Grafos: caminhos mínimos Parte 3

SCC0216 Modelagem Computacional em Grafos

Thiago A. S. Pardo Maria Cristina F. Oliveira

Caminhos Mais Curtos de **Todos os**

Pares

- Suponha que um grafo orientado ponderado representa as possíveis vôos de uma companhia aérea conectando pares de cidades
- Suponha que queremos construir uma tabela com as melhores rotas, ou os menores caminhos, entre todas as cidades
- Esse é um exemplo de problema que exige encontrar os caminhos mais curtos para todos os pares de vértices

Caminhos Mais Curtos de Todos os

Pares

- Uma possível solução seria utilizar o algoritmo de Dijkstra considerando cada vértice como origem, alternadamente
- Uma solução mais direta é utilizar o algoritmo de Floyd-Warshall
 - Admite arestas com peso negativo, mas não admite ciclos de peso negativo (mesma situação de Bellman-Ford)
- Se |V| = n, o algoritmo utiliza uma matriz $A_{n \times n}$ para calcular e armazenar os tamanhos (ou custos) dos caminhos mais curtos

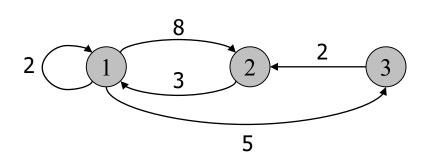
Caminho mínimo

- Grafo dirigido G(V,A) com função peso w: A→ℜ que associa pesos às arestas
- Seja p algum caminho do vértice u ao vértice v
- Seja w(p) o peso (custo) do caminho p
- Caminho de menor peso entre u e v:

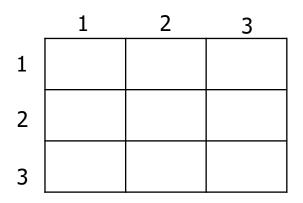
$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\Rightarrow} v\} se \exists rota \ de \ u \ p/v \\ \infty \ cc \end{cases}$$

Caminhos Mais Curtos de Todos os Pares:

Algoritmo de Floyd-Warshall



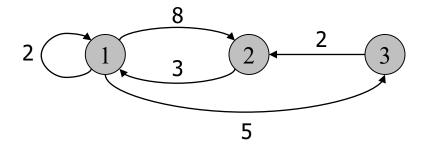
Grafo G(V,A)

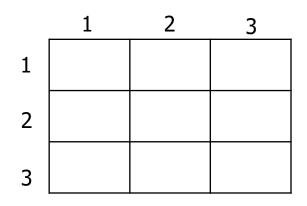


Matriz A

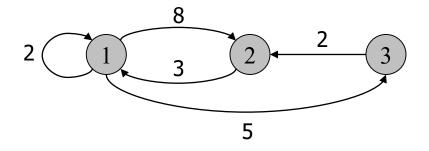
Caminhos Mais Curtos de Todos os Pares:

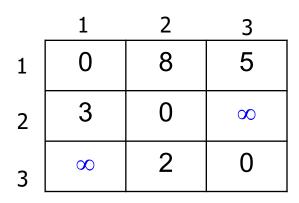
Algoritmo de Floyd-Warshall



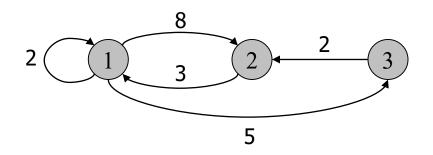


- Inicialmente, os custos entre pares vértices adjacentes são inseridos na matriz A
- Diagonal é zerada: pesos de self-loops são ignorados





- Inicialmente, os custos entre pares vértices adjacentes são inseridos na matriz A
- Diagonal é zerada: pesos de self-loops são ignorados



	1	2	3
1	0	8	5
2	3	0	∞
3	∞	2	0

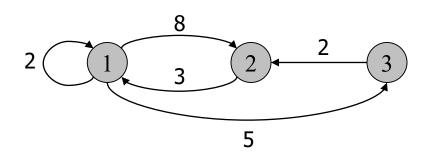
- Matriz A é percorrida n =|V| vezes
- A cada iteração (k, com (1≤ k ≤ n), verifica se um caminho entre um par de vértices (v,w), que passa pelo vértice k, é mais curto do que o caminho mais curto já conhecido
- Mais curto = menor custo



$$A[v,w] = min(A[v,w],$$

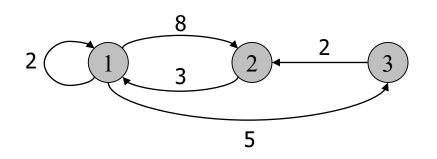
$$A[v,k] + A[k,w])$$

$$k = 1, 2, 3$$



$$A[1,1] = min(A[1,1], A[1,1] + A[1,1])$$

$$u = 1, v = 1, k = 1$$



$$A[1,2] = min(A[1,2],$$

 $A[1,1] + A[1,2])$

$$u = 1, v = 2, k = 1$$



$$A[1,3] = min(A[1,3],$$

 $A[1,1] + A[1,3])$

$$u = 1, v = 3, k = 1$$



$$A[2,1] = min(A[2,1],$$

 $A[2,1] + A[1,1])$

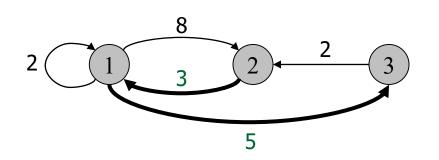
$$u = 2, v = 1, k = 1$$



$$A[2,2] = min(A[2,2],$$

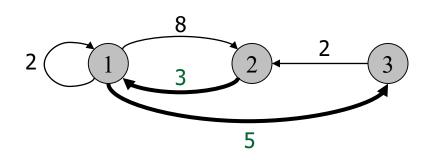
 $A[2,1] + A[1,2])$

$$u = 2, v = 2, k = 1$$



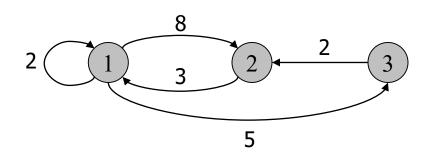
$$A[2,3] = min(A[2,3], A[2,1] + A[1,3])$$

$$u = 2, v = 3, k = 1$$



$$A[2,3] = min(A[2,3], A[2,1] + A[1,3])$$

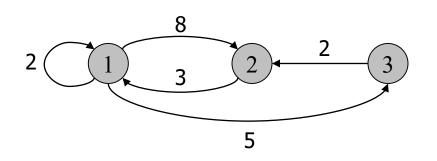
$$u = 2, v = 3, k = 1$$



$$A[3,1] = min(A[3,1],$$

 $A[3,1] + A[1,1])$

$$u = 3, v = 1, k = 1$$



$$A[3,2] = min(A[3,2],$$

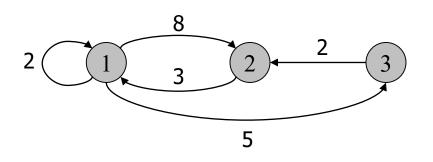
 $A[3,1] + A[1,2])$

$$u = 3, v = 2, k = 1$$



$$A[3,3] = min(A[3,3], A[3,1] + A[1,3])$$

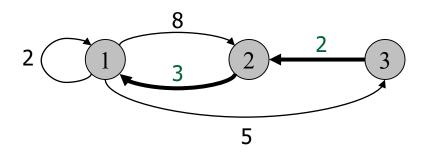
$$u = 3, v = 3, k = 1$$



Ao final da iteração <i>k</i> =1,
tem-se todos os caminhos
mais curtos entre <i>v</i> e <i>w</i>
que podem passar pelo
vértice 1

	1	2	3
1	0	8	5
2	3	0	8
3	∞	2	0

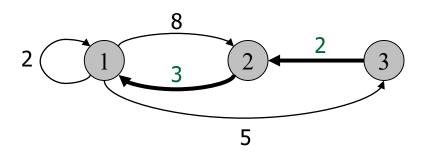
O processo se repete para k = 2 e k = 3



$$A[3,1] = min(A[3,1], A[3,2] + A[2,1])$$

	1	2	3
1	0	8	5
2	3	0	8
3	∞	2	0

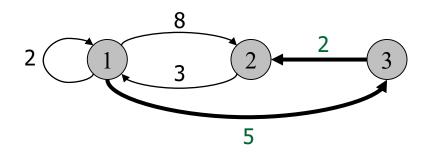
$$k = 2$$



$$A[3,1] = min(A[3,1], A[3,2] + A[2,1])$$

	1	2	3
1	0	8	5
2	3	0	8
3	5	2	0

$$k = 2$$

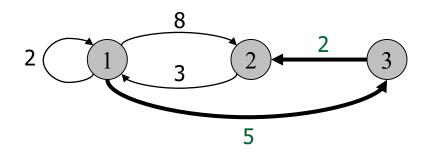


$$A[1,2] = min(A[1,2],$$

 $A[1,3] + A[3,2])$

	1	2	3
1	0	8	5
2	3	0	8
3	5	2	0

$$k = 3$$



$$A[1,2] = min(A[1,2],$$

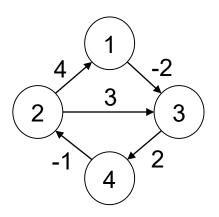
 $A[1,3] + A[3,2])$

	1	2	3
1	0	7	5
2	3	0	8
3	5	2	0

$$k = 3$$

Exercício

Aplique o algoritmo de Floyd-Warshall no grafo abaixo



```
procedimento Floyd-Warshall (Grafo G, matriz A)
variáveis
  u, v, k: vertices;
início
  para u=1 até NumVertices faça
       para v=1 até NumVertices faça
              se u = v então
                    A[u,v] = 0;
              senão A[u,v] = w(u,v); // peso aresta (u,v)
  para k=1 até NumVertices faça
       para u=1 até NumVertices faça
             para v=1 até NumVertices faça
                     se A[u,k]+A[k,v] < A[u,v] então
                           A[u,v] = A[u,k] + A[k,v];
fim;
```

Implementar método de Floyd-Warshall

Complexidade: ?

- Complexidade: O(|V|³)
 - Por que?

Esse algoritmo adota qual paradigma de projeto de algoritmos?

Atenção

Comparação entre algoritmos estudados

Método	Vértices	Pesos	Ciclos	Complexidade
Dijkstra	Origem única	Positivos	Sim	O(A log V)
Bellman-Ford	Origem única	Positivos e negativos	Sim, incluindo negativos	O(A V)
Ordenação topológica	Origem única	Positivos e negativos	Não	O(A + V)
Floyd-Warshall	Todos os pares	Positivos e negativos	Sim, incluindo negativos	$O(V ^3)$

Outros algoritmos

- Há <u>outras alternativas</u> para caminhos mais curtos
 - Vimos algumas das principais

- Para os curiosos, estudar...
 - Algoritmo de Warshall (anterior a Floyd-Warshall)
 para <u>existência de caminhos</u>
 - Algoritmo de Johnson (todos os pares, para grafos esparsos)