Curso AAV2020 - Módulo Planejamento

Plano de Ensino-Aprendizagem

Disciplina (Nome) ou Atividade de Ensino-Aprendizagem

Relatividade (4300374)

Número de Créditos (se aplicável):

(ter em mente esse valor para compor a carga horária e o que se espera de dedicação dos estudantes)

2

Carga Horária:

Cada crédito aula corresponde a 15 horas-aula de carga horária semestral. Visto que a disciplina é semestral e possui 2 créditos aula, tem-se que a carga horária total da disciplina é de 30 horas-aula e é esperado um número equivalente de horas para as atividades. Portanto, a dedicação esperada do aluno é de 60 horas durante o desenvolvimento da disciplina que se dará em 16 semanas.

Objetivo Geral:

Ao final da disciplina, espera-se que o aluno seja capaz de compreender os Princípios da Teoria da Relatividade Restrita e a mudança paradigmática que eles representam no nosso entendimento sobre a natureza do espaço-tempo, calculando como eventos devem ser descritos em diferentes referenciais inerciais do ponto de vista cinemático e dinâmico.

Conteúdo e Skills

Para atingir o objetivo geral (que se constitui no que se espera que o estudante alcance no final do curso), os conteúdos necessários são:

- Os princípios da Teoria da Relatividade;
- Transformações de Lorentz;
- O espaço-tempo quadridimensional.

Como Skills, observa-se a importância de ser capaz de:

- enunciar os princípios da Teoria da Relatividade;
- calcular eventos cinemáticos e dinâmicos em diferentes referenciais inerciais;
- descrever eventos cinemáticos e dinâmicos a partir do espaço-tempo quadridimensional.

Objetivos de Aprendizagem:

- 1. Conhecer os princípios básicos da Teoria da Relatividade, reproduzindo seu enunciado
- 2. Compreender as consequências desses princípios na Mecânica Clássica, exemplificando a dilatação do tempo e a contração do espaço
- 3. Resolver problemas de mudanças de referenciais inerciais usando as Transformações de Lorentz, obtendo resultados para diferentes situações de variada complexidade
- 4. Refletir sobre a mudança paradigmática do conceito de espaço-tempo introduzida pela Teoria da Relatividade, demonstrando as diferenças com relação à Física Clássica

Estruturação da Disciplina em Módulos ou Células de Aprendizagem:

- 1. A relatividade na física clássica e suas contradições
- 2. Postulados da Teoria da Relatividade Restrita
- 3. Consequências da Teoria da Relatividade Restrita na Cinemática
- 4. Consequências da Teoria da Relatividade Restrita na Dinâmica
- 5. Noções sobre o Espaço-Tempo

Módulos ou	Objetivos de	Conteúdos	Skills	Avaliação	Estratégias
Ciclos de	Aprendizagem				
Aprendizagem					
1. A relatividade	Compreender o conflito	- Relembrar o princípio da	- Aplicar as	Neste primeiro	- Uma aula
na mecânica	entre a relatividade da	relatividade na Mecânica	Transformações de	módulo será feita	presencial, a fim de
clássica e suas	mecânica clássica e o	Clássica e as transformações de	Galileu da Mecânica	uma avaliação	discutir com os
contradições	eletromagnetismo a fim	Galileu	Clássica em problemas	diagnóstica, a tarefa	alunos o PEA
	de motivar os princípios	- Discutir a contradição entre o	de diferentes	01	- Fórum de
	da teoria da relatividade	princípio da relatividade na	complexidades		discussão sobre os

2. Postulados da Teoria da Relatividade Restrita	Discussão sobre as tentativas de se preservar a mecânica clássica e o eletromagnetismo buscando o éter luminífero. Apresentar e discutir os postulados da Teoria da Relatividade.	mecânica clássica e o eletromagnetismo no final do século XIX e início do século XX - Discutir a tentativa de preservar a mecânica clássica e o eletromagnetismo a partir da descoberta do éter, medindo- se um movimento retilíneo e uniforme em relação a ele - Discutir o experimento de Michelson e Morley, cujo resultado foi negativo para a existência do éter - Introduzir os princípios da Teoria da Relatividade - Como um primeiro exemplo, discutir a relatividade da simultaneidade devido a esses princípios	- Enunciar as contradições na relatividade da física clássica - Enunciar os princípios da Teoria da Relatividade e como eles resolvem as contradições vistas na física clássica	- Avaliação formativa em sala de aula (tarefa 02) com os alunos organizados em grupos	- Indicação de material escrito e disponibilização da videoaula 02 para o estudo fora da sala de aula - Fórum de discussão sobre os princípios da Teoria da Relatividade
3. Consequências da Teoria da Relatividade Restrita na Cinemática	Apresentar como as transformações de referenciais para a distância, intervalo de tempo e velocidade se modificam na Teoria da Relatividade. Discutir a questão do tempo não ser absoluto nessa teoria. Iniciar com dois exemplos para discutir a dilatação	- Usar o exemplo do relógio de luz perpendicular ao movimento para introduzir a ideia da dilatação do tempo - Usar o exemplo do relógio de luz paralelo ao movimento para introduzir a ideia da contração do espaço - Deduzir as transformações de Lorentz para formalizar as transformações de	- Aplicar as Transformações de Lorentz em problemas cinemáticos - Interpretar os resultados dos cálculos das Transformações de Lorentz a luz dos princípios da Teoria da relatividade	- Avaliações formativas em sala de aula (tarefas de 03 a 07) com os alunos organizados em grupos - Avaliação somativa sobre os módulos 01 a 03 (prova 01)	- Indicação de material escrito e disponibilização das videoaulas 03 a 06 para o estudo fora da sala de aula - Fóruns de discussão sobre: dilatação do tempo e contração do espaço; as

	do tempo e a contração do espaço. Em seguida, deduzir as transformações de Lorentz e discutir as transformações de velocidade na relatividade	coordenadas entre referenciais segundo a Teoria da Relatividade Discutir alguns exemplos Mostrar como velocidades se transformam na Teoria da Relatividade			transformações de Lorentz; a biografia de Albert Eisntein; a velocidade da luz como um limite na natureza.
4. Consequências da Teoria da Relatividade Restrita na Dinâmica	Apresentar aos alunos como a dinâmica da Mecânica Clássica se altera por conta da Teoria da Relatividade, principalmente no que se refere ao momento linear e a energia, abordando a questão da massa e inércia da energia.	- Momento relativístico. - Energia relativística — Equivalência entre massa e energia	- Aplicar as Transformações de Lorentz em problemas dinâmicos	- Avaliações formativas em sala de aula (tarefas de 08 a 09) com os alunos organizados em grupos	- Indicação de material escrito e disponibilização das videoaulas 07 e 08 para o estudo fora da sala de aula - Fóruns de discussão sobre: o conceito de massa na Teoria da Relatividade; a famosa equação de Einstein, E=mc2
5. Noções sobre o Espaço-Tempo	Introduzir ao aluno uma nova maneira de ver o espaço e o tempo, a partir do espaço-tempo de Minkowski e os 4- vetores	- Espaço-tempo de Minkowski, os 4-vetores - As transformações de Lorentz como rotação nesse espaço	- Descrever as Transformações de Lorentz como rotações no espaço-tempo quadridimensional	- Avaliação formativa em sala de aula (tarefa 10) com os alunos organizados em grupos - Avaliação somativa sobre os módulos 04 e 05 (prova 02)	- Indicação de material escrito e disponibilização da videoaula 09 para o estudo fora da sala de aula - Fóruns de discussão sobre a Teoria da

_			
			Relatividade no
			Ensino Médio

Métodos e Estratégias de Aprendizagem

Os ciclos de aprendizagem serão organizados da seguinte forma:

- 1. Disponibilização de textos, que será a Leitura Principal, e Videoaulas;
- 2. Realização de Tarefas em grupo durante a aula presencial;
- 3. Disponibilização de Fóruns para discussão entre os alunos e intermediação do professor;
- 4. Indicação de Leituras, Exercícios e Material (textos e vídeos) Extras;

Avaliação da Aprendizagem

A disciplina contará com os 3 tipos de avaliação:

- 1. No módulo 1, haverá uma avaliação diagnóstica para aferir o conhecimento dos alunos em relação às transformações clássicas de Galileu, base para o estudo da Teoria da Relatividade;
- 2. Ao longo dos módulos 2 a 5, avaliações formativas serão aplicadas na forma das tarefas realizadas em sala de aula com os alunos organizados em grupos;
- 3. Finalmente, a avaliação somativa será feita na forma de provas no final do módulo 3 e no final do módulo 5.

Feedback para os estudantes

O retorno aos alunos ocorrerá após a realização de cada tarefa, tanto por escrito como durante a aula presencial seguinte. Serão discutidos de forma geral as principais dificuldades encontradas, buscando preencher as lacunas no aprendizado dos alunos observadas durante a correção das tarefas.

Materiais a serem utilizados ou desenvolvidos

Textos básicos:

- 1. Maria José Bechara, José Luciano Miranda Duarte, Manoel Roberto Robilotta, Suzana Salem Vasconcelos, Apostila de Física 4 (IFUSP, 2018);
- 2. H. M. Nussenzveig, curso de Física Básica, volume 4 (Edgar Blucher, 2002);
- 3. R. Resnick, Introdução à Relatividade Especial (EDUSP, 1971).

Videoaulas;