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ABSTRACT
The epidemiological concept of confounding has had
a convoluted history. It was first expressed as an issue
of group non-comparability, later as an uncontrolled
fallacy, then as a controllable fallacy named confounding,
and, more recently, as an issue of group non-
comparability in the distribution of potential outcome
types. This latest development synthesised the apparent
disconnect between phases of the history of
confounding. Group non-comparability is the essence of
confounding, and the statistical fallacy its consequence.
This essay discusses how confounding was perceived in
the 18th and 19th centuries, reviews how the concept
evolved across the 20th century and finally describes the
modern definition of confounding.

INTRODUCTION
To an unprepared mind, the terms ‘confounding’ or
‘confounder ’ do not immediately evoke the conse-
quences of comparing groups of people who differ
on determinants of the studied outcome. Expres-
sions suggesting the imbalanced distribution of
multiple independent causes across groups would
have conveyed the meaning more directly, but
epidemiology retained the verb confound. The
reason is that the theoretical work on the concept
of confounding started with a description of
a statistical fallacy: under some conditions, the
effect of an exposure could be similar in each
stratum of a third variable, but when these strata
were pooled, it was as if the effect of the exposure
of interest got ‘mixed’ with that of the third vari-
able.1 The fallacy was thus aptly named
confounding, from an old usage of the Medieval
Latin verb ‘confundere’, which meant mixing.2

Earlier attempts to trace the history of confounding
essentially focused on this conceptualisation of
confounding as a fallacy.2 3

Compared to earlier reports, the present essay
expands the history of the concept known today as
epidemiologic confounding in the phases preceding
and following the time when it was primarily
viewed as a fallacy. After discussing how
confounding was perceived in the 18th and 19th
centuries, the essay reviews how the concept
evolved across the 20th century and finally
describes the modern definition of confounding.

METHOD
The methodological approach driving this history
of confounding is inspired by Piaget’s genetic epis-
temology.3 4 The leading idea is that scientific
disciplines are in continual construction, formal-
isation and organisation. Their methods and
concepts are commonsensical when the discipline

first appears, but become increasingly theoretical
and abstract as the discipline acquires experience
and addresses questions of increasingly complex
nature.4

The genetic epistemology approach assumes that
the concept that was eventually named
confounding: A. had a history, which started with
commonsensical observations, B. evolved into an
increasingly abstract, formal and overarching
concept, and C. is still evolving today.
To trace the history of confounding, this essay

uses the four phases (preformal, early, classic and
modern) previously identified in the history of
epidemiological methods and concepts.3 It also
focuses on the theory of confounding, and does not
cover the statistical approaches to confounding-
related issues, (eg, collapsibility5) methods of
adjusting for confounding, or the history of causal
inference, which, even though closely related and
overlapping at times with that of confounding, has
a broader scope.5 6

PREFORMAL CONFOUNDING
Non-comparability of groups is the most primitive
epidemiological concern to which the modern
concept of confounding can be traced. When, in
1747, Lind7 compared the efficacy of candidate
treatments of scurvy, he made sure his six experi-
mental pairs of seamen were comparable, a priori,
in terms of determinants of scurvy lethality such as
disease stage, food and air quality.8

In the 19th century, group non-comparability
was a formidable criticism to epidemiological
studies.9 Hence the emphasis put by John Snow10

on the comparability of the 1854 London clients of
the Southwark and Vauxhall water company, who
drank polluted Thames water and experienced high
mortality from cholera, with those of the Lambeth
Company, who received relatively sewage-free
water and experienced low mortality from cholera.
Both groups, Snow insisted, were similar in social
standing, housing space and occupations. He
specifically investigated neighbourhoods with
mixed water supply, in which adjacent houses
could be supplied by different water companies.11

But for Snow’s contemporaries, like Farr12, who
believed that cholera was due to air pollution, that
is, miasma,13 the two companies served clients who
differed substantially in ways thought to be rele-
vant to the occurrence of cholera, such as elevation
above sea level, family income and quality of
housing. How could Snow confound his critics? He
could only speculate that the clients of the two
companies must have been comparable as a large
number of people (‘no fewer than 300 000’), ‘were
divided into two groups without their choice, and,
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in most cases, without their knowledge’.11 Retrospectively, we
understand that the contagionist Snow was arguing against the
miasmatic idea that the two client populations were comparable
on some miasma-related confounding characteristics. Snow
claimed that comparability was plausible, but he lacked the
techniques developed subsequently to achieve comparability
analytically or by design.

EARLY THEORY OF CONFOUNDING
Indeed, epidemiologists of the first half of the 20th century
began to formally address the criticism of non-comparability.9

They implemented new techniques such as random allocation of
treatment14, restriction of the study sample15, standardisation of
risks and rates15 16 and exposure propensity scores.17 18 They
improved the epidemiological study designs, such as retrospec-
tive cohort studies16 19 and casedcontrol studies.17 20 All of
these efforts aimed to design studies and/or analyse the data in
ways that purposefully optimised comparability on alternative
causes of the studied outcome. Surprisingly, the first definition
of the concept we refer to today as ‘confounding,’ did not follow
from this line of efforts to achieve balanced comparisons.

As shown in table 1, Yule,25 in 1903,1 Greenwood,26 in 1935,21

and Hill,27 in 1939,22 apparently independently described
a fallacy resulting from pooling data when a third variable was
not equally distributed in the compared groups. Yule used the
imaginary example of an attribute, not transmitted by fathers to
sons or by mothers to daughters, but that showed ‘considerable
apparent inheritance’ when the data of fathers, sons, mothers
and daughters were analysed together. Greenwood,21 imagined
an immunisation experiment, in which risk of death was similar
among the inoculated and the non-inoculated in first and second
groups of patients, but pooling the two groups together resulted
in a spurious protective effect of the inoculation. In Hill’s
example, a treatment did not work for men or women, but
reduced mortality when the male and female data were
combined.22

Yet, Yule, Greenwood and Hill do not seem to have viewed the
fallacy as a common issue in population studies, and did not
suggest computing a weighted average of the stratum-specific
effects to bypass it. Apparently, their examples went into
oblivion. The subsequent phase of the history of the epidemio-
logical concept of ‘confounding’ appears to be an offshoot of
discussions related to the modelling of interactions.

CLASSIC THEORY OF CONFOUNDING
Fisher28 used the verb ‘confound’ in 1926, to describe the
implication of discarding some high-order interactions in the
analysis of data from studies with factorial designs.2 Precision
could be improved, but the sacrifice of interactions would

amalgamate strata, eliminating and therefore ‘confounding’ the
manifestation of some of the underlying heterogeneity of
effects.29

In my view, Fisher was using the term ‘confounding’ in the
same way it had been used earlier by the English philosopher
Mill, that is, as the consequence of ignoring causal interactions.
For Mill, confounding meant ‘intermixture of causes,’ which he
defined as two or more causes, ‘modifying the effects of one
another ’.30 Mill was referring to a mixing of effects that were
heterogeneous across strata of one of the causes. This was
different from Yule’s fallacy, in which the exposure had a single
effect, which was similar in all strata of the extraneous factor,
except for being confounded in the pooled effect.
It is at that point that Simpson,31 building on Fisher ’s work,

made the contribution now known as Simpson’s paradox.
Simpson showed that discarding the interaction terms could
impact the estimation of the pooled effect even when the
stratum-specific effects were homogeneous. This could actually
leave ‘considerable scope for paradox and error ’. He gave the
example of an imaginary trial, (see table 1) in which the treat-
ment homogeneously increased the survival odds both for males
and females as separate groups, but had no effect when genders
were pooled.23

Simpson posited that, for second-order interactions to be
ignored, the third variable had to be independent of the treat-
ment among the non-outcomed and independent of the
outcome variable among the unexposed. Otherwise, stratifica-
tion had to be preserved. This became the core of the classic
epidemiological definition of confounding.
From 1959 on, expressions appear in the epidemiology litera-

ture, which evoke Yule’s fallacy or Simpson’s paradox without
explicitly referring to them. Papers and textbooks mention
‘indirect associations’,32 and ‘misleading associations,’ produced
by ‘extraneous factors’,33 or, ‘indirect associations generated by
factors related to both outcome and exposure’.34 The term
‘confounding’ itself began to appear in epidemiological articles
and textbooks in the 1970s.35e37 Its usage may have reflected the
influence of the sociologist Kish who had defined the term in
1959.2 38

Around 1980, it was specified, in addition to the two condi-
tions formulated by Simpson, that the third variable should not
mediate the relation of exposure to outcome.39 40 This third
condition highlighted the need for a priori, non-statistical
knowledge about the relationship of the potential confounder
with the other studied variables.41

Overall, table 1 shows the similarity of the quantitative
examples used to illustrate confounding as a mixing of effects,
from Yule1 to Rothman,24 that is, across most of the 20th
century. Yule’s expression of confounding as, ‘a fallacy caused by
the mixing of records (ie, strata)’1, is analogous to Rothman’s,

Table 1 Five historical representations of the concept of confounding as a fallacy resulting from mixing strata of exposure to a third factor

Author Contrast

Stratum 1 Stratum 2 ALL

Exposure 1 Exposure 2 OR* Exposure 1 Exposure 2 OR* Exposure 1 Exposure 2 OR*

Yule1,y Attribute present/absent 0.25/0.25 0.25/0.25 1.0 0.1/0.9 0.1/0.9 1.0 0.13/0.17 0.17/0.53 2.4

Greenwood21, z Dead/alive 50/50 500/500 1.0 50/950 5/95 1.0 100/1000 505/595 0.12

Hill22, x Dead/alive 16/64 6/24 1.0 16/24 24/36 1.0 32/88 30/60 0.7

Simpson23, x Dead/alive 5/8 3/4 0.8 15/12 3/2 0.8 20/20 6/6 1.0

Rothman24, { Fit/not fit 9/1 17/3 1.6 3/17 1/9 1.6 12/18 18/12 0.4

*OR, computed by AM, not in the original publications.
yStratum 1¼fathers; stratum 2¼mothers; exposure 1¼attribute present; exposure 2¼attribute absent.
zStratum 1¼group 1; stratum 2¼group 2; exposure 1¼inoculated; exposure 2¼not inoculated.
xStratum 1¼males; stratum 2¼females; exposure 1¼treatment; exposure 2¼no treatment.
{Stratum 1¼table 1; stratum 2¼table 2; exposure 1¼black hats; exposure 2¼grey hats.
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‘on the simplest level, confounding may be considered as
a mixing of effects’.24

MODERN THEORY OF CONFOUNDING
The classic definition of confounding had weaknesses. It was
derived from the relation of additional variables to exposure and
outcome, and not from the characteristics of the studied
association, such as non-comparability. A variable could meet
the classic definition and not be a confounder.42 Matching
for a confounder had different implications in cohort and
casedcontrol studies.39 43 Screening for confounding by
comparing the stratum-specific and the pooled effects could lead
to different conclusions based on whether one used risk ratios,
risk differences or ORs.39

The modern definition of confounding was inspired by work
in the analysis of randomised controlled trials. In 1923,
Neyman44 defined a causal effect as the impossible contrast
between the outcome of a single unit, say an individual, if
assigned the experimental treatment, and the outcome of that
same individual if concurrently assigned the reference treat-
ment.45 In 1974, Rubin stated the fundamental problem of effect
identification in terms similar to those of Neyman.46 If ‘y(E)�y
(C)’ is the effect of treatment E versus control C on outcome Y,
and assuming y(E) and y(C) need to be measured at time 2 on
the same person: ‘The problem in measuring y(E)�y(C) is that
we can never observe both y(E) and y(C) since we cannot return
to time t1 to give the other treatment’.46

Each individual can be observed in only one treatment state at
any point in time. Of the two potential outcomes (ie, under the
experimental or under the reference treatments), one is observed,
and the other needs to remain hypothetical. Thus, as described
by Copas in 1973,47 there could be four individual types of
potential outcome pairs for a dichotomous treatment (A and B)
followed by a dichotomous outcome (success or failure)
according to whether a subject would respond to A and B, A but
not B, B but not A, or neither A nor B.

There is literary evidence of the ongoing epidemiological
reflection about potential outcomes in the 1980s,48 49 but it
wasn’t until a 1986 paper by Greenland and Robins that the
potential outcome approach to confounding was made widely
accessible to epidemiologists.42 In Greenland and Robins’ paper,
the potential outcome model was confined to deterministic risks
(ie, risks that can equal either 0 or 1) but it differed from
previous discussions46 50 becausedas shown in table 2, which
imitates a table in Greenland and Robins’ 1986 paperdit used
the four ‘causal’ types47 dubbed ‘doomed’, ‘exposure causative’,
‘exposure preventive’ and ‘immune’.

The example in table 2 shows that if a centenarian lady has
been vaccinated and does not get the flu, she has no way of
knowing whether she was susceptible and the vaccine was
‘preventive’, or whether she is naturally ‘immune’. Similarly, if
a non-vaccinated person does not get the flu, she cannot know
whether she would have avoided the flu had she been vacci-
nated. She could be ‘doomed’ or she could lack the protection of
the ‘preventive’ vaccine. The effect of the vaccine cannot be
identified, or its parameter estimated, without knowing both
potential outcomes, under vaccination, as well as under no
vaccination. This is the logical impasse mentioned by Rubin46:
both potential outcomes cannot be observed simultaneously in
the same person.
Consider now, two large randomised groups of N subjects

each, and that in each group, the N subjects are d doomed, c
causative, p preventive and i immune to flu, where d+c+p+
i¼N. One group gets the vaccine and the other does not. The
risk difference of getting the flu is identifiable as groups are large
and comparable with respect to their potential outcome types,
assuming there were no gross violations of the assignment
protocol,51 misclassification, or losses in the follow-up. They are,
in Greenland and Robins’ terminology, ‘exchangeable’. The risk
of flu is RV¼(d+c)/N in those vaccinated, and RNV¼(d+p)/N in
those not vaccinated. The risk difference between the non-
vaccinated and the vaccinated is RD¼RV�RNV¼(p�c)/N. The
risk difference only ‘partially identifies’ the vaccine effect,
because a zero effect could be due to the vaccine causing as
many flu cases (c) as it prevents (p). ‘Full identification’ is
possible if, for example, the vaccine does not contain killed or
weakened influenza virus, but only split particles of the flu virus,
which cannot cause flu. Under this scenario, there are no ‘c’
subjects and the risk difference is simply (p/N), that is, if c¼0.
However, if the groups were not at least ‘partially ’

exchangeable, as if, for example, there were more ‘doomed’ (eg,
centenarians with lethargic immune response) in the vaccinated
group than in the non-vaccinated group, the ds would not cancel
out, and the risk difference would be confounded.

Table 2 Definition and notation of potential outcome types and their
outcomes according to two potential outcomes

Outcome

Types n Description Vaccinated Not vaccinated

Doomed d Does not respond to vaccine Flu Flu

Causative c Vaccine induces flu Flu No flu

Preventive p Responds to vaccine No flu Flu

Immune i Insensitive to flu No flu No flu

The example is from a centenarian lady who gets an anti-flu vaccine. When later exposed to
the flu, she may develop flu symptoms anyway, as if she had not been vaccinated, because
her immune system is too weak to respond to the vaccine. In this case she would be
‘doomed’ to get the flu. Or she may develop flu symptoms she would otherwise not have
had because the vaccine contained a live virus that made her sick. In this case, it is because
she is susceptible to a ‘causative’ vaccine. On the other hand, she may not develop flu
because the vaccine protected her (susceptible to the ‘preventive’ vaccine) or because she
has a genetic trait making her immune to influenza viruses (‘immune’ to flu).

What is already known on this subject

< Earlier attempts to trace the history of confounding focused on
the period when confounding was conceptualised as a fallacy
resulting from mixing the effect of the studied variables with
that of a third variable.

What this study adds

< The present essay expands the history of the concept known
today as epidemiologic confounding to the 18th and 19th
century when it began to be viewed as an issue of non-
comparability between groups.

< It also explains how the modern definition of confounding
based on potential outcome contrasts has reinstated group
non-comparability as the essence of confounding and
established that the statistical fallacy, from which
confounding draws its name, is a consequence of group
non-comparability.
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This theory of confounding derived from potential outcome
contrasts has been generalised from randomised to observational
studies,52 it has helped to formally distinguish confounding
from selection bias53 and has recently been revisited by its
authors.54

CONCLUSION
From a broad historical perspective, the modern definition of
confounding based on potential outcome contrasts has rein-
stated group non-comparability as the essence of confounding,
establishing the statistical fallacy as one of its consequences.
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