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The Concavity/Convexity Sufficient Condition

 Just as a concave (convex) objective function in a static optimization
problem is sufficient to identify an extremum as an absolute
maximum (minimum), a similar sufficiency theorem holds in the
calculus of variations.

* For the fixed-endpoint problem Maximize ou minimize V|y] =

fOTF[t,y(t),y’(t)]dt, if the integrand function F(t,y,y’) is concave
in (y,y'), then the Euler equation is sufficient for an absolute
maximum of V[y].

e Similarly, if F(t,y,y") is convex in (y,y'), then the Euler equation is
sufficient for an absolute minimum of V|y].
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The Concavity/Convexity Sufficient Condition

* It should be pointed out that concavity/convexity in (y,y’) means
concavity/convexity in the two variables y(t) and y'(t) jointly, not in
each variable separately.

* The function F(t,y,y’) is concave in (y,y') if, and only if, for any pair
of distinct points in the domain, (&, y*,y*’) and (t,y,y'), we have
(5) F(t,y,y) = F(ty"y") < Bty y )y —y)+F(t,y, vy )y —y")

* Since y(t) =y*(t) + ep(t), and y'(t) = y*'(t) + ep’(t), equation
(5) may be expressed as:

(5°)
F(t,y,y) —F(t,y"y") < B(t.y".y" )ep(®) + F i (t,y",y" )ep' (8)
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* Here y*(t) denotes the optimal path, and y(t) denotes any other path. By
integrating both sides of (5’) with respect to t over the interval [0, T], we obtain:

o [F&y,y) = F(ty",y )] de < [([F 6,y 7 )ep@®) + Fy(t,y" v )ep' ()] de
(6) Vlyl-Vly*I<e fOT[ E(t.y", vy )p@® + F(t,y*,y" )p' ()] dt

* We have already seen that

T , T T d . .
Jy Fyrp'(®)dt = [Fy/p(t)]o - J, p(t)EFy/dt (integration by parts).

* Therefore, | OT

(6") Vly] =V

Fp'()]dt = - fOT [p(t)%Fy,] dt when p(0) = p(T) = 0, and

v <e fOTp(t) [\Fy(t,y*,y*') — %Fyr(t,y*,y*lz dt =0

Euler E'quation
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* Equation (6’) is equal to zero (= 0) since y*(t) satisfies the Euler
equation (Fy — %Fy, = O).
* In other words, V]|y| < V[y*], where y(t) can refer to any other path.

* We have thus identified y*(t) as a V-maximizing path, and at the same
time demonstrated that the Euler equation is a sufficient condition,
given the assumption of a concave F function.

* The opposite case of a convex F function for minimizing V can be proved
analogously.

* If the F function is strictly concave in (y,y’), then the weak inequality
(<) will become the strict inequality (<).



Generalization to Variable Terminal Point

* The proof above is based on the assumption of fixed endpoints. But it
can easily be generalized to problems with a vertical terminal line or
truncated vertical terminal line.

e Recall that the integration-by-parts process:
T , 1T T d
fo F,p' (t)dt = [Fyrp(t)_o — fo p(t)aFy,dt

T
 originally produced an extra term [Fyrp(t)]O which later drops out
because it reduces to zero because p(0) = p(T) = 0.

* When we switch to the problem with a variable terminal point, with
T fixed but y(T) free, p(T) is no longer required to be zero.



Generalization to Variable Terminal Point

* Multiplying the above equation by € [see equation (6)]:
T , T T d
ve [ Fyp'(t)dt = E[Fy/p(t)]o —€J, p(t)EFy/dt

* For this reason, we must admit an extra term [recall that y(t) = y*(t) +
ep(t)]:

T *
(7) elFyp®] =elFyp®] _ =[F,&-y)] _
on the right-hand side of the second and the third lines of (6’).
* Therefore:

(8) €, Fyp'(t)dt = [Fyi(y — yI,_ —€ [5 p(O) = F dt



Generalization to Variable Terminal Point

e Using (8) in (6):
(9) VIyl-VIy*1<ef p() [Fy(t, v, y*) — %Fy/] dt +[F, (v =y9)] _

Euler Ebuation
e Considering Euler Equation is valid, (9) now becomes

(10) VIyl = VIy' 1 < [F) v =) _,

* where F,/ is to be evaluated along the optimal path, and (y — y™*) represents
the deviation of any admissible neighboring path y(t) from the optimal path

y*(t).




Generalization to Variable Terminal Point

* If the last term in the last inequality is zero, then obviously the original
conclusion-that V|y™*]| is an absolute maximume-still stands.

* It is only when [Fyr(y — y*)]t_Tis positive that we are thrown into doubt.

* In short, the concavity condition on F(t,y,y*) only needs to be
supplemented in the present case by a no positivity condition on the

expression [Fy'()’ — y*)]t:T'

* But this supplementary condition is automatically met when the
transversality condition is satisfied for the vertical-terminal-line problem:

[Fy,]t=T = (.



Generalization to Variable Terminal Point

* As for the truncated case, the transversality condition calls for either
[Fyr]t=T=O (when vy,.;, is nonbinding), or y* =y, (when that
terminal value is binding, thereby in effect turning the problem into one
with a fixed terminal point).

* Either way, the supplementary condition is met.

* Thus, if the integrand function F is concave (convex) in the variables
(y,y") in a problem with a vertical terminal line or a truncated vertical
terminal line, then the Euler equation plus the transversality condition are
sufficient for an absolute maximum (minimum) of V|y].



