

Vertical Terminal Line

Figure 4a - Vertical terminal-line problem.

$$
\left(15^{\prime}\right)\left[F-y^{\prime} F_{y^{\prime}}\right]_{t=T} \Delta T+\left[F_{y^{\prime}}\right]_{t=T} \Delta y_{T}=0
$$

- This condition, unlike the Euler equation, is relevant only to one point of time, T.
- The vertical-terminal-line case involves a fixed T. Thus $\Delta T=0$, and the first term in (15^{\prime}) drops out.
- But since Δy_{T} is arbitrary and can take either sign, the only way to make the second term in (15') vanish for sure is to have:
(16) $\left[F_{y^{\prime}}\right]_{t=T}=0$.

Horizontal Terminal Line

- For the horizontal-terminal-line case the situation is reversed.
- We now have $\Delta y_{T}=0$ but ΔT is arbitrary. So the second term in (3.15') automatically drops out, but the first does not.
- Since ΔT is arbitrary, the only way to make the first term vanish for sure is to have the bracketed expression equal to zero.
- Thus the transversality condition is:
(17) $\left[F-y^{\prime} F_{y^{\prime}}\right]_{t=T}=0$

Figure 4b - Horizontal terminal-line problem.

Specialized Transversality Conditions

- To fix ideas, let us interpret $F\left[t, y(t), y^{\prime}(t)\right]$ as a profit function, where y represents capital stock, and y^{\prime} represents net investment.
- Net investment entails taking resources away from the current profitmaking business operation, so as to build up capital which will enhance future profit.
- Hence, there exists a tradeoff between current profit and future profit.
- At any time t, with a given capital stock y, a specific investment decision, a decision to select the investment rate y_{0}^{\prime}, will result in the current profit $F\left[t, y(t), y_{0}^{\prime}(t)\right]$.

Specialized Transversality Conditions

- The imputed (or shadow) value to the firm of a unit of capital is measured by the derivative $F_{y^{\prime}}$.
- This means that if we decide to leave (not use up) a unit of capital at the terminal time, it will entail a negative value equal to $-F_{y^{\prime}}$.
- Thus, at $t=T$, the value measure of y_{0}^{\prime} is $y_{0}^{\prime} F_{y_{0}^{\prime}}$.
- Accordingly, the overall profit implication of the decision to choose the investment rate y_{0}^{\prime} is $\left[F\left(t, y, y_{0}^{\prime}\right)-y_{0}^{\prime} F_{y_{0}^{\prime}}\right]$.
- The general expression for this is $F-y^{\prime} F_{y^{\prime}}$, as in (17).

Specialized Transversality Conditions

- Now we can interpret the transversality condition (17) to mean that, in a problem with a free terminal time, the firm should select a T such that a decision to invest and accumulate capital will, at $t=T$, no longer yield any overall (current and future) profit.
- In other words, all the profit opportunities should have been fully taken advantage of by the optimally chosen terminal time.
- In addition, (16), which can equivalently be written as $\left[-F_{y^{\prime}}\right]_{t=T}=0$, instructs the firm to avoid any sacrifice of profit that will be incurred by leaving a positive terminal capital.
- In other words, in a free-terminal-state problem, in order to maximize profit in the interval [$0, T$] but not beyond, the firm should, at time T, use up all the capital it ever accumulated.

Terminal Curve

Figure 4c - Terminal curve problem.

- With a terminal curve $y_{T}=\phi(T)$, neither Δy_{T} nor ΔT is assigned a zero value, so neither term in (15') drops out.
- However, for a small arbitrary ΔT, the terminal curve implies that $\Delta y_{T}=\phi^{\prime} \Delta T$. So it is possible to eliminate Δy_{T} in (15') and combine the two terms into the form:

$$
\begin{aligned}
& \left(15^{\prime}\right)\left[F-y^{\prime} F_{y^{\prime}}\right]_{t=T} \Delta T+\left[F_{y^{\prime}}\right]_{t=T} \Delta y_{T}=0 \\
& \text { (18) }\left[F-y^{\prime} F_{y^{\prime}}+F_{y^{\prime}} \phi^{\prime}\right]_{t=T} \Delta T=0
\end{aligned}
$$

- Since ΔT is arbitrary, the transversality condition is: (19) $\left[F+\left(\phi^{\prime}-y^{\prime}\right) F_{y^{\prime}}\right]_{t=T}=0$

Truncated Vertical Terminal Line

- The usual case of vertical terminal line, with $\Delta T=0$, specializes (15') to (20) $\left[F_{y^{\prime}}\right]_{t=T} \Delta y_{T}=0$
- When the line is truncated, restricted by the terminal condition $y_{T} \geq$ $y_{\text {min }}$, where $y_{\text {min }}$ is a minimum permissible level of y, the optimal solution can have two possible types of outcome:

$$
y_{T}^{*}>y_{\min } \text { or } y_{T}^{*}=y_{\min }
$$

- If $\boldsymbol{y}_{\boldsymbol{T}}^{*}>\boldsymbol{y}_{\text {min }}$, the terminal restriction is automatically satisfied; that is, it is nonbinding. Thus, the transversality condition is in that event the same as (16):
(21) $\left[F_{y^{\prime}}\right]_{t=T}=0 \quad$ for $\quad y_{T}^{*}>y_{\text {min }}$

Truncated Vertical Terminal Line

- The other outcome, $y_{T}^{*}=y_{\text {min }}$, on the other hand, only admits neighboring paths with terminal values $y_{T}^{*} \geq y_{\text {min }}$.
- This means that $\Delta y_{T}=y_{T}-y_{T}^{*}$ is no longer completely arbitrary (positive or negative), but is restricted to be nonnegative.
- Assuming the perturbing curve $\left[y(t)=y^{*}(t)+\epsilon p(t)\right]$ to have terminal value $p(T)>0, \Delta y_{T} \geq 0$ would mean that $\epsilon \geq 0$. The nonnegativity of ϵ means that the transversality condition (20), which has its roots in the first-order condition $d V / d \epsilon=0$ must be changed to an inequality as in the Kuhn-Tucker conditions, and (20) should become:
(22) $\left[F_{y^{\prime}}\right]_{t=T} \Delta y_{T} \leq 0$

Truncated Vertical Terminal Line

- And since $\Delta y_{T} \geq 0$, (22) implies condition
(23)

$$
\left[F_{y^{\prime}}\right]_{t=T} \leq 0 \quad \text { for } \quad y_{T}^{*}=y_{\min }
$$

- Combining (21) and (23), we may write the following summary statement of the transversality condition for a maximization problem:
(24) $\left[F_{y^{\prime}}\right]_{t=T} \leq 0$
$y_{T}^{*} \geq y_{\text {min }}$
$\left(y_{T}^{*}-y_{\min }\right)\left[F_{y^{\prime}}\right]_{t=T}=0$
- [for maximization of V]
- If the problem is instead to minimize V, then the inequality sign in (22) must be reversed, and the transversality condition becomes
(25) $\left[F_{y^{\prime}}\right]_{t=T} \geq 0$
$y_{T}^{*} \geq y_{\text {min }}$
$\left(y_{T}^{*}-y_{\min }\right)\left[F_{y^{\prime}}\right]_{t=T}=0$

Truncated Horizontal Terminal Line

- The horizontal terminal line may be truncated by the restriction $T \leq T_{\max }$, where $T_{\max }$ represents a maximum permissible time for completing a task deadline.
- The analysis of such a situation is very similar to the truncated vertical terminal line just discussed. By analogous reasoning, we can derive the following transversality condition for a maximization problem:

$$
\begin{equation*}
\left[F-y^{\prime} F_{y^{\prime}}\right]_{t=T} \geq 0 \tag{26}
\end{equation*}
$$

$$
T^{*} \leq T_{\max }
$$

$$
\left(T^{*}-T_{\max }\right)\left[F-y^{\prime} F_{y^{\prime}}\right]_{t=T}=0
$$

- [for maximization of V]
- If the problem is t o minimize V, the first inequality in (26) must be changed, and the transversality condition is
(27) $\left[F-y^{\prime} F_{y^{\prime}}\right]_{t=T} \leq 0$
$T^{*} \leq T_{\max }$

$$
\left(T^{*}-T_{\max }\right)\left[F-y^{\prime} F_{y^{\prime}}\right]_{t=T}=0
$$

- [for maximization of V]

Second-Order Conditions

Prof. Luciano Nakabashi

Second-Order Conditions

- Our discussion has so far concentrated on the identification of the extremal(s) of a problem, without attention to whether they maximize or minimize the functional $V[y]$.
- This involves checking the second-order conditions.
- To distinguish between maximization and minimization problems, we can take the second derivative $d^{2} V / d \epsilon^{2}$, and use the following standard second-order necessary conditions in calculus:

$$
\begin{array}{ll}
\frac{d^{2} V}{d \epsilon^{2}} \leq 0 & \text { for a maximization of } V[y] \\
\frac{d^{2} V}{d \epsilon^{2}} \geq 0 & \text { for a minimization of } V[y]
\end{array}
$$

Second-Order Conditions

- Second-order sufficient conditions:
$\begin{array}{ll}\frac{d^{2} V}{d \epsilon^{2}}<0 & \text { for a maximization of } V[y] \\ \frac{d^{2} V}{d \epsilon^{2}}>0 & \text { for a minimization of } V[y]\end{array}$
- To find $d^{2} V / d \epsilon^{2}$, we differentiate $d V / d \epsilon$ with respect to ϵ, bearing in mind that:

1. all the partial derivatives of $F\left(t, y, y^{\prime}\right)$ are, like F itself, functions of t, y and y^{\prime};
2. y and y^{\prime} are, in turn, both functions of ϵ.

Second-Order Derivative of V

- Remember that:

$$
\begin{aligned}
& \mathrm{V}[\epsilon]=\int_{0}^{T} F[t, \underbrace{y^{*}(t)+\epsilon p(t)}_{y(t)}, \underbrace{y^{* \prime}(t)+\epsilon p^{\prime}(t)}_{y^{\prime}(t)}] d t \\
& \frac{d V}{d \epsilon}=\int_{0}^{T} \frac{d F}{d \epsilon} d t=\int_{0}^{T}\left(\frac{\partial F}{\partial y} \frac{d y}{d \epsilon}+\frac{\partial F}{\partial y^{\prime}} \frac{d y^{\prime}}{d \epsilon}\right) d t=\int_{0}^{T}\left[F_{y} p(t)+F_{y^{\prime}} p^{\prime}(t)\right] d t
\end{aligned}
$$

- Therefore:
(1) $\frac{d y}{d \epsilon}=p(t) \quad$ and $\quad \frac{d y^{\prime}}{d \epsilon}=p^{\prime}(t)$
- Thus, we have:
(2) $\frac{d^{2} V}{d \epsilon^{2}}=\frac{d}{d \epsilon}\left(\frac{d V}{d \epsilon}\right)=\frac{d}{d \epsilon} \int_{0}^{T}\left[F_{y} p(t)+F_{y^{\prime}} p^{\prime}(t)\right] d t$

Second-Order Derivative of V

$\left(2^{\prime}\right) \frac{d^{2} V}{d \epsilon^{2}}=\int_{0}^{T}\left[p(t) \frac{d}{d \epsilon} F_{y}+p^{\prime}(t) \frac{d}{d \epsilon} F_{y^{\prime}}\right] d t$
[by Leibniz 's rule]

- In view of the fact that
(3) $\frac{d}{d \epsilon} F_{y}=F_{y y} \frac{d y}{d \epsilon}+F_{y^{\prime} y} \frac{d y^{\prime}}{d \epsilon}=F_{y y} p(t)+F_{y^{\prime} y} p^{\prime}(t)$
(3') $\frac{d}{d \epsilon} F_{y^{\prime}}=F_{y y^{\prime}} \frac{d y}{d \epsilon}+F_{y^{\prime} y^{\prime}} \frac{d y^{\prime}}{d \epsilon}=F_{y y^{\prime}} p(t)+F_{y^{\prime} y^{\prime}} p^{\prime}(t)$
- the second derivative (2^{\prime}) emerges as
(4) $\frac{d^{2} V}{d \epsilon^{2}}=\int_{0}^{T}\left[F_{y y} p(t) p(t)+F_{y^{\prime} y} p(t) p^{\prime}(t)+F_{y y^{\prime}} p(t) p^{\prime}(t)+\right.$ $\left.F_{y^{\prime} y^{\prime}} p^{\prime}(t) p^{\prime}(t)\right] d t$

Second-Order Derivative of V

$$
\left(4^{\prime}\right) \frac{d^{2} V}{d \epsilon^{2}}=\int_{0}^{T}\left[F_{y y} p^{2}(t)+2 F_{y y^{\prime}} p(t) p^{\prime}(t)+F_{y^{\prime} y^{\prime}} \prime^{\prime 2}(t)\right] d t
$$

- if it can be established that the quadratic form, with $F_{y y}, F_{y y^{\prime}}$ and $F_{y^{\prime} y^{\prime}}$ evaluated on the extremal, is negative definite for every t, then $d^{2} V / d \epsilon^{2}<0$, and the extremal maximizes V.
- Similarly, positive definiteness of the quadratic form for every t is sufficient for minimization of V.
- Even if we can only establish sign semidefiniteness, we can at least have the second-order necessary conditions checked.

