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Approximating Eigenvalues

Introduction

The longitudinal vibrations of an elastic bar of local stiffness p(x) and density p(x) are
described by the partial differential equation

d au
p{x] lix 1= [.mixll ;{x,ﬂ},

where vix, ) is the mean longitudinal displacement of a section of the bar from its equi-
librium position x at time ¢. The vibrations can be written as a sum of simple harmonic
vibrations:

vix.t) = ch (X)) CcOs \fﬁ{r — Ip).

k=0

where por diferengas
d T  du / finitas

i [p(x}E{x}] + A p(xing(x) = 0.

Discretizacao

If the bar has length ! and is fixed at its ends, then this differential equation holds for
0<x < !and v(0) = vi(l) = 0.

& v(x) at a fixed time ¢

vix, 1)

A system of these differential equations is called a Sturm-Liouville system, and the numbers
iy are eigenvalues with corresponding eigenfunctions ug (x).
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d
I (x)— + Agp(X)uy =0

Considerando p e p constantes, e aproximando a solu¢cao em pontos discretos
do dominio

wi = u(x;)

Resulta na equacao
d2

Aplicando a aproximacao de diferencas finitas do operador obtém-se a equacao
discretizada:

Wit1 — 2W; + Wi

sz + Akwi =0
Ak
Wip1 —2W; + Wi = Pz

Aplicando a equacao discretizada para cada ponto do dominio produz um
problema de autovalor
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Suppose the bar is 1 m long with uniform stiffness p(x) = p and uniform density
p(x) = p. To approximate u and A, let h = 0.2. Then x; = 0.2j, for 0 = j = 5, and we

can use the midpoint formula (4.5) in Section 4.1 to approximate the first derivatives. This
gives the linear system

Aw =

7

i

—1
0
0

—1
2
—1
0

0
—1

2
—1

0
0
—1
2

i

—

uh
Ut
wy
w4

= —0.04—x

— —0.04%w.
p

In this system, w; = u(x;), for I = j = 4, and wp = ws = 0. The four eigenvalues
of A approximate the eigenvalues of the Sturm-Liouville system. It is the approximation of

eigenvalues that we will consider in this chapter. A Sturm-Liouville application is discussed
in Exercise 13 of Section 9.5.
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9.1 Linear Algebra and Eigenvalues

Eigenvalues and eigenvectors were introduced in Chapter 7 in connection with the conver-
gence of iterative methods for approximating the solution to a linear system. To determine
the eigenvalues of an n x n matrix A, we construct the characteristic polynomial

pli) = det(A — Al)

and then determine its zeros. Finding the determinant of an n » n matrix is computationally
expensive, and finding good approximations to the roots of p(A4) is also difficult. In this
chapter we will explore other means for approximating the eigenvalues of a matrix. In
Section 9.6 we give an introduction to a technique for factoring a general m > n matrix into
a form that has valuable applications in a number of areas.

In Chapter 7 we found that an iterative technique for solving a linear system will
converge if all the eigenvalues associated with the problem have magnitude less than 1.
The exact values of the eigenvalues in this case are not of primary importance—only the
region of the complex plane in which they lie. An important result in this regard was first
discovered by S. A. Gersgorin. It is the subject of a very interesting book by Richard Varga.
[Var2]
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Theorem 9.1 (Gersgorin Circle)

Let A be an n x n matrix and R; denote the circle in the complex plane with center a;; and
radius Z'—E:L#E |a;;|: that is,

1
z—ail = ) lajly.

R, = lf eC
j=Lj#

where C denotes the complex plane. The eigenvalues of A are contained within the union of
these circles, R = U_,R;. Moreover, the union of any k of the circles that do not intersect
the remaining (n — k) contains precisely k (counting multiplicities) of the eigenvalues. m
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Proof Supposethat A is an eigenvalue of A with associated eigenvector x, where ||x||, = 1.
Since Ax = Ax, the equivalent component representation is

n
Zﬂ,‘j.l} = Aix;, foreachi=1.2.....n. (9.1)
=1
Let k be an integer with |x;| = ||x||.c = 1. When i = k, Eq. (9.1) implies that

A
Z akjXj = AXk.
=1

Thus
L
Zﬁaﬁ = Axg — apxg = (A — ag)x,
i1
and
n n
A —awl - Il =D axg| = Y lagllxgl-
_||'=|, _||'=|,
J#k jEk
But [xi| = ||x]|c = 1. 50 [xj| = [xg] =1forallj=1.2,...,n. Hence
n
A —awl < D lay].
=L
J#k

This proves the first assertion in the theorem, that A € R;. A proof of the second statement
is contained in [Var2], p. 8, or in [Or2], p. 48. I
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Figure 9.1
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Determine the Gerigorin circles for the matrix

4 1 1
A= 0 2 1 {,
-2 0 9

and use these to find bounds for the spectral radius of A.
Solution The circles in the GerSgorin Theorem are (see Figure 9.1)
Ri={zel||z—4| =2}, Ri={zeC||z-2|=1}), and Ri={ze(C||z—9] =2).

Because R) and R; are disjoint from R;, there are precisely two eigenvalues within Ry U R
and one within R3. Moreover, p(A) = max ;=3 |A;[.507 = p(A) = 1L |

Imaginary
axis

Two eigenvalues ~ One eigenvalue

Real axis

Even when we need to find the eigenvalues, many techniques for their approximation are

iterative. Determining regions in which they lie is the first step for finding the approximation,
because it provides us with an initial approximations.
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Definition 9.2 Let {v'", v? v¥__  v®)beaset of vectors. The set is linearly independent if whenever
0=a v +av? +av? + . v,

then o; = 0, foreach i = 0, 1.. .., k. Otherwise the set of vectors is linearly dependent. m

Theorem 93 Suppose that vV, v(2 v +v("} is a set of n linearly independent vectors in R". Then
for any vector x € X" a unique collection of constants £;. B,,. ... B, exists with

x = Bivl 4+ Bov? + Bv o v, m

Definition 94  Any collection of n linearly independent vectors in R" is called a basis for R". u
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Example 2 (a) Show that vV = (1,0,0)',v? = (—1.1,1)", and v = (0,4, 2)" is a basis for R’, and
(b) given an arbitrary vector x £ B find By, B>, and By with

i
x = vt + Bav? 4 Bavt

Solution (a) Let ), @7, and @3 be numbers with 0 = a; v + a2v® + @3v?).  Then
(0,0.0)' = a;(1.0,0) + ar(—1. 1. 1) + a3(0.4.2)"
= (] — .o + 4. o + 2a3)',

so o —ar=0, ar+4e; =0, and @+ 2a;=0.
The only solution to this system is ¢ = @y = a3y = 0, so this set [v{!), v(? v} of 3
linearly independent vectors in B is a basis for R”.

(b) Let x = (x;,x7.x31)" be a vector in B Solving

x = Aiv" + Bov? + Bavt?
= p1(1,0,0)" + Ba(—1,1,1)" + B5((0.4.2)'
= (B1 — B2, B2 + 483, B2 + 283)
is equivalent to solving for £,. f-. and f; in the system
Br—Br=x1. Br+4B3=x1.5+ 263 = xs.

This system has the unique solution

Bi=x1—xn+2xn, fh=2yn—x and f= E(Jf: — X3). |
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Theorem 9.5

If A is a matrix and A,,...,A; are distinct eigenvalues of A with associated eigenvectors

x D x@ x® then [xV, x?, ... x®™1is a linearly independent set. u

Example 3 Show that a basis can be formed for B* using the eigenvectors of the 3 x 3 matrix

2 0 0
A= 1 1
1

2
—1 4

Solution In Example 2 of Section 7.2 we found that A has the characteristic polynomial

p(x) = det(A — Al) = (A — 3)(A — 2)°.

Hence there are two distinct eigenvalues of A: 41 = 3 and Az = 2. In that example we

also found that 4, = 3 has the eigenvector x; = (0, 1, 1)", and that there are two linearly
independent eigenvectors x> = (0.2, 1) and x5 = (—2,0, 1)' corresponding to 4, = 2.

It 1s not difficult to show (see Exercise 8) that this set of three eigenvectors

{K],Kl,.‘@]' = {([L 11- l}r- {D, 25 1}1'. {_2-{}- l}r}

1s linearly independent and hence forms a basis for R
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Example 4 Show that no collection of eigenvectors of the 3 x 3 matrix

B =

=S
S bd -
{5 I e e

can form a basis for B>,

Solution This matrix also has the same characteristic polynomial as the matrix A in

Example 3:
2— A 1 0
p() = det 0 2—»x 0 |=k=3)—=2)7%
0 0 3—x

so its eigenvalues are the same as those of A in Example 3, that i1s, 4; = 3 and A; = 2.
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To determine eigenvectors for B corresponding to the eigenvalue A = 3, we need to
solve the system (B — 31)x =0, so

0 X —1 1 0 Xy —X) + X2
0 | =(B-=-3H)| x» | = 0 —1 0 X2 | = —X7
0 X3 0 0 0 X3 0,
Hence x2» = 0, x;y = x» = 0, and x3 is arbitrary. Setting x3 = 1 gives the only linearly
independent eigenvector (0,0, 1)" corresponding to A = 3.
Consider A2 = 2. If
0 X o 1 0 Ly X2
O |l =(B-20| x» = 0 0 0 o | = 0 1.
0 X3 o 0 1 X3 X3,

then x; = 0, x3 = 0, and x, is arbitrary. There is only one linearly independent eigenvector
corresponding to A, = 2, which can be expressed as (1.0, 0)', even though 4, = 2 was a
zero of multiplicity 2 of the characteristic polynomial of B.

These two eigenvectors are clearly not sufficient to form a basis for R’. In particular,
(0. 1,0) is not a linear combination of {(0,0, 1)’ (1,0,0)"} . u

We will see that when the number of linearly independent eigenvectors does not match
the size of the matrix, as is the case in Example 4, there can be difficulties with the approx-
imation methods for finding eigenvalues.
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Orthogonal Vectors

Definition 9.6

A set of vectors {1"“_],1":2], ..., vI"} is called orthogonal if (v\)'vU) = 0, forall i £ j. If,
in addition, (v")'v'") = 1, forall i = 1,2,...,n, then the set is called orthonormal. m

Because x'x = ||x||3 for any x in R", a set of orthogonal vectors {v'!), v\%), ... v("} is
orthonormal if and only if

v =1, foreachi=1.2,...,n.
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Example 5

(a) Show that the vectors v'" = (0,4,2)", v?? = (=5, —1,2)", and v*" = (1, —1,2)" form
an orthogonal set. and (b) use these to determine a set of orthonormal vectors.

Solution (a) We have (v\")'v® = 0(=5) +4(—=1)+2(2) =0,

(VYN =0 +4(=D+2(2) =0, and WP = =5(1) = 1(=1) +2(2) = 0,

so the vectors are orthogonal, and form a basis for B". The /; norms of these vectors are
VPl =25, [v?l, =30, and v, = V6.

(b) The vectors

(y _ ¥

0 4 2
T VOL (zﬁ’zﬁ’zﬁ) B (G‘ 5
o _ (_5 -1 2 )fz(_m_m m)
~ : :

~ VO, - \/30° V30 3 6~ 30 15
3 VY ( I -1 2 )‘ V6 V6 6\
11 —_—— = . . p— .= .
v 12 J6 V6 V6 6 6 3

form an orthonormal set, since they inherit orthogonality from v v and v, and
additionally,

1 2 3
Taz = a9z = [u ) = 1. 0
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Theorem 9.7  An orthogonal set of nonzero vectors is linearly independent. u

Theorem 98 Let {x|,x;,....x;} be a set of k linearly independent vectors in R". Then {v|, vy, ..., v}
defined by

(Y (Y
vi=xXi—|——|vi—|— v,
V]V V3¥2

k=1 , 4

ViXk
Vi = X} — Z . Vi.
ViV,

i=]

1s set of £ orthogonal vectors in . |
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Projy,, vz

eq

The Gram—Schmidt process [edi]

We define the projection operator by

(v, u)

(™

where (u, v} denotes the inner product of the vectors u and v. This operator projects the vector v

orthogonally onto the line spanned by vector u. If u = 0, we define proju {v} = 0.ie,the
projection map proj, is the zere map, sending every vector to the zero vector.

projy, (v) =

The Gram—Schmidt process then works as follows:

1y
u; = vy, ey =
[y |
. uz
Uz = Vp — proj,, (v2), e; =
[z |
. . (LT
uy = v3 — proj,, (vy) — proj,, (vs), ey = ——
s |
uy = vy — projy, (ve) — projy, (va) — proj,, (ve), ey = ]
ko1 s
u = vy — ZPIDjuj (Vi), e, = o] )
k

=1
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Example 6 Use the Gram-Schmidt process to determine a set of orthogonal vectors from the linearly
independent vectors

D—(1,0,00, x% =(1,1,0)", and x“ =(1,1,1)".

Solution 'We have the orthogonal vectors vV, v\%, and v*?), given by

vl = x" = (1,0,0)

v = (1,1,0) — ({{1.0.0) ) (1,1,0) )(1 0,0) = (1,1.0)" — (1,0,0)" = (0, 1,0)"

((1,0,0))'(1, 0,0)
@ LD — ({H.{}.i}]‘}’{l.l.l}‘ 0 ({(u.l,m'm,l,l}f) ©.1.0)
- ((1,0,0))(1,0,0)f ((0,1,00)1(0, 1,0y )

— (L1, = (1,0,0)' — (0,1,0)' = (0,0,1)".

The set {1—“-”,1-"—1}.,1-"-3}} happens to be orthonormal as well as orthogonal, but this is not
commonly the situation. |
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9.2 Orthogonal Matrices and Similarity Transformations

In this section we will consider the connection between sets of vectors and matrices formed
using these vectors as their columns. We first consider some results about a class of special
matrices. The terminology in the next definition follows from the fact that the columns of
an orthogonal matrix will form an orthogonal set of vectors.

Definition 9.9 A matrix ( is said to be orthogonal if its columns {q}.q5... ., q;} form an orthonormal
set in ", |

Theorem 9.10  Suppose that Q is an orthogonal n x n matrix. Then
(i) @ is invertible with 0~' = O';
(ii) Forany xandy in E", (Ox)'Qy = x'y:
(iii) Forany x in R, ||Ox[|, = ||x]],. [

In addition, the converse of part (i) holds. (See Exercise 18.) That 1s,
® any invertible matrix Q with 0 '=0"is orthogonal.

As an example, the permutation matrices discussed in Section 6.5 have this property, so
they are orthogonal.

Property (ii1) of Theorem 9.10 is often expressed by stating that orthogonal matrices
are [,-norm preserving. As an immediate consequence of this property, every orthogonal
matrix (J has ||Q]|, = 1.
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Two matrices A and B are said to be similar if a nonsingular matrix § exists withA = §~ 'BS.
[

An important feature of similar matrices is that they have the same eigenvalues.

Theorem 912 Suppose A and B are similar matrices with A = S~'BS and A is an eigenvalue of A with

Theorem 9.13

associated eigenvector x. Then A is an eigenvalue of B with associated eigenvector Sx. W

A particularly important use of similarity occurs when an n > n matrix A is similar to
diagonal matrix. That is, when a diagonal matrix [J and an invertible matrix § exists with

A=S5"'DS orequivalently D = SAS~'.

In this case the matrix A is said to be diagonalizable. The following result is considered in
Exercise 19.

An n x n matrix A is similar to a diagonal matrix D if and only if A has n linearly independent
eigenvectors. In this case, D = 5§ 'AS, where the columns of § consist of the eigenvectors,

and the ith diagonal element of D is the eigenvalue of A that corresponds to the ith column
of §. ]
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Corollary 9.14 Ann x n matrix A that has n distinct eigenvalues is similar to a diagonal matrix. |

In fact, we do not need the similarity matrix to be diagonal for this concept to be useful.
Suppose that A is similar to a triangular matrix B. The determination of eigenvalues is easy
for a triangular matrix B, for in this case A is a solution to the equation

0 — det(B — Al) = ]_[(.b,-,- —3)
i=l

if and only if A = bj; for some i. The next result describes a relationship, called a similarity
transformation, between arbitrary matrices and triangular matrices.
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Theorem 9.15 (Schur)

Let A be an arbitrary matrix. A nonsingular matrix U exists with the property that
T=U""'AU,

where T is an upper-triangular matrix whose diagonal entries consist of the eigenvalues
of A. |

The matrix U whose existence 1s ensured in Theorem 9.15 satisfies the condition
|Ux||z = ||x]|2 for any vector x. Matrices with this property are called unitary. Although
we will not make use of this norm-preserving property, it does significantly increase the
application of Schur’s Theorem.

Theorem 9.15 is an existence theorem that ensures that the triangular matrix T exists,
but it does not provide a constructive means for finding T, since it requires a knowledge of
the eigenvalues of A. In most instances, the similarity transformation UV is too difficult to
determine.

The following result for symmetric matrices reduces the complication, because in this
case the transformation matrix is orthogonal.
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Theorem 9.16 The n x n matrix A is symmetric if and only if there exists a diagonal matrix D and an
orthogonal matrix Q with A = QD(Q". n

Corollary 9.17  Suppose that A is a symmetric n x n matrix. There exist n eigenvectors of A that form an
orthonormal set, and the eigenvalues of A are real numbers. [ |

Theorem 9.18 A symmetric matrix A is positive definite if and only if all the eigenvalues of A are positive.
[ |
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