is defined as linear in the fitted coefficients, which implies that the coefficients of 

the model are additive. A nonlinear model has coefficients that are not combined additively. We 

focus only on linear models. Confusion can occur when a functional relationship, known as the link 

function, operates on an outcome. Such functions ensure that the right-hand side remains linear 

and these models are known as generalised linear models (GLMs). For instance, logistic regression, 

a key analytical tool in epidemiology, uses the logit link. Most statistical methods evaluating genetic 

and environmental factors affecting disease outcomes are likely to be a linear logistic regression 

model using the logit link function.  

Statistical interaction in a linear regression model has the form of a product term, describing 

deviation from the additive effects of the product components on some predefined link function 

scale. In the simple case of a linear regression model with a continuous outcome (i.e. identity link) 

and two covariates, say treatment group and sex (both binary), the interaction term is the product 

of treatment group with sex. This product term is included in the model to allow treatment effects 

to differ for males and females. In this instance, some say that sex ‘modifies’ the effect of the 

treatment (hence the term effect modification), though we should be cautious about language that 

implies cause and effect (unless intended). It is not possible to display the parametric concept of 

statistical interaction in a DAG. Since an interaction allows for comparison of treatment effects for 

males and females, the term subgroup analysis is also used. The interpretation of main effects is 

different in the presence of an interaction term: each main effect refers to the reference group of 

other variables and to obtain the effect in the non-reference group, all three estimates (treatment, 

sex and treatment.sex) must be considered simultaneously in combination.  

The importance of scale in statistical interaction  

The choice of link function (e.g. identity vs. logit) affects the scale upon which covariate changes 

are associated with the outcome. Switching between a continuous model (identity link) and a binary 

model (logit link) changes model scale from additive to multiplicative. Consider the outcome Blood 

Pressure (BP) measured in millimetres’ mercury (mmHg), dichotomised across the threshold of 
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140 mmHg to create a binary outcome Hypertension (Hyp). Also consider two covariates: a genetic 

binary variable (G) to depict individuals with a genetic mutation predisposing to hypertension 

(coded 1 if present, 0 otherwise); and an environmental variable (E) recorded as a binary to depict 

high or low salt intake (coded 1 or 0 respectively); and assume that both the genetic mutation and 

high salt intake elevates blood pressure.  

The normal linear model is: 

 𝐵𝑃 = 𝛽0 + 𝛽1𝐺 + 𝛽2𝐸 + 𝛽3𝐺𝐸 + 𝑒  Eq.1 

The binary logistic model is: 

 logit(𝐻𝑦) = ln (
𝑝

1−𝑝
) = 𝛾0 + 𝛾1𝐺 + 𝛾2𝐸 + 𝛾3𝐺𝐸 + 𝜖 . Eq.2 

For no statistical interaction, 𝛽3 = 0 in Eq.1 and 𝛾3 = 0 in Eq.2; for a synergistic interaction, 𝛽3 > 0 

and 𝛾3 > 0; for an antagonistic interaction, 𝛽3 < 0 and 𝛾3 < 0. Chart model coefficients two ways: 

(a) using a single chart for all model coefficients showing their relative effect sizes regarding the 

genetic wild type and low salt intake group; or (b) & (c) separate charts for high and low salt 

intake, respectively, contrasting genetic mutation to the wild type (i.e. the ‘normal’ genetic form).  

With no statistical interaction between genetic mutation and salt intake, the difference in blood 

pressure within the normal model between those with and without the genetic mutation is 10 

mmHg and the difference between those with and without high salt intake is 15 mmHg, seen in 

both chart formats (Figure 1). With an antagonistic statistical interaction, there is a smaller 

elevated blood pressure (20 mmHg) for the combined genetic mutation and higher salt intake than 

expected from adding the separate effects of genetic mutation and high salt intake (10 mmHg + 

15 mmHg ≠ 20 mmHg), and this is observed in both graphical formats (Figure 2).  

Considering the logistic model with no statistical interaction, plotting odds ratios (ORs: exponential 

of the model coefficients), the absolute difference in the wild type versus mutation odds ratios for 

hypertension between low and high salt intake is (14.0 − 4.9) − (2.8 − 1.0) = 7.3 (Figure 3a), not zero. 

When the ORs for elevated blood pressure are plotted separately for low and high salt intake, their 

absolute difference is zero (Figures 3b & 3c: (2.8 − 1.0) − (2.8 − 1.0) = 0.0). For an antagonistic 

statistical interaction, the combined chart (Figure 4a) reveals a small absolute difference 

[(10.5 − 6.4) − (3.9 − 1.0) = 1.2] in the wild type versus mutation ORs for hypertension between low 

and high salt intake, whilst the separate charts for low and high salt intake indicate a larger 

absolute difference [(3.9 − 1.0) − (1.6 − 1.0) = 2.3], nearly twice as large (Figures 4b & 4c).  

How model coefficients are plotted, i.e. in combined or separate charts, gives rise to different 

‘visual’ indications of the presence / absence of a statistical interaction and its magnitude; only the 

two-chart format is correct (though this is perhaps impractical for regular use). It is the graphical 

scale adopted that creates confusion, as the normal model should be (and is) displayed on the 

additive scale, whilst the logistic model should be (but was not) displayed on the multiplicative 

odds ratio scale; the combined chart is informative of statistical interaction only on the correct 

scale. Thus, the log scale is adopted for displaying odds ratios. In general, a chart’s y-axis must 

be transformed by the link function to avoid misleading graphical display of model coefficients 

regarding the presence, absence or magnitude of a statistical interaction.  



Advanced Modelling Strategies Summer School Lecture Notes University of Leeds © 

 Page | 85  

Figure 1:  A normal model for hypertension without statistical interaction between genotype and salt 
intake, showing coefficients combined and separately for low and high salt intake 

 

Figure 2:  A normal model for hypertension with antagonistic statistical interaction between genotype 
and salt intake, showing coefficients combined and separately for low and high salt intake 

 

Figure 3:  A logistic model for hypertension without statistical interaction between genotype and salt 

intake, showing coefficients combined and separately for low and high salt intake 

 

Figure 4:  A logistic model for hypertension with antagonistic statistical interaction between genotype 
and salt intake, showing coefficients combined and separately for low and high salt intake 

 

Low Salt High Salt

10

15

25

0

10

20

Wild Type Mutation Wild Type Mutation

E
le

v
a

te
d

 B
lo

o
d

 P
re

s
s
u

re
 (

m
m

H
g

)

(a) Combined

0

10

0

5

10

15

20

25

Wild Type Mutation
E

le
v
a
te

d
 B

lo
o
d
 P

re
s
s
u
re

 (
m

m
H

g
)

(b) Separate: Low Salt

15

25

0

5

10

15

20

25

Wild Type Mutation

E
le

v
a
te

d
 B

lo
o
d
 P

re
s
s
u
re

 (
m

m
H

g
)

(C) Separate: High Salt

10

15

20

Low Salt High Salt

0

10

20

Wild Type Mutation Wild Type Mutation

E
le

v
a

te
d

 B
lo

o
d

 P
re

s
s
u

re
 (

m
m

H
g

)

(a) Combined

0

10

0

5

10

15

20

25

Wild Type Mutation

E
le

v
a
te

d
 B

lo
o
d
 P

re
s
s
u
re

 (
m

m
H

g
)

(b) Separate: Low Salt

15

20

0

5

10

15

20

25

Wild Type Mutation

E
le

v
a
te

d
 B

lo
o
d
 P

re
s
s
u
re

 (
m

m
H

g
)

(C) Separate: High Salt

Low Salt High Salt

1

2.8

4.9

14

0

4

8

12

16

Wild Type Mutation Wild Type Mutation

H
y
p
e
rt

e
n
s
io

n
 O

d
d
s
 R

a
ti
o
 (

O
R

)

(a) Combined

1

2.8

0

4

8

12

16

Wild Type Mutation

H
y
p
e
rt

e
n
s
io

n
 O

d
d
s
 R

a
ti
o
 (

O
R

)

(b) Separate: Low Salt

1

2.8

0

4

8

12

16

Wild Type Mutation

H
y
p
e
rt

e
n
s
io

n
 O

d
d
s
 R

a
ti
o
 (

O
R

)

(C) Separate: High Salt

Low Salt High Salt

1

3.9

6.4

10.5

0

3

6

9

12

Wild Type Mutation Wild Type Mutation

H
y
p
e
rt

e
n
s
io

n
 O

d
d
s
 R

a
ti
o
 (

O
R

)

(a) Combined

1

3.9

0

3

6

9

12

Wild Type Mutation

H
y
p
e
rt

e
n
s
io

n
 O

d
d
s
 R

a
ti
o
 (

O
R

)

(b) Separate: Low Salt

1
1.6

0

3

6

9

12

Wild Type Mutation

H
y
p
e
rt

e
n
s
io

n
 O

d
d
s
 R

a
ti
o
 (

O
R

)

(C) Separate: High Salt



Advanced Modelling Strategies Summer School Lecture Notes University of Leeds © 

 Page | 86  

All regression models are scale dependent, which matters when seeking to interpret statistical 

interaction. There is nothing special about the scales adopted by most models; they are usually 

chosen for statistical convenience. There are an infinite number of possible scales on which model 

covariates could relate to the outcome, depending on the link function chosen. As there are only a 

handful of regularly used link functions, it is easy to overlook how arbitrary model scale is.  

The importance of the linearity in statistical interaction 

Consider the following linear model: 

 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑧 + 𝛽4𝑥𝑧 + 𝑒 Eq.3 

where 𝑦 is a continuous outcome, 𝛽0 is the intercept, 𝑥 is the exposure of interest and known to 

exhibit a curvilinear relationship with the outcome (hence the quadratic term in 𝑥), 𝑧 is a continuous 

confounder, 𝛽i (i=1…4) are covariate regression coefficients, and 𝑒 is residual error that is normally 

distributed with mean zero and variance 𝜎2.  

In the parametric development of our causal thinking (i.e. transitioning from DAG to multivariable 

model), we anticipate an interaction between 𝑥 and 𝑧, hence the product interaction term 𝑥𝑧. Were 

we to find there is no 𝑥𝑧 interaction, then 𝛽4 = 0 and the correct model would be: 

 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑧 + 𝑒. Eq.4 

Now if we overlooked the curvilinear relationship, i.e. dropped the quadratic term (𝑥2) in Eq.3, 

whilst still exploring the possible 𝑥𝑧 interaction, the model we would consider is: 

 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽3𝑧 + 𝛽4𝑥𝑧 + 𝑒 Eq.5 

and a ‘spurious’ interaction (i.e. 𝛽4 ≠ 0) is likely to be observed in Eq.10 for the 𝑥𝑧 product 

interaction177. The collinearity between 𝑥 and 𝑧 effectively ‘mops up’ the unaccounted outcome 

variance that would have been accommodated by the curvilinear relationship between 𝑦 and 𝑥, and 

the statistical interaction is observed. The assumption of linearity between the outcome 𝑦 and 

covariate 𝑥 that is not upheld gives rise to the apparent statistical interaction. Over-simplification 

of statistical models in contrast to the complex biological processes they emulate, plus the arbitrary 

choice of link function, makes it unsurprising that several covariate-outcome relationships are 

nonlinear, with implications for statistical interactions. 

If underlying nonlinear relationships are overlooked in a multivariable model, statistical interaction 

will be observed. This is not ‘spurious’, as the model is mathematically sound; the issue is one of 

interpretation. The basis of a statistical interaction may be entirely statistical, not biological, and 

any causal interpretation of the statistical interaction may be misguided. Complex parameterisation 

(i.e. nonlinearity and/or interaction) rarely bestows insight regarding the putatively causal (joint) 

action biologically; parameterisation is an extension within the multivariable modelling toolkit from 

that of the simplest default starting point of a linear model where all relationships are assumed to 

be linear and have no interactions.  

Statistical power to test for interaction 

It is well documented that much larger sample sizes are required to test statistical interactions 

than for main effects178, and this is a criticism directed at many studies often berated for being too 

small to examine gene-environment interactions. Notwithstanding the overzealous nature to test 
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(and the associated undesirable addiction to p-values), the reasoning behind such sample-size 

criticisms is also flawed because the statistical power of an interaction is just as scale-dependent 

as the statistical interaction itself. Without a meaningful scale upon which the test is sought, there 

is no basis for power calculations. Perversely, one could take data from pilot studies and transform 

the data by trial and error to test different models repeatedly until one finds a transformation 

(hence a variable scale) upon which the sample size estimated is minimal. This strategy could save 

enormous expenditure in epidemiology, were it not as erroneous as the focus on p-values.  

Causal interpretation 

Within a causal inference framework, to describe the magnitude of causal effects, we are compelled 

to appreciate the causal nature of the variables involved, as within a DAG. The model we use must 

also reflect plausible parametric relationships amongst our observed variables. Compressing the 

complexity of biological processes into the simplicity of a statistical model is often unrealistic, and 

we should not seek to infer detailed understanding of biology from statistical models. Instead, we 

should have an a priori overview of plausible causal mechanisms and use statistical modelling to 

estimate causal effect sizes that have clinical meaning.  

Return to the illustration for deep vein thrombosis (DVT), Factor V Leiden genetic mutation and 

the environmental combined oral contraceptive pill (COCP). We might seek the joint association of 

genetic mutation and COCP with respect to DVT. Acknowledging that the environmental exposure 

(COCP) is not strictly categorical (COCP exposure varies per dose and by the extent of use), we 

nevertheless categorise this into present or absent, i.e. whether a woman uses the COCP or not. 

We might then examine any statistical interaction for the data summarised in Table 1 from a case-

control study175. Point estimates are presented, though 95% CIs should also be calculated. 

Table 1: Summary of the case-control study investigating the joint association of both Factor V Leiden 
genetic mutation and the combined oral contraceptive pill (COCP) use with respect to deep 
vein thrombosis (DVT) 

Factor V / COCP Cases Controls OR 

+/+ 25 2 34.7 

+/- 10 4 6.9 

-/+ 84 63 3.7 

-/- 36 100 1.0 

Totals 155 169  

As the analysis is undertaken using odds ratios, it is appropriate to consider the multiplicative scale 

when interpreting joint effects. To examine departure from a multiplicative model (i.e. with 

no statistical interaction) we take the ratio of observed (34.7) and expected (3.7×6.9×1.0=25.7) 

odds ratios, i.e. 34.7/25.7=1.4, and contrast this to unity (null effect on the odds ratio scale). The 

departure of 1.4 from 1.0 is small, but may be statistically significant for large studies, suggesting 

that there is a hint of statistical interaction on the OR (multiplicative) scale. 

We can examine departure from an additive model (i.e. with no statistical interaction), taking 

the difference between observed (34.7) and expected (3.7+6.9–1.0=9.6) odds ratios, i.e. 34.7–

9.6=25.1, and contrasting to zero (null effect on the standard linear scale). We note that 25.1 is 

far from zero and likely to be statistically significant for all but very small studies, suggesting strong 

evidence of statistical interaction on the standard linear (additive) scale. 
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What insight is gained from formally testing either departure if we do not know how to interpret 

statistical interaction (if present) on either scale? It is apparent that the multiplicative model fits 

the data closer than the additive model, statistically speaking, suggesting that the ‘joint effects’ of 

the genetic mutation and environmental exposure are approximately multiplicative on the OR 

scale, but from a causal perspective, what does this tell us? What does the information in Table 1 

mean with respect to public health: how does it inform women considering the COCP?  

Relative to not having Factor V Leiden genetic mutation and not using the COCP, taking the 

contraceptive increases a woman’s relative risk (RR) for DVT by approximately 3.6-fold (since DVT 

is rare, hence OR ≈ RR). If there was no reason for the woman to suspect she had the genetic 

mutation, which has a prevalence of around 4.4% in Europe179, these increased risks may or may 

not worry her. On the other hand, if she was aware of a family history of DVT, she may fear that 

she carries the genetic mutation, and considering the relative risk of having both the mutation and 

using COCP (RR≈34.7) compared to merely having the mutation (RR≈6.9), she might then seek 

to use alternative contraception, or explore being genetically tested first. Whilst there is no knowing 

how a woman would choose to use the information in Table 1, it is dubious to suppose her interest 

lies in the p-value of a formal test to verify a strong synergistic statistical interaction on the additive 

scale, or to establish the absence of an interaction on the multiplicative OR scale. The framework 

in which each woman’s decision is formed is likely influenced by the relative risk effect size (along 

with its confidence interval) than any formal test. Thus: Why focus on formal tests for statistical 

interaction? A related concern is: Why focus on the statistical power of such tests? 

Summary 

Invoking causal inference of joint processes in a statistical model may be at best consistent with 

some form of biological analogue; testing for statistical interaction does not contribute to causal 

understanding. Quantification of joint effects remains a legitimate goal, but rarely does its utility 

lie in the elucidation of biological process180. Overzealous interpretation of statistical interaction 

has the potential to invoke misunderstanding of the causal mechanisms operating. Statistical 

interactions are meaningful only in regards their estimated effect size and associated 95% CI and 

this effect size can be manipulated by either categorisation of continuous measures or application 

of other transformations. The obsession to test for statistical interaction is misguided and fuels 

attention to study sample size, pressuring researchers to seek sufficient statistical power for the 

elucidation of statistically significant joint effects. Consequently, there is a perceived and falsely 

legitimised demand for increasingly large studies. Insufficient attention is given to these issues181. 

Less attention is given to estimating the effect size of joint effects for clinical interpretation. Such 

practices are commonplace in the pursuit of gene-environment interactions, though the very same 

issues apply to all aspects of epidemiology (and beyond). The key is always to begin with a causal 

framework, and only then engage with parameterisation of models appropriate for that framework, 

and not the other way around. 
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