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9.3 The Power Method

The Power method is an iterative technique used to determine the dominant eigenvalue
of a matrix—that is, the eigenvalue with the largest magnitude. By modifying the method
slightly, it can also used to determine other eigenvalues. One useful feature of the Power
method is that it produces not only an eigenvalue, but also an associated eigenvector. In fact,
the Power method is often applied to find an eigenvector for an eigenvalue that i1s determined
by some other means.

To apply the Power method, we assume that the n x n matrix A has n eigenvalues
Als A2y ..., A, with an associated collection of linearly independent eigenvectors {v' ) w2
1":3],. ... v'"™1. Moreover, we assume that A has precisely one eigenvalue, A1, that is largest
in magnitude, so that

A1) = |22 = |A3]| = - = |An| = 0.

Example 4 of Section 9.1 illustrates that an n % n matrix need not have n linearly independent
eigenvectors. When it does not the Power method may still be successful, but it is not
guaranteed to be.

If x is any vector in ", the fact that (v y2 3 i s linearly independent
implies that constants £, f>. . ... B, exist with

n
x — E JB_I ".J._Ir}.
j=1



Multiplying both sides of this equation by AAT AR L gives

n

1 1 1"
Ax =) AV =3 gy, APx =) " BnAvd =) " giniv),

j=! j=! j=! j=!

and generally, A¥x = S B }L-f‘.t.n'-]_
If }“T 1s factored from each term on the right side of the last equation, then

x_mz,ﬂj(m)

1
Since |A1| = [Aj], forall j =2,3,...,n, we have lim;-_;bm{ljflﬂk = (), and

lim A*x = lim .ﬁ.]ﬁﬁ
fk—o0 k—o0
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(9.2)

The sequence in Eq. (9.2) converges to 0if |A;| = 1 and divergesif |A;| = 1, provided,
of course, that 8; #= 0. As a consequence, the entries in the A*x will grow with kif || = 1
and will go to 01f |&;| = 1, perhaps resulting in overflow or underflow. To take care of that
possibility, we scale the powers of A*x in an appropriate manner to ensure that the limit in
Eq. (9.2) is finite and nonzero. The scaling begins by choosing x to be a unit vector x”

relative to | - [|oo and choosing a component x'” of x” with

o

0 0
) = 1= x|
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/ Componente de y que norma do maximo de x (p,)

Let y'" = Ax'"’, and define p'" = y{!’. Then

pL“J — 11’[}

(Cu

o (1} i
Xpg Brvpy, + 2 i s Brvp

Let p; be the least integer such that

e | = 1y o
and define x'" by
| 1
F{(“ — “JF(“ “}A‘{(ﬂr_
¥Yr ¥
Then
I I
xp) =1=[x"V].
Now define
F(?_r — Ax') = Lﬁjxtﬂ}

A1
¥r

v Bl + X0, Bk N {ﬁ. *”+Z_:.ﬁ;+:l,rfl.}up&
_ ),

(1 '
Bivp, + E; zﬁx ]

p, € o indice da maior
componente de y
(correspondendo a norma do
maximo)
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and

1{2:, ['ﬂjl%ufgjlb-l_ _.’ﬁj UFI]/‘II-E“
(2) 2y __ —

=¥, =
. .I:;::' JopD noogoq () (1)
Brarup, +Z_,|'=2 Bidjup, ¥py
' -
[ o) + X gﬁ;(!‘u-!i‘»l}lv“]}
I -
i+ X Bi(h /)y

Let p2 be the smallest integer with
V5 1= 17 llec,
and define

1
- _ H]' Y Y (1)
@Y T o DomA X
¥p; ¥p, ¥p, ¥p



MAP2210

In asimilar manner, define sequences of vectors {x'™}% _ and {y'™}>_ andaseguence
of scalars [/™}2°  inductively by

(1)
m_ym _; [ﬁlu +Zj_:.m;m ﬁ.rufam_ } ©3)
Bivp y + 3o (/A Y™ B,
and
m _ .'r,l[m } AM K{U}
. \

(my — “m

Yom H "I-':h

where at each step, p;y is used to represent the smallest integer for which

A
= Iyl

By examining Eq. (9.3), we see that since |[4;/A1| <1, foreach j = 2,3,....n,
limy, .o '™ = Ay, provided that x'” is chosen so that 8; # 0. Moreover, the sequence of
vectors {1“’“‘} _p converges to an eigenvector associated with 4 that has /; norm equal to
one.
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[llustration
The matrix
-2 -3
=% 7]
Has eigenvalues A, = 4 and A, = 1 with corresponding eigenvectors v; = (1, —2)" and
va = (1, —1)". If we start with the arbitrary vector xp = (1, 1)’ and multiply by the matrix
A we obtain
[ -5 . - —29 _ _ - —125
.‘{|—fllg—_ 13:|.. 11—."11] ] 61 ]. kj—idl.kj ] 253].
—509 _ —2045 .. T —s189
W=AG= 1021}’ s =A== 4{}93} Yo =ANs =1 16381 ]
As a consequence, approximations to the dominant eigenvalue 4, = 4 are
61 253 1021
. (1) (2) (3)
= — = 4.6923, AT = —— =4.14754, A = —— = 4.03557,
T3 LT 6 TS
093 16381
A = =4.00881, A} = —— = 4.00200.
L1021 ' 4093
, : : (s) _ 16381 .
An approximate eigenvector corresponding to A" = 2003 4.00200 is
—8189

16381

|

} . Which, divided by 16381, normalizes to [ —0_4199@3 ] A2 vy,

[
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Hlustration

The matrix

-2 -3
=[]
Has ecigenvalues A = 4 and A2 = 1| with corresponding eigenvectors vi = (1,—2)" and

vy = (1, —1)". If we start with the arbitrary vector x; = (1, 1)" and multiply by the matrix
A we obtain

[ —5 [ —29 [ —125
1|:Ah{]:h 13 ], x;:Ax]zh 61 ], x;:Ax;_:h 253 },
[ =509 | —2045 | —s189
"4_‘4"-‘__ 1021 ] "5_‘4"‘4_h 4093 ] “*”_‘d“"f‘__ 16381 }

As a consequence, approximations to the dominant eigenvalue 4| = 4 are

61 253 1021
W= 22— 46923, MY = == = 4.14754, M = oo = 403557,
13 61 253
4093 5 16381
W= —— —400881, AP =—— =4.00200.
1021 4093
_ ‘ 1 5y 16381 .
An approximate eigenvector corresponding to A" = 1003 4.00200 1s
Xp = [ :2;2? ], which, divided by 16381, normalizes to [ _0'419908 ] A2 V.



Power Method MAP2210

To approximate the dominant eigenvalue and an associated eigenvector of the n % n matrix
A given a nonzero vector x:

INPUT dimension n; matrix A; vector x: tolerance TOL; maximum number of iterations N.

OUTPUT  approximate eigenvalue p; approximate eigenvector x (with ||x||,, = 1) ora
message that the maximum number of iterations was exceeded.

Step 1 Setk=1.

Step 2 Find the smallest integer p with 1 < p < nand [x,| = [|x]|x.
Multiplicagao matriz vetor pode ser
Step 3 Set X = x/xj,. plicag P

customizada de acordo com a
Step 5 Sety = Ax.

Step 6 Setp=y, - Autovalor

Step 7 Find the smallest integer p with 1 < p < nand |y,| = ||¥] -

Step 8 1f y, = 0 then OUTPUT (“Eigenvector’, x);
OUTPUT (°A has the eigenvalue 0, select a new vector x and
restart’);
STOP.

Step 9 Set ERR = ||x — (¥/¥p)||oos

X=¥/Yp- < Autovetor
Step 10 1f ERR = TOL then OUTPUT (1. x):

(The procedure was successful.)
STOP.

Step 11 Setk =k + 1.

Step 12 OUTPUT (‘The maximum number of iterations exceeded’);

(The procedure was unsuccessful.)
STOP. [ |
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The Power method has the disadvantage that it is unknown at the outset whether or not
the matrix has a single dominant eigenvalue. Nor is it known how x'’ should be chosen so
as to ensure that its representation in terms of the eigenvectors of the matrix will contain a

nonzero contribution from the eigenvector associated with the dominant eigenvalue, should
it exist.

Accelerating Convergence

Choosing, in Step 7, the smallest integer p, for which |}-§:]| = ||¥'"™ |l will generally

ensure that this index eventually becomes invariant. The rate at which {™}°%_| converges
to A1 is determined by the ratios |4;/A[", forj = 2,3,...,n, and in particular by |&; /4 |™.
The rate of convergence is O(|A2/31|™) (see [IK, p. 148]), so there is a constant k such that

for large m,

A2 "
{m) 1 o
—a| =Ek— .
| 1 x
which implies that
|ﬁ{m+]j _ J'-II A
lim == <1
meso | — g |x

The sequence {11} converges linearly to A;. so Aitken’s A? procedure discussed in Section
2.5 can be used to speed the convergence.
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2.5 Accelerating Convergence

Aitken's AZ Method

Suppose | p,} .- is a linearly convergent sequence with limit p. To motivate the construction

of a sequence {p,}° , that converges more rapidly to p than does { p,}°° . let us first assume

that the signs of p, — p. pps1 — p. and p,.7 — p agree and that n is sufficiently large that

Pntl —P _ Pny2 — P
Pe—pP  Pus1—pP

Then
(Putt = P)° % (Pus2 — P)(Pn — D)
50
pﬁH — 2pp+1p + p2 A Pnt2Pn — (Pa + Pa+2)p + ,tr-2
and

(Pny2 + Pn — 2Pn1)P = PusoPn _p.:_}r-r]'

Solving for p gives

Prt2Pn — Po
Pn+2 — 2,U.rl-|—] +Pn.
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Adding and subtracting the terms pf] and 2pupyy1 in the numerator and grouping terms
appropriately gives

p PaPn+2 — EPrzﬁ'ﬁ%l +F’£ _P£+| + 1.":'n'i!f:'-'i!+| _Pﬁ
Pn+2 — 2Pn+1 + Pa

. Ffz(F:HI — 21’1-"'."r+] +p.vr] — {FE_H — ZFJrPJHI +Pﬁ}
Pry2 — 21’5".vr+] + Pn

(Pn+1 — Pn)z
Pny2 — EP.'E—H +Frr

=Pn —
Aitken’s A? method is based on the assumption that the sequence { p,}°%,,, defined by

':Fn-i—l - Pn]z
Pn+2 — 2.":".';!+I +Ffz 1

ﬁf; =F|IE - {2.14}

converges more rapidly to p than does the original sequence { pa};~,.



Implementing the A’ procedure in Algorithm

9.1 is accomplished by modifying the algorithm as follows:

Step 1 Setk=1:
po = 0;
ey = 0.

Step 6 Set = yp:

A — po— (1 — po)? _
= 2p + po
Step 10 If ERR = TOL and k = 4 then OUTPUT (1. x);
STOP.
Step 11 Setk =k +1;
Ho = M.
L = [.

MAP2210

In actuality, it is not necessary for the matrix to have distinct eigenvalues for the Power

method to converge. If the matrix has a unique dominant eigenvalue, A1, with multiplicity r
greater than 1 and v\, v, ... v are linearly independent eigenvectors associated with

1. the procedure will still converge to ;. The sequence of vectors {x'™}

g will, in this

case, converge to an eigenvector of A of [, norm equal to one that depends on the choice of

the initial vector x'?’ and is a linear combination of v\ v'2), . ..

v\ (See [Wil2], page 570.)
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Example 1

Use the Power method to approximate the dominant eigenvalue of the matrix

—4 14 0
A=| =5 13 0 |,
1 0 2

and then apply Aitken’s A? method to the approximations to the eigenvalue of the matrix
to accelerate the convergence.
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Solution This matrix has eigenvalues 4| = 6,42 = 3, and 43 = 2, so the Power method
described in Algorithm 9.1 will converge. Let x0 — (1,1, 1)%, then

v = ax® = (10,8, 1),
=0

A1)
Y V)l =10, 2™ =y" =10, and x*-”=-"1—0=(1,n.3,u.1)'.

Continuing in this manner leads to the values in Table 9.1, where '™ represents
the sequence generated by the Aitken’s A? procedure. An approximation to the dominant

eigenvalue, 6, at this stage is 2''"” = 6.000000. The approximate [,-unit eigenvector for
the eigenvalue 6 is (x''2)! = (1,0.714316, —0.249895)".

Although the approximation to the eigenvalue is correct to the places listed, the eigen-

vector approximation is considerably less accurate to the true eigenvector, (1,5/7, —1/4)" =
(1,0.714286, —0.25)". [



Table 9.1

il {KQm}}.r P;Hrz] ﬂ[m]

0 (1,1, 1)

1 (1,0.8.0.1) 10 6.266667
2 (1,075, —0.111) 1.2 6.062473
3 (1, 0.730769, —0.188803) 6.3 6.015054
4 (1,0.722200, —0.220850) 6.230769 6.004202
3 (1, 0.718182, —0.235915) 6.111000 6.000855
6 (1. 0.716216, —0.243095) 6.054546 6.000240
7 (1, 0.715247, —0.246588) 6.027027 6.000058
8 (1. 0.714765, —0.248306) 6.013453 6.000017
9 (1. 0.714525, —0.249157) 6.006711 6.000003
10 (1. 0.714405, —0.249579) 6.003352 6.000000
11 (1, 0.714346, —0.249790) 6.001675

12 (1. 0.714316, —0.249895) 6.000837

MAP2210
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Symmetric Matrices

When A is symmetric. a variation in the choice of the vectors x'™ and y" and the
scalars '™ can be made to significantly improve the rate of convergence of the sequence
{"™}7_, to the dominant eigenvalue A,. In fact, although the rate of convergence of the
general Power method is O(|A;/4|™), the rate of convergence of the modified procedure
given in Algorithm 9.2 for symmetric matrices 1s ﬂ(l}.g;'h1|2m). (See [IK, pp. 149 ff].)
Because the sequence {p2™} is still linearly convergent, Aitken’s A” procedure can also
be applied.
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Symmetric Power Method

To approximate the dominant eigenvalue and an associated eigenvector of the n x n sym-
metric matrix A, given a nonzero vector x:
INPUT dimension n; matrix A; vector x; tolerance TOL; maximum number of iterations V.

OUTPUT  approximate eigenvalue p; approximate eigenvector x (with ||x|, = 1) or a
message that the maximum number of iterations was exceeded.

Step 1 Setk=1; Multiplicacao matriz vetor pode ser
X = x/[|x[|2. customizada para aproveitar a
Step 2 While (k = N) do Steps 3-8. simetria e estrutura

Step 3 Sety = Ax.
Autovalor

Step 4 Setp = x'y. «—

Step 5 If ||y|l, = 0, then OUTPUT (*Eigenvector’, X):
OUTPUT (°A has eigenvalue 0, select new vector x
and restart’);
STOP.

x_

Step 6 Set ERR = :
¥l | Autovetor

x=y/lyl ~—

Step 7 If ERR < TOL then OUTPUT (., x);
(The procedure was successful.)
STOP.

Step 8 Setk=k+1.

Step 9 OUTPUT (*Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)
STOP. [ ]
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Example 2

Apply both the Power method and the Symmetric Power method to the matrix

4 —1 1
A=1| -1 3 =2 |,
1 -2 3

using Aitken’s A? method to accelerate the convergence.

Solution This matrix has eigenvalues 4| = 6,42 = 3, and A3 = 1. An eigenvector for the
eigenvalue 6 is (1, —1,1)". Applying the Power method to this matrix with initial vector

(1,0,0)" gives the values in Table 9.2. [ |
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Table 9.2
I {},rm]]r .f-"-rm} ﬁ[m] (x[m]jz Wilh ”x[m]”m — ]
0 (1,0.0)
1 4, —1.1) 4 (1, —0.25,0.25)
2 (4.5, —2.25. 2.25) 45 7 (1. —0.5, 0.5)
3 (5. —3.5.3.5) 5 6.2 (1, —0.7,0.7)
4 (5.4, —4.5.4.5) 5.4 6.047617 (1, —0.8333, 0.8333)
5 (5.666, —5.1666, 5.1666) 5.666 6.011767 (1, —0.911765. 0.911765)
6 (5.823529, —5.558824, 5.558824) 5.823529 6.002931 (1. —0.954545. 0.954545)
7 (5.909091, —5.772727, 5.772727) 5.909091 6.000733 (1, —0.976923. 0.976923)
8 (5.953846, —5.884615, 5.8846153) 5.953846 6.000184 (1, —0.988372. 0.988372)
9 (5.976744, —5.941861, 5.941861) 5.976744 (1. —0.994163. 0.994163)
10 (5.988327, —5.970817, 5.970817) 5.988327 (1, —0.997076. 0.997076)




We will now apply the Symmetric Power method to this matrix with the same initial MAP2210
vector (1,0,0)". The first steps are

O =(1,0,00, Ax® =@, —1,1), uV =4,

and
1

(1 _
||Ax @]

. Ax'" = (0.942809, —0.235702,0.235702)'.

The remaining entries are shown in Table 9.3.

Table 9.3
m [},rm}}r F-{m} ﬁ:rm] {xrm}}r with lerm} Il2 =1
0 (1.0,0) (1,0,0)
1 4. —1.1) 4 7 (0.942809, —0.235702, 0.235702)
2 (4.242641, —2.121320, 2.121320 3 6.047619 (0.816497, —0.408248, 0.408248)
3 (4.082483, —2.857738, 2.857738) 5.666667 6.002932 (0.710669, —0.497468, 0.497468)
4 (3.837613, —3.198011, 3.198011) 5.909091 6.000183 (0.646997, —0.539164, 0.539164)
5 (3.666314, —3.342816, 3.342816) 5.976744 6.000012 (0.612836, —0.558763, 0.558763)
6 (3.568871, —3.406650, 3.406650) 5.994152 6.000000 (0.595247, —0.568190, 0.568190)
7 (3.517370, —3.436200, 3.436200) 5.998536 6.000000 (0.586336, —0.572805, 0.572805)
8 (3.490052, —3.450359, 3.450359) 5.999634 (0.581852, —0.575086, 0.575086)
9 (3.477580, —3.457283, 3.457283) 5.999908 (0.579603, —0.576220, 0.576220)
10 (3.470854, —3.460706, 3.460706) 5.999977 (0.578477, —0.576786, 0.576786)

The Symmetric Power method gives considerably faster convergence for this matrix
than the Power method. The eigenvector approximations in the Power method converge to

(1,—1,1)", a vector with unit /c-norm. In the Symmetric Power method, the convergence
1s to the parallel vector {ﬁﬂi, —ﬁfl ﬁﬁ)’, which has unit /s-norm.
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EXERCISE SET 93

1. Find the first three iterations obtained by the Power method applied to the following matrices.

2 1 1 1 1 1

a 1 2 1 [; b 1 1 0 |:
112 1 0 1
Use x' = (1,-1,2)' Use x™ = (—1,0,1)".
1 -1 0 4 1 1 1

C -2 4 -2 | d 1 3 -1 1 |
0 -1 2 ' 1 -1 20 J
Use x'” = (—1,2,1)". 1 1 0 2

Use x'¥ = (1,-2,0,3)".

5. Find the first three iterations obtained by the Symmetric Power method

Considerem ja implementar em Python
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