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The Concavity/Convexity Sufficient Condition

• Just as a concave (convex) objective function in a static optimization
problem is sufficient to identify an extremum as an absolute
maximum (minimum), a similar sufficiency theorem holds in the
calculus of variations.

• For the fixed-endpoint problem Maximize ou minimize V 𝑦 =

0׬
𝑇
𝐹 𝑡, 𝑦 𝑡 , 𝑦′ 𝑡 𝑑𝑡, if the integrand function 𝐹 𝑡, 𝑦, 𝑦′ is concave

in 𝑦, 𝑦′ , then the Euler equation is sufficient for an absolute
maximum of V 𝑦 .

• Similarly, if 𝐹 𝑡, 𝑦, 𝑦′ is convex in 𝑦, 𝑦′ , then the Euler equation is
sufficient for an absolute minimum of V 𝑦 .



Concavity



Concavity

➢ 𝐹 𝑦∗ − 𝐹 𝑦 ≥ 𝐹𝑦 𝑦∗ 𝑦∗ − 𝑦

➢ 𝐹 𝑦 − 𝐹 𝑦∗ ≤ 𝐹𝑦 𝑦∗ 𝑦 − 𝑦∗



The Concavity/Convexity Sufficient Condition

• It should be pointed out that concavity/convexity in 𝑦, 𝑦′ means
concavity/convexity in the two variables 𝑦 𝑡 and 𝑦′ 𝑡 jointly, not in
each variable separately.

• The function 𝐹 𝑡, 𝑦, 𝑦′ is concave in 𝑦, 𝑦′ if, and only if, for any pair

of distinct points in the domain, 𝑡, 𝑦∗, 𝑦∗
′

and 𝑡, 𝑦, 𝑦′ , we have

(5) 𝐹 𝑡, 𝑦, 𝑦′ − 𝐹 𝑡, 𝑦∗, 𝑦∗
′
≤ 𝐹𝑦 𝑡, 𝑦∗, 𝑦∗

′
𝑦 − 𝑦∗ + 𝐹𝑦′ 𝑡, 𝑦

∗, 𝑦∗
′

𝑦′ − 𝑦∗
′

• Since 𝑦 𝑡 = 𝑦∗ 𝑡 + 𝜖𝑝 𝑡 , and 𝑦′ 𝑡 = 𝑦∗′ 𝑡 + 𝜖𝑝′ 𝑡 , equation
(5) may be expressed as:

(5’)

𝐹 𝑡, 𝑦, 𝑦′ − 𝐹 𝑡, 𝑦∗, 𝑦∗
′
≤ 𝐹𝑦 𝑡, 𝑦∗, 𝑦∗

′
𝜖𝑝 𝑡 + 𝐹𝑦′ 𝑡, 𝑦

∗, 𝑦∗
′
𝜖𝑝′ 𝑡
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• Here 𝑦∗ 𝑡 denotes the optimal path, and 𝑦 𝑡 denotes any other path. By
integrating both sides of (5’) with respect to 𝑡 over the interval 0, 𝑇 , we obtain:

0׬
𝑇
𝐹 𝑡, 𝑦, 𝑦′ − 𝐹 𝑡, 𝑦∗, 𝑦∗

′
𝑑𝑡 ≤ 0׬

𝑇
𝐹𝑦 𝑡, 𝑦∗, 𝑦∗

′
𝜖𝑝 𝑡 + 𝐹𝑦′ 𝑡, 𝑦

∗, 𝑦∗
′
𝜖𝑝′ 𝑡 𝑑𝑡

(6) V 𝑦 − V 𝑦∗ ≤ 𝜖 0׬
𝑇
𝐹𝑦 𝑡, 𝑦∗, 𝑦∗

′
𝑝 𝑡 + 𝐹𝑦′ 𝑡, 𝑦

∗, 𝑦∗
′
𝑝′ 𝑡 𝑑𝑡

• We have already seen that

0׬
𝑇
𝐹𝑦′𝑝

′ 𝑡 𝑑𝑡 = 𝐹𝑦′𝑝 𝑡
0

𝑇
− 0׬

𝑇
𝑝 𝑡

𝑑

𝑑𝑡
𝐹𝑦′𝑑𝑡 (integration by parts).

• Therefore, 0׬
𝑇
𝐹𝑦′𝑝

′ 𝑡 𝑑𝑡 = 0׬−
𝑇
𝑝(𝑡)

𝑑

𝑑𝑡
𝐹𝑦′ 𝑑𝑡 when 𝑝 0 = 𝑝 𝑇 = 0, and

(6’) V 𝑦 − V 𝑦∗ ≤ 𝜖 0׬
𝑇
𝑝 𝑡 𝐹𝑦 𝑡, 𝑦∗, 𝑦∗

′
−

𝑑

𝑑𝑡
𝐹𝑦′ 𝑡, 𝑦

∗, 𝑦∗
′

𝐸𝑢𝑙𝑒𝑟 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝑑𝑡 = 0
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• Equation (6’) is equal to zero = 0 since 𝑦∗ 𝑡 satisfies the Euler

equation 𝐹𝑦 −
𝑑

𝑑𝑡
𝐹𝑦′ = 0 .

• In other words, 𝐕 𝒚 ≤ 𝐕 𝒚∗ , where 𝑦 𝑡 can refer to any other path.

• We have thus identified 𝑦∗ 𝑡 as a V-maximizing path, and at the same
time demonstrated that the Euler equation is a sufficient condition,
given the assumption of a concave 𝑭 function.

• The opposite case of a convex 𝐹 function for minimizing V can be proved
analogously.

• If the 𝑭 function is strictly concave in 𝑦, 𝑦′ , then the weak inequality
≤ will become the strict inequality < .



Generalization to Variable Terminal Point

• The proof above is based on the assumption of fixed endpoints. But it
can easily be generalized to problems with a vertical terminal line or
truncated vertical terminal line.

• Recall that the integration-by-parts process:

0׬
𝑇
𝐹𝑦′𝑝

′ 𝑡 𝑑𝑡 = 𝐹𝑦′𝑝 𝑡
0

𝑇
− 0׬

𝑇
𝑝 𝑡

𝑑

𝑑𝑡
𝐹𝑦′𝑑𝑡

• originally produced an extra term 𝑭𝒚′𝒑 𝒕
𝟎

𝑻
which later drops out

because it reduces to zero because 𝒑 𝟎 = 𝒑 𝑻 = 𝟎.

• When we switch to the problem with a variable terminal point, with
𝑇 fixed but 𝑦 𝑇 free, 𝒑 𝑻 is no longer required to be zero.



Generalization to Variable Terminal Point

• Multiplying the above equation by 𝜖 [see equation (6)]:

• 𝜖 0׬
𝑇
𝐹𝑦′𝑝

′ 𝑡 𝑑𝑡 = 𝜖 𝐹𝑦′𝑝 𝑡
0

𝑇
− 𝜖 0׬

𝑇
𝑝 𝑡

𝑑

𝑑𝑡
𝐹𝑦′𝑑𝑡

• For this reason, we must admit an extra term [recall that 𝑦 𝑡 = 𝑦∗ 𝑡 +
𝜖𝑝 𝑡 ]:

(7) 𝜖 𝐹𝑦′𝑝 𝑡
0

𝑇
= 𝜖 𝐹𝑦′𝑝 𝑡

𝑡=𝑇
= 𝐹𝑦′ 𝑦 − 𝑦∗

𝑡=𝑇

on the right-hand side of the second and the third lines of (6’).

• Therefore:

(8) 𝜖 0׬
𝑇
𝐹𝑦′𝑝

′ 𝑡 𝑑𝑡 = 𝐹𝑦′ 𝑦 − 𝑦∗
𝑡=𝑇

− 𝜖 0׬
𝑇
𝑝 𝑡

𝑑

𝑑𝑡
𝐹𝑦′𝑑𝑡



Generalization to Variable Terminal Point

• Using (8) in (6):

(9) V 𝑦 − V 𝑦∗ ≤ 𝜖 0׬
𝑇
𝑝 𝑡 𝐹𝑦 𝑡, 𝑦∗, 𝑦∗

′
−

𝑑

𝑑𝑡
𝐹𝑦′

𝐸𝑢𝑙𝑒𝑟 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝑑𝑡 + 𝐹𝑦′ 𝑦 − 𝑦∗
𝑡=𝑇

• Considering Euler Equation is valid, (9) now becomes

(10) V 𝑦 − V 𝑦∗ ≤ 𝐹𝑦′ 𝑦 − 𝑦∗
𝑡=𝑇

• where 𝐹𝑦′ is to be evaluated along the optimal path, and 𝑦 − 𝑦∗ represents
the deviation of any admissible neighboring path 𝑦 𝑡 from the optimal path
𝑦∗ 𝑡 .



Generalization to Variable Terminal Point

• If the last term in the last inequality is zero, then obviously the original
conclusion-that V 𝑦∗ is an absolute maximum-still stands.

• It is only when 𝐹𝑦′ 𝑦 − 𝑦∗
𝑡=𝑇

is positive that we are thrown into doubt.

• In short, the concavity condition on 𝐹 𝑡, 𝑦, 𝑦∗ only needs to be
supplemented in the present case by a no positivity condition on the
expression 𝐹𝑦′ 𝑦 − 𝑦∗

𝑡=𝑇
·

• But this supplementary condition is automatically met when the
transversality condition is satisfied for the vertical-terminal-line problem:
𝐹𝑦′ 𝑡=𝑇

= 0.



Generalization to Variable Terminal Point

• As for the truncated case, the transversality condition calls for either
𝐹𝑦′ 𝑡=𝑇

= 0 (when 𝑦𝑚𝑖𝑛 is nonbinding), or 𝑦∗ = 𝑦𝑚𝑖𝑛 (when that

terminal value is binding, thereby in effect turning the problem into one
with a fixed terminal point).

• Either way, the supplementary condition is met.

• Thus, if the integrand function 𝐹 is concave (convex) in the variables
𝑦, 𝑦′ in a problem with a vertical terminal line or a truncated vertical

terminal line, then the Euler equation plus the transversality condition are
sufficient for an absolute maximum (minimum) of 𝑉 𝑦 .


