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Vertical Terminal Line

(15') [F —y'Fyr| _ AT + [Fyr]tzTAyT =0

* This condition, unlike the Euler equation, is
relevant only to one point of time, T.

 The vertical-terminal-line case involves a fixed
T. Thus AT = 0, and the first term in (15’)
drops out.

* But since Ay is arbitrary and can take either
sign, the only way to make the second term in
(15’) vanish for sure is to have:

(16) [Fy,]tzT =X}

Figure 4a — Vertical terminal-line
problem.
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' - : Fi 4b — Horizontal terminal-li
Horizontal Terminal Line
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* For the horizontal-terminal-line case the
situation is reversed.

* We now have Ayr = 0 but AT is arbitrary. So
the second term in (3.15’) automatically drops
out, but the first does not.

e Since AT is arbitrary, the only way to make
the first term vanish for sure is to have the
bracketed expression equal to zero.

* Thus the transversality condition is:
(17) [F -y Fy,]tzT =X




Specialized Transversality Conditions

* To fix ideas, let us interpret F[t,y(t),y'(t)] as a profit function,
where y represents capital stock, and y’ represents net investment.

* Net investment entails taking resources away from the current profit-
making business operation, so as to build up capital which will
enhance future profit.

* Hence, there exists a tradeoff between current profit and future
profit.

* At any time t, with a given capital stock y, a specific investment
decision, a decision to select the investment rate y, will result in the
current profit F[t, y(t), v (t)].



Specialized Transversality Conditions

* The imputed (or shadow) value to the firm of a unit of capital is
measured by the derivative Fy,-

* This means that if we decide to leave (not use up) a unit of capital at
the terminal time, it will entail a negative value equal to —Fyr-

* Thus, at t = T, the value measure of yg is yoF -

* Accordingly, the overall profit implication of the decision to choose
the investment rate y is [F(t, Y, ¥0) — y(’,Fy(r)]-

* The general expression for this is F — y’Fyr, asin (17).



Specialized Transversality Conditions

* Now we can interpret the transversality condition (17) to mean that, in a
problem with a free terminal time, the firm should select a T such that a
decision to invest and accumulate capital will, at £ = T, no longer yield any
overall (current and future) profit.

* In other words, all the profit opportunities should have been fully taken
advantage of by the optimally chosen terminal time.

* In addition, (16), which can equivalently be written as [ —F, ] i =0,

instructs the firm to avoid any sacrifice of profit that will be mcurred by
leaving a positive terminal capital.

* In other words, in a free-terminal-state problem, in order to maximize
profit in the interval |0, T] but not beyond, the firm should, at time T, use
up all the capital it ever accumulated.



Srminal Curve

* With a terminal curve y; = ¢(T), neither Ay, nor
AT is assigned a zero value, so neither term in (15’)

drops out.

* However, for a small arbitrary AT, the terminal
curve implies that Ay = ¢'AT. So it is possible to
eliminate Ayt in (15°) and combine the two terms
into the form:

(15') [F —y'Fyr| _ AT + [Fyr]tzTAyT =0
(18) [F — y'F,r + Fy,gb’]tzTAT =0

* Since AT is arbitrary, the transversality condition is:
(19) [F + (¢' = y)Fy|,_ =0




Truncated Vertical Terminal Line

* The usual case of vertical terminal line, with AT = 0, specializes (15’)
to

(20) [Fyr| _ Ayr =0

* When the line is truncated, restricted by the terminal condition yr =
Ymin, Where y.... is a minimum permissible level of y, the optimal
solution can have two possible types of outcome:

VT > Ymin OF YT = Ymin
* If yT > Y.nin, the terminal restriction is automatically satisfied; that

is, it is nonbinding. Thus, the transversality condition is in that event
the same as (16):

(21) [Fy']t=T =0 for  yr > Vioin



Truncated Vertical Terminal Line

* The other outcome, yr = ymin, On the other hand, only admits
neighboring paths with terminal values yr = yin.

* This means that Ay; = y;r — yr is no longer completely arbitrary
(positive or negative), but is restricted to be nonnegative.

* Assuming the perturbing curve |y(t) = y*(t) + ep(t)] to have
terminal value p(T) > 0, Ay; =0 would mean that € = 0. The
nonnegativity of € means that the transversality condition (20), which
has its roots in the first-order condition dV /de = 0 must be changed
to an inequality as in the Kuhn-Tucker conditions, and (20) should
become:

(22) [Fy] _ Ayr <0



Truncated Vertical Terminal Line

* And since Ay = 0, (22) implies condition
(23) [Fy']t=T <0 for vy = vnin

* Combining (21) and (23), we may write the following summary
statement of the transversality condition for a maximization problem:

(24) [Fy,]t=T <0 Y;: = Ymin (y;i R Ymin)[Fy’]t=T =0
e [for maximization of V]

* If the problem is instead to minimize I/, then the inequality sign in
(22) must be reversed, and the transversality condition becomes

(25) [Fyr] _ 20 y32ymin 7 = ymim)|Fy] _ =0



Truncated Horizontal Terminal Line

* The horizontal terminal line may be truncated by the restriction T < T,,,4,, Where
Tax represents a maximum permissible time for completing a task deadline.

* The analysis of such a situation is very similar to the truncated vertical terminal
line just discussed. By analogous reasoning, we can derive the following
transversality condition for a maximization problem:

(26) [F - y’Fy’]tzT =0 T" < Tnax (T" — Tmax)[F - y’Fy’]t=T =0
e [for maximization of V]

 If the problem is t o minimize V, the first inequality in (26) must be changed, and
the transversality condition is

(27) [F - y’Fy']t=T =0 T" < Tnax (T" — Tmax)[F — y’Fy’]t=T =0

* [for maximization of V]
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Second-Order Conditions

e Qur discussion has so far concentrated on the identification of the

extremal(s) of a problem, without attention to whether they
maximize or minimize the functional V|y].

* This involves checking the second-order conditions.

* To distinguish between maximization and minimization problems, we
can take the second derivative d?V/de?, and use the following

standard second-order necessary conditions in calculus:
azv

— <0 for a maximization of V[y]

7 50 for a minimization of V[y]



Second-Order Conditions

* Second-order sufficient conditions:

d2V . . .

— <0 for a maximization of V[y]
2

% > () for a minimization of V[y]

* To find d?V /de?, we differentiate dV /de with respect to €, bearing
in mind that:
1. all the partial derivatives of F(t,y,y') are, like F itself, functions of
t,y and y’';
2. yandy' are, in turn, both functions of €.



Second-Order Derivative of V

* Remember that:
T * x/ !/
=J F [t,g () + ep(t),y™' (t) + ep' ()] dt
y(6) y'(t)
av _ (T dF dF d oF dy' T ,
Zdt = [ (52 + 22K ) de = [[[Ep() + Fyp'(0)]d

de ~ J0 de 0y de ay’ de
* Therefore:
dy’ ,
(1) Z=p®) and = =p'(t)

. Thus we have:

(2) d( ) f[ yp(©) + Fip' (8)]dt

dez " de



Second-Order Derivative of V

2) L= [T ZE +p'@©LF,]d

de?

[by Leibniz 's rule]
* In view of the fact that

!

(3) —F =F,, 2+ F, C;y

yy de — yyp(t) + Fy’yp’(t)

dy' /
(3) —F ' =Fyy -I-F Sy =Fyyrp(t)+Fyrylp (t)

* the second derlvatlve (2’) emerges as

= = [[[EypOp(®) + F,r,p(O)p'(t) + F,,,p(O)p' (£) +

de2

0 (Op' (D)]dt




Second-Order Derivative of V

@) L = [T[Fyp2(6) + 2F,,p(Dp' (&) + Fyryp” (D] de

* if it can be established that the quadratic form, with F,,, Fyy and
%,r r evaluated on the extremal, is negative definite for every t then
d

V/de? < 0, and the extremal maximizes V.

* Similarly, positive definiteness of the quadratic form for every tis
sufficient for minimization of V.

* Even if we can only establish sign semidefiniteness, we can at least
have the second-order necessary conditions checked.



