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1. No estudo da representação do potencial de uma distribuição localizada de 
cargas, seguimos a seção 4.1 do Jackson. Faça em detalhe as contas que levam às 
expressões para os momentos multipolares 𝑞20;  𝑞21, equação 4.6 desse livro texto. 

_______________________________________________________________________ 

2. Uma linha de cargas localizada ao longo do eixo 𝑧 tem uma densidade linear de 
carga 𝜏(𝑧) e está confinada no intervalo −𝑅 ≤ 𝑧 ≤ 𝑅. 

a) Mostre que a expressão para a carga total do sistema, 𝑄 = ∫ 𝜏(𝑧′)𝑑𝑧′
𝑅

−𝑅
,  

corresponde à densidade volumétrica de carga  

𝜌(𝑟′) =
𝜏(𝑟′ cos 𝜃′)

2𝜋𝑟′2
[𝛿(cos 𝜃′ − 1) + 𝛿(cos 𝜃′ + 1)] 

b) Calcule as expressões para os momentos multipolares 𝑞ℓ𝑚 que corresponde a 
essa distribuição de cargas. 

c) Usando a expressão do potencial em termos dos momentos multipolares, 
mostre que 

𝜙(𝑟) =
1

4𝜋𝜖0
∑ [∫ 𝜏(𝑧′)𝑧′ℓ𝑑𝑧′

𝑅

−𝑅

]
𝑃ℓ(cos 𝜃)

𝑟ℓ+1

ℓ

 

_______________________________________________________________________ 

3. Na seção 5.7 do Jackson, é obtida a expressão do torque sobre um dipolo 
magnético. Partindo da equação 5.70,  

𝜏 = ∫ 𝑟 × [𝑗(𝑟′) × 𝐵⃗⃗(0)]𝑑𝑉′, 

chega-se a (equação 5.72) 

𝜏 = 𝑚⃗⃗⃗ × 𝐵⃗⃗(0). 

Para obter esse resultado, o autor faz analogias com outras integrais já feitas. Sem usar 
esse argumento, mas explorando as técnicas utilizadas na Aula 18 MAI 2020, refaça 
detalhadamente todas as passagens para obter a expressão acima para o torque. 

_______________________________________________________________________ 

4. Uma antena é alimentada por um cabo coaxial no modo 𝜆 4⁄ , ou seja, cada um 
de seus ramos tem comprimento 𝑎 = 𝜆 4⁄ . Nessas condições, a corrente na antena tem 
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que formar um perfil de onda estacionária, ou seja, se anular em |𝑧| = 𝑎 e ser máxima 
em 𝑧 = 0, ou seja, 

𝐼(𝑧′, 𝑡′) = 𝐼0 cos (
𝜋𝑧′

2𝑎
) 𝑒−𝑖𝜔𝑡′

 

a) Partindo da expressão geral para o potencial 
vetor, 

𝐴(𝑟, 𝑡) =
𝜇0

4𝜋
∫

[𝑗(𝑟′, 𝑡′)]𝑟𝑒𝑡

|𝑟 − 𝑟′|
𝑑𝑉′ ;  𝑡𝑟𝑒𝑡 = 𝑡 −

|𝑟 − 𝑟′|

𝑐
 

e fazendo o desenvolvimento em série de Taylor apropriado para 𝑎 𝑟0⁄ ≪ 1 (veja figura), 

obtenha a expressão para o potencial vetor 

𝐴(𝑟, 𝑡) =
𝜇0𝐼𝑐

2𝜋𝜔

𝑒𝑖(𝑘𝑟0−𝜔𝑡)

𝑟0

cos (
𝜋
2 cos 𝜃)

(sin 𝜃)2
𝑒̂𝑧 

b) Escreva a expressão para o potencial vetor em 
coordenadas esféricas e mostre que o campo magnético 
é dado por 

𝐵⃗⃗(𝑟, 𝑡) = 𝑖
𝜇0

2𝜋

cos (
𝜋
2 sin 𝜃)

sin 𝜃

𝐼0𝑒𝑖(𝑘𝑟0−𝜔𝑡)

𝑟0
𝑒̂𝜑 

c) Obtenha a expressão para o vetor de Poynting médio 〈𝑆〉 e esboce a distribuição 
angular da potência radiada. 

_______________________________________________________________________ 

5. Num meio ionizado e magnetizado, a relação de dispersão para ondas se 

propagando ao longo do campo magnético ambiente 𝐵⃗⃗ tem dois ramos 

𝑘𝐷 =
𝜔

𝑐
[1 −

𝜔𝑝
2

𝜔(𝜔 − 𝜔𝑐)
]

1
2⁄

;   𝑘𝐸 =
𝜔

𝑐
[1 −

𝜔𝑝
2

𝜔(𝜔 + 𝜔𝑐)
]

1
2⁄

 

onde 𝜔𝑝 é a frequência de plasma do meio e 𝜔𝑐 é a frequência ciclotronica dos elétrons. 

A solução 𝑘 = 𝑘𝐷 corresponde a ondas circularmente polarizadas à direita e a 𝑘 = 𝑘𝐷a 
ondas circularmente polarizadas à esquerda. 

a) Considere 𝜔𝑝 > 𝜔𝑐 e faça um diagrama de dispersão (gráfico 𝜔 × 𝑘), mostrando 

esquematicamente os dois ramos da relação de dispersão. Em particular, indique 
claramente no gráfico 

• frequências de corte dos dois ramos (𝑘 → 0) 

• comportamento assintótico dos dois ramos quando (𝜔 → ∞) 

• quais modos se propagam na condição 𝜔 ≪ 𝜔𝑐 

• regiões em que nenhum dos modos se propagam 

b) Considerando ainda a condição 𝜔 ≪ 𝜔𝑐, determine as expressões para as 
velocidades de fase, 𝑣𝑓, e de grupo, 𝑣𝑔. 

_______________________________________________________________________ 
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6. Neste problema, vamos obter a expressão para o campo eletromagnético 

produzido por um plano de cargas que oscilam periodicamente com o tempo. Considere 

uma distribuição superficial uniforme de cargas no plano (𝑥, 𝑦), de forma que a 

densidade de cargas seja dada por 

𝜌(𝑟, 𝑡) = 𝜎𝛿(𝑧);   𝜎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

Suponha que as cargas oscilem periodicamente em torno de sua posição de equilíbrio 

com velocidade  

𝑣⃗(𝑡) = 𝑣0 cos(𝜔𝑡) 𝑒̂𝑥 

Como a densidade de cargas é constante, o potencial escalar também é constante, de 

forma que o campo eletromagnético resultante será associado somente ao potencial 

vetor produzido pela densidade de corrente  

𝑗(𝑟, 𝑡) = 𝜎𝑣0𝛿(𝑧) cos(𝜔𝑡)𝑒̂𝑥 

a) Usando a técnica de escrever 

[𝐺⃗(𝑟′, 𝑡′)]
𝑟𝑒𝑡

= ∫ 𝐺⃗(𝑟′, 𝑡′)𝛿(𝑡′ − 𝑡𝑟𝑒𝑡)𝑑𝑡′ 

empregada no problema 4 da Série de Exercícios 6, mostre que o potencial vetor pode 

ser escrito como 

𝐴(𝑟, 𝑡) =
𝜇0

4𝜋
𝜎𝑣0𝑒̂𝑥 ∫ Γ(𝑟, 𝑡 − 𝑡′) cos(𝜔𝑡′)𝑑𝑡′ 

onde 

Γ(𝑟, 𝑡 − 𝑡′) = ∫
𝛿 [𝑡 − 𝑡′ −

1
𝑐

√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2]

√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2
𝑑𝑥′𝑑𝑦′ 

b) Para fazer a integral para Γ(𝑟, 𝑡 − 𝑡′), utilize coordenadas polares, isto é,  

𝑥′ − 𝑥 = ℓ cos 𝜃 ;  𝑦′ − 𝑦 = ℓ sin 𝜃 ;    𝑑𝑥′𝑑𝑦′ = ℓ𝑑ℓ𝑑𝜃 

e simplifique o argumento da função delta definindo a variável  

𝑠 =
1

𝑐
√ℓ2 + 𝑧2 − ∆𝑡;    ∆𝑡 = 𝑡 − 𝑡′ 

Obtenha, então, 

Γ(𝑟, 𝑡 − 𝑡′) = 2𝜋𝑐 ∫ 𝛿(𝑠)𝑑𝑠
∞

|𝑧|
𝑐

−∆𝑡

= 2𝜋𝑐Θ (𝑡 − 𝑡′ −
|𝑧|

𝑐
) 

onde Θ(𝑠) é a função degrau. 

c) Utilizando esse resultado, obtenha a expressão para o potencial vetor 
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𝐴(𝑟, 𝑡) =
𝜇0

2
𝜎𝑣0𝑐𝑒̂𝑥 ∫ cos(𝜔𝑡′)𝑑𝑡′

𝑡−
|𝑧|
𝑐

−∞

=
𝐸0

𝜔
sin (𝑡 −

|𝑧|

𝑐
) 𝑒̂𝑥 ;   𝐸0 =

1

2
𝜇𝑜𝜎𝑣0𝑐 

(Nesse resultado, o valor constante do potencial vetor no infinito foi igualado a zero, já 

que não afeta as expressões para os campos). 

c) Determine a expressão do vetor de Poynting deste campo, para 𝑧 > 0. 

_______________________________________________________________________ 

7. Uma técnica muito empregada em laboratórios de esfriamento a laser para 

aprisionamento de átomos é fazer o feixe atômico se propagar ao longo do eixo de um 

solenoide que produz um campo magnético axial da forma 

𝐵(𝑧) = 𝐵𝑏 + 𝐵0√1 − 𝛽𝑧 

onde 𝐵𝑏 , 𝐵𝑜 e 𝛽 são constantes. Este campo causa um efeito Zeeman que varia com a 

posição, compensando o deslocamento Doppler dos átomos em movimento, os 

mantendo em ressonância com o laser enquanto desaceleram. Como o feixe atômico 

tem certa abertura, é importante conhecer o campo magnético fora do eixo para 

determinar como o laser interage com os átomos dentro do solenoide. 

O cálculo dessas componentes pode ser feito analiticamente utilizando uma técnica 

descrita no trabalho de pesquisadores do Instituto de Física de São Carlos, 

S.R. Muniz, V.S. Bagnato e M. Bhattacharya; Am. J. Phys. 83, 513 (2015). 

Estude o método por eles desenvolvido, nas três primeiras seções do artigo, e depois 

faça todas as passagens que levam as expressões do potencial e das componentes do 

campo na seção 4 do artigo, especificamente, equações (18), (19), (20), (21) e (22). 

OBS: O artigo referenciado está em anexo. 

 

 

 

 

 

 

 

 

 



Analysis of off-axis solenoid fields using the magnetic scalar potential: An application
to a Zeeman-slower for cold atoms
Sérgio R. Muniz, Vanderlei S. Bagnato, and M. Bhattacharya

Citation: American Journal of Physics 83, 513 (2015); doi: 10.1119/1.4906516
View online: https://doi.org/10.1119/1.4906516
View Table of Contents: https://aapt.scitation.org/toc/ajp/83/6
Published by the American Association of Physics Teachers

ARTICLES YOU MAY BE INTERESTED IN

Magnetic field of a cylindrical coil
American Journal of Physics 74, 621 (2006); https://doi.org/10.1119/1.2198885

Cylindrical magnets and ideal solenoids
American Journal of Physics 78, 229 (2010); https://doi.org/10.1119/1.3256157

Magnetic field of a finite solenoid with a linear permeable core
American Journal of Physics 79, 1030 (2011); https://doi.org/10.1119/1.3602096

Magnetic field due to a solenoid
American Journal of Physics 52, 258 (1984); https://doi.org/10.1119/1.13936

Electromagnetic mirrors in the sky: Accessible applications of Maxwell's equations
American Journal of Physics 83, 506 (2015); https://doi.org/10.1119/1.4913412

The Magnetic Scalar Potential
American Journal of Physics 39, 1357 (1971); https://doi.org/10.1119/1.1976655

https://images.scitation.org/redirect.spark?MID=176720&plid=1117236&setID=405125&channelID=0&CID=370294&banID=519905950&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=989e1573c8ce9d6d47c9627c5001432c147f8c7c&location=
https://aapt.scitation.org/author/Muniz%2C+S%C3%A9rgio+R
https://aapt.scitation.org/author/Bagnato%2C+Vanderlei+S
https://aapt.scitation.org/author/Bhattacharya%2C+M
/loi/ajp
https://doi.org/10.1119/1.4906516
https://aapt.scitation.org/toc/ajp/83/6
https://aapt.scitation.org/publisher/
https://aapt.scitation.org/doi/10.1119/1.2198885
https://doi.org/10.1119/1.2198885
https://aapt.scitation.org/doi/10.1119/1.3256157
https://doi.org/10.1119/1.3256157
https://aapt.scitation.org/doi/10.1119/1.3602096
https://doi.org/10.1119/1.3602096
https://aapt.scitation.org/doi/10.1119/1.13936
https://doi.org/10.1119/1.13936
https://aapt.scitation.org/doi/10.1119/1.4913412
https://doi.org/10.1119/1.4913412
https://aapt.scitation.org/doi/10.1119/1.1976655
https://doi.org/10.1119/1.1976655


Analysis of off-axis solenoid fields using the magnetic scalar potential:
An application to a Zeeman-slower for cold atoms

S�ergio R. Muniz and Vanderlei S. Bagnato
Instituto de F�ısica de S~ao Carlos, Universidade de S~ao Paulo, S~ao Carlos, SP 13560-970, Brazil

M. Bhattacharya
School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive,
Rochester, New York 14623

(Received 15 March 2010; accepted 13 January 2015)

In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar

magnetic potential, and one can apply the same methods commonly used in electrostatics. Here, we

show how to calculate the general vector field inside a real (finite) solenoid, using only the

magnitude of the field along the symmetry axis. Our method does not require integration or

knowledge of the current distribution and is presented through practical examples, including a

nonuniform finite solenoid used to produce cold atomic beams via laser cooling. These examples

allow educators to discuss the nontrivial calculation of fields off-axis using concepts familiar to most

students, while offering the opportunity to introduce themes of current modern research. VC 2015
American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4906516]

I. INTRODUCTION

Magnetic fields produced by solenoids and axially symmet-
ric coils are ubiquitous, and the ability to calculate them is an
integral part of training in physics. Time constraints, however,
tend to focus the attention of most introductory electromag-
netism (EM) courses on the analytical solution of only a few
highly symmetrical cases, such as the field along the axis of a
circular coil or inside an infinite solenoid.1–5 Nevertheless,
many applications require at least an estimate of the full vec-
tor field in regions away from the axis,6–8 which involve
mathematical tools often not discussed at the introductory
level. On the other hand, most EM courses already dedicate a
fair amount of time teaching students to identify and solve
electrostatic problems using the Laplace equation. In some
cases, the same methods can be applied to magnetostatic prob-
lems, sometimes leading to useful insights.

Sadly, most students do not appreciate the similarities
between the two classes of problems9 due to a limited expo-
sure to practical examples involving the magnetic potential.
We feel that the ability to make use of the magnetic potential
is useful,10,11 particularly because scalar potentials are gen-
erally more intuitive and easier to visualize. Besides, a uni-
fied treatment could be pedagogically relevant in
generalizing the discussion of the multipole expansions.12–14

Therefore, the primary goal here is to present a couple of
pedagogical examples illustrating the application of the mag-
netic potential method to real solenoids.

In addition, these examples also offer the opportunity to
discuss in the classroom axisymmetric fields evaluated off-
axis, without the need to introduce the formalism of elliptic
integrals. Although other methods for finding off-axis mag-
netic fields have been mentioned earlier in the literature,6,7

to our knowledge, it has not been presented from such a sim-
ple and intuitive viewpoint.

As further motivation, we have chosen an example that
brings a real and practical application from the cutting edge of
research into the classroom: a nonuniform solenoid used in
many research laboratories to produce beams of slow (cold)
atoms. This solenoid, known as a Zeeman-slower,15–17 is used
in conjunction with appropriately prepared laser beams to

slow down and cool neutral atoms, from hundreds of Kelvin
to milliKelvin temperatures, by combining the action of radia-
tion pressure with the Zeeman effect. This device is one of the
key developments in the area of laser cooling,18,19 and one of
the enabling technologies leading to the 1997 Nobel prize in
Physics.20 The techniques for laser cooling and trapping of
atoms have produced many dramatic advancements in our
understanding of quantum physics,21 including the achieve-
ment of Bose-Einstein condensation, which was recognized
with another Nobel prize20 in 2001. In both cases, magnetic
fields were an important part of experimental design and data
interpretation. Educators can use the solenoid discussed here,
as well as the references herein, to introduce and discuss some
of these modern developments in quantum physics, making
the subject more interesting to students.

II. REVIEWING SOME BASIC CONCEPTS

We begin here by recalling the fundamental equation of
magnetostatics: ~r � ~H ¼ ~J , where ~H is the magnetic field
and ~J the current density. Typically, ~H is related to the mag-
netic induction field ~B by some constitutive relation express-
ing the properties of a particular material. For linear and
isotropic materials with magnetic permeability l, ~B ¼ l~H
and in a current-free region ~r � ~B ¼ 0, implying that
~B ¼ �~r/M. Since Maxwell’s equations also state that
~r � ~B ¼ 0, this results in r2/M ¼ 0, which is Laplace’s
equation for the magnetic (scalar) potential /M, in any
current-free region.

Although Laplace’s equation is only typically valid in a
region free of charges or currents, they are allowed to exist
on or outside a surface S surrounding that region. The solu-
tions of Laplace’s equation present three important proper-
ties: superposition, smoothness, and uniqueness. The
property of superposition results from the fact that Laplace’s
equation is a linear equation. Smoothness implies that no so-
lution in a region V of space, bounded by a surface S, can
present either a maximum or a minimum within V (extreme
values can occur only at the surface S). The third property is
the one most relevant to us here; it states3 that if one finds a
solution /M in a region of space consistent with the
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prescribed boundary conditions, then that solution is unique
up to an additive constant. Therefore, it does not matter
which particular method is used to find the solution. Once an
appropriate solution is found, we know it is the only
solution.

Despite the obvious similarities between the electrostatic
and magnetic potentials, there are indeed reasons why the
analogy can only be taken so far9,12 and why it is not widely
explored further in textbooks. The first one arises whenever
~J 6¼ 0, in which case it is not trivial to write a relation
between /M and ~J . The second complication occurs due to
the fact that the scalar potential is generally a multiply val-
ued function, requiring a prescription specifying where it can
be used. However, as shown by Bronzan,12 these complica-
tions can be overcome, permitting one to exploit the advan-
tages of a magnetic scalar potential.

III. THE MAGNETIC FIELD OF A FINITE UNIFORM

SOLENOID

Let us start by considering axisymmetric fields produced
by a solenoid (see Fig. 1). Because of the axisymmetric sym-
metry of this problem, the field on the z-axis can only depend
on z ¼ r cos h and must point in the 6z-direction. The mag-
netic potential can be found using as boundary condition the
magnitude of the field along the z-axis, Bz(z), which is read-
ily available through simple summation formulas over the
approximately circular coils forming the solenoid or by
direct measurement along the axis.

For generality and convenience, we describe the problem
using spherical coordinates, where the solution of the axi-
symmetric scalar potential /M can be written in the form

/M r; hð Þ ¼
X1
‘¼0

a‘r
‘ þ b‘

r‘þ1

� �
P‘ cos hð Þ; (1)

where a‘ and b‘ are the coefficients to be determined, and P‘
represents a Legendre polynomial of order ‘. Because we are
mainly interested in the values of the field inside the sole-
noid, we set b‘¼ 0 to avoid a singularity at r¼ 0. As a result,
the potential takes the simpler form

/Mðr; hÞ ¼ a0 þ a1rP1ðcos hÞ þ a2r2P2ðcos hÞ þ � � � ;
(2)

and for points along the z-axis becomes

/MðzÞ ¼ a0 þ a1zþ a2z2 þ a3z3 þ � � � : (3)

Equation (3) is a Taylor series about the point z¼ 0, so the
coefficients are given by

a‘ ¼
1

‘!

@‘/M

@z‘

� �
z¼0
: (4)

In this way, the full scalar potential in Eq. (2) becomes ana-
lytically determinable, allowing us to evaluate ~B ¼ �~r/M
at any point in space.

As a first example, let us consider the case of a finite sole-
noid of length L and radius R carrying a uniform current I, as
illustrated in Fig. 1. If the solenoid has N turns per unit
length, the magnetic field along the z-axis can be calculated
by integrating the expression for the axial field of a circular
current loop,1 giving

B zð Þ ¼ a
zþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ z2
þ

p � z�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

�
p� �

; (5)

where z6¼ z 6 L/2 and a¼ l0NI/4p in SI units. Now, since

Bz zð Þ ¼ �
@/M

@z
; (6)

we can write

/MðzÞ ¼ �
ð

Bðz0Þ dz0: (7)

Using Eq. (5) in Eq. (7), we obtain the general form of the
potential for the finite solenoid along the axis:

/MðzÞ ¼ �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

�

q� �
: (8)

Expanding Eq. (8) in a Taylor series about z¼ 0, we get
the various coefficients for /MðzÞ. Then, using these coeffi-
cients in Eq. (2), we find the scalar potential valid every-
where inside the solenoid as

/M r; hð Þ ¼ � aLr cos h

R2 þ L2=4ð Þ1=2
þ 3

2

5

3
cos3 h� cos h

� �
� La

2 R2 þ L2=4ð Þ3=2
� L3a

8 R2 þ L2=4ð Þ5=2

" #
r3 þ � � � : (9)

Finally, using this potential one can calculate the components Br and Bh of the magnetic field as

Br ¼ �
@/M r; hð Þ

@r
¼ aL cos h

R2 þ L2=4ð Þ1=2
� 3

2
5 cos3h� 3 cos hð Þ � La

2 R2 þ L2=4ð Þ3=2
� L3a

8 R2 þ L2=4ð Þ5=2

" #
r2 þ � � � ; (10)

and

Bh ¼ �
1

r

@/M r; hð Þ
@h

¼ � La sin h

R2 þ L2=4ð Þ1=2
� 3

2
sin h� 5 cos2 h sin hð Þ � La

2 R2 þ L2=4ð Þ3=2
� L3a

8 R2 þ L2=4ð Þ5=2

" #
r2 þ � � � :

(11)
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We note that these results give (approximate) analytical
results for the magnetic field everywhere inside the solenoid,
with their precision limited only by the number of terms
included in the power series expansion. One can test these
results by comparing Eqs. (9) and (10) with those presented
in Chapter 5 of Ref. 2, where a different method was used to
evaluate the field components. In particular, we will show
that if one keeps only the first order term in the expansion,
the result simplifies to the approximate solution given in
problem 5.2. To begin, we recall the relations

Bq ¼ Br sin hþ Bh cos h; (12)

Bz ¼ Br cos h� Bh sin h; (13)

from which we obtain, up to third order,

Bq ’
3aLR2r2

2 R2 þ L2=4ð Þ5=2
sin h cos h: (14)

Finally, using q ¼ r sin h and z ¼ r cos h in the limit R� L,
we find

Bq q; zð Þ ’
96pNI

c

R2zq
L4

� �
; (15)

which is expressed here in CGS units (with a¼ 2pNI/c) to
facilitate direct comparison with Ref. 2.

In Fig. 2, we compare the results obtained by keeping the
first eight terms in the series expansion (solid curve), corre-
sponding to the 15th order in r, against numerical simula-
tions of the field (dots/circles) using a direct summation over
the exact analytical expression (elliptic integrals) for each
individual coil of the finite solenoid. In addition, Fig. 2 also
shows the good partial agreement obtained using the third-
order approximation (dashed curve), extending to distances
up to about half the size of the solenoid. Note that, for a real
finite system, the disagreement increases rapidly after some
point (for jzj� 0:25 for third order and jzj� 0:5 for 15th
order). The agreement can be improved significantly by

including higher-order terms, allowing for a much better
approximation near the edges, as shown in Fig. 2. However,
due to the simplifications made, the power series approxima-
tion still does not contain all the physics of the problem. For
instance, it does not accurately describe the field outside the
solenoid. Nevertheless, the magnetic potential method pre-
sented here still provides a reasonable representation of the
internal fields up to the very end of the solenoid.

IV. THE ZEEMAN-SLOWER: AN

INHOMOGENEOUS FINITE SOLENOID

We now consider a practical problem, familiar to many
atomic physics laboratories, which is the design of a solenoid
capable of producing a field on the z-axis of the form

BðzÞ ¼ Bb þ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bz

p
; (16)

where Bb, B0, and b are constants. Such a field is suitable for
slowing atomic beams using laser light.15 The field of Eq.
(16) causes a spatially varying Zeeman effect that compen-
sates for the changing Doppler shift of the moving atoms,
thus keeping them in resonance with the light as they decel-
erate along the beam path. This technique is called Zeeman
slowing,15 and the shape is chosen to keep the radiation pres-
sure constant, typically with a particle acceleration of
�106 m/s2 throughout the Zeeman solenoid17 (see Fig. 3).

Fig. 2. Comparison of the power series approximation (solid and dashed

curves) with a numerical simulation (points/circles) of the exact field (using

elliptic integrals) for a uniform solenoid (L¼ 1 m, R¼ 10 cm, and N¼ 100)

carrying a current of I¼ 1 A. We plot both the axial field (a) and the trans-

verse field (b) profiles. All results are evaluated off-axis (q¼ 8 cm) and the

power series results are shown for expansions up to third (dashed) and 15th

(solid) orders. The inset in (a) shows the good agreement obtained near

z¼ 0, even for the third-order approximation.

Fig. 1. (a) Schematic representation of a finite and homogenous solenoid.

The crosses (dots) represent current flowing into (out of) the page. (b) The

relevant coordinates and field directions.
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In general, the atomic beam encompasses a certain solid
angle as it traverses the solenoid and most atoms follow tra-
jectories that do not lie exactly on the axis. Since the reso-
nance condition with the laser depends on both the
magnitude (via detuning) and direction (via polarization) of
the magnetic field, the knowledge of the off-axis field is im-
portant in understanding how light interacts with atoms at
different points inside the solenoid.

In this case, the magnetic potential along the z-axis takes
the form

/M zð Þ ¼ �
ð

B z0ð Þ dz0 ¼ �Bbzþ 2

3

B0

b
1� bzð Þ3=2; (17)

where the constant of integration has been suppressed.
Following the same steps as in Sec. III and after calculating
the derivatives and solving for the coefficients a‘, we obtain
the general form of the magnetic potential for the Zeeman
solenoid:

/M r; hð Þ ¼ 2

3

B0

b
� Bb þ B0ð Þr cos h

þ B0ffiffiffi
p
p
X1
n¼2

bn�1C n� 1

2

� �
n! 2n� 3ð Þ rnPn cos hð Þ;

(18)

where C(n) is the gamma function. Calculating the spherical
components of the magnetic field then gives

Br r; hð Þ ¼ Bb þ B0ð Þcos h

� B0ffiffiffi
p
p
X1
n¼2

bn�1C n� 1

2

� �
n� 1ð Þ! 2n� 3ð Þ r

n�1Pn cos hð Þ

(19)

and

Bh r; hð Þ ¼ � Bb þ B0ð Þsin h

� B0ffiffiffi
p
p

sin h

X1
n¼2

bn�1C n� 1

2

� �
n� 1ð Þ! 2n� 3ð Þ r

n�1

� cos hPn cos hð Þ � Pn�1 cos hð Þ
� �

: (20)

The transverse and axial components can be obtained from
Eq. (13), giving

Bq q; zð Þ ¼
�B0ffiffiffi

p
p

X1
n¼2

bn�1C n� 1

2

� �
n� 1ð Þ! 2n� 3ð Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ q2

p� �n

q
Pn ~zð Þ � ~zPn�1 ~zð Þ½ � (21)

and

Fig. 4. Comparison for the series solutions of the Zeeman solenoid for Bz

with q¼ 0, and Bq with q¼ 2.5 cm. The points represent the actual experi-

mental field and the solid lines are the analytical (series) approximations

[Eqs. (21) and (22)] of the model function in Eq. (16).

Fig. 3. (a) Sketch of a tapered (triangular shape) solenoid creating an inho-

mogeneous current distribution to produce the appropriate axial field profile

(b) for a Zeeman solenoid, with L¼ 125 cm, R¼ 4 cm, and Bmax� 120 mT.

The solid line shows B (¼Bz) along the axis (q¼ 0), whereas the dashed line

represents the transverse field Bq at q¼ 2.5 cm.
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Bz q; zð Þ ¼ Bb þ B0ð Þ� B0ffiffiffi
p
p
X1
n¼2

bn�1C n� 1

2

� �
n� 1ð Þ! 2n� 3ð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ q2

p� �n�1

Pn�1 ~zð Þ; (22)

where we have introduced the shorthand ~z ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ q2

p
.

Notice that the transverse component of the magnetic field
inside the Zeeman-slower does not depend on Bb. Also, note
that Bq¼ 0 at q¼ 0 (on-axis), as expected, and it can be veri-
fied that the on-axis field sums back to the exact expression
of Eq. (16). Although caution may be necessary when evalu-
ating the field for q¼ 0 (h¼ 0), the careful use of
L’Hospital’s rule ensures finite and correct answers.

Now, to compare these analytical approximations (series
solutions) to the actual field, shown in Fig. 4, we will use a
different approach. The motivation is to mimic a situation
where the current distribution that generates the field may
not be known exactly, but the axial field can be measured
directly in the laboratory. This could be the case in a real
application, where imperfections in the winding pattern often
are not considered in the ideal model. From the experimental
data, one can then build a mathematical model by using ei-
ther a fitting function (if the functional form is known or can
be easily guessed) or by using an interpolating function, such
as a polynomial, to represent the data in a limited region of
space. Here, since the approximate functional form of the
axial field is known, we will extract the model parameters by
numerically fitting the data in Fig. 4, to Bz(z) in Eq. (16), and
substituting them into Eqs. (21) and (22). Note that the limi-
tations of this type of modeling may result in some inaccura-
cies, particularly close to the edges, where fringe effects are
important. In any practical situation, one may need to
explore different approaches to find a mathematical model
that is accurate enough in the region of interest.

After following these steps to model the data, we show in
Fig. 4 a comparison between the series solution and the real
field. There is a reasonable agreement between the solid
lines, representing Eq. (21) and Eq. (22), and the data points.
Note that, in contrast to the uniform finite solenoid where a
power series was used to approximate the exact solution,
here the power series simply approximates our model22 (fit-
ting) function. Therefore, increasing the order23 of the series
expansion only improves the agreement with the model func-
tion, which represents the data only over a limited region
and does not contain all the information in the problem. This
is clearly visible in Fig. 4, where good agreement is found
only in the range z� 0.4–1.2 m.

V. CONCLUSION

Using the simple concept of the magnetostatic scalar poten-
tial, and only the knowledge of the field along the symmetry
axis, we have shown how to determine the magnetic field any-
where inside an inhomogeneous finite solenoid, without ex-
plicitly integrating (or even knowing) the current distribution.
In cases where the current distribution is known, but the
expression for the off-axis field is nontrivial (for instance,
given by elliptical integrals), one can still gain some insight
by using the method described here. This simple analysis fol-
lows from a straightforward analogy with the electrostatic
boundary value problem and can be useful in determining

field inhomogeneities in various practical experiments involv-
ing solenoids. In the present article, we have used an example
from contemporary experiments in atomic physics to demon-
strate the method. However, we believe that a simplified ver-
sion of this discussion (e.g., the uniform finite solenoid) could
be used in an undergraduate classroom as a practical example
of a calculation of off-axis magnetic fields.
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