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Vertical Terminal Line

(15’) 𝐹 − 𝑦′𝐹𝑦′ 𝑡=𝑇
∆𝑇 + 𝐹𝑦′

𝑡=𝑇
∆𝑦𝑇 = 0

• This condition, unlike the Euler equation, is
relevant only to one point of time, 𝑇.

• The vertical-terminal-line case involves a fixed
𝑇. Thus ∆𝑇 = 0, and the first term in (15’)
drops out.

• But since ∆𝑦𝑇 is arbitrary and can take either
sign, the only way to make the second term in
(15’) vanish for sure is to have:

(16) 𝐹𝑦′ 𝑡=𝑇
= 0.

Figure 4a – Vertical terminal-line
problem.



Horizontal Terminal Line

• For the horizontal-terminal-line case the
situation is reversed.

• We now have ∆𝑦𝑇 = 0 but ∆𝑇 is arbitrary. So
the second term in (3.15’) automatically drops
out, but the first does not.

• Since ∆𝑇 is arbitrary, the only way to make
the first term vanish for sure is to have the
bracketed expression equal to zero.

• Thus the transversality condition is:

(17) 𝐹 − 𝑦′𝐹𝑦′ 𝑡=𝑇
= 0

Figure 4b – Horizontal terminal-line
problem.



Specialized Transversality Conditions

• To fix ideas, let us interpret 𝐹 𝑡, 𝑦 𝑡 , 𝑦′ 𝑡 as a profit function,
where 𝑦 represents capital stock, and 𝑦′ represents net investment.

• Net investment entails taking resources away from the current profit-
making business operation, so as to build up capital which will
enhance future profit.

• Hence, there exists a tradeoff between current profit and future
profit.

• At any time 𝑡, with a given capital stock 𝑦, a specific investment
decision, a decision to select the investment rate 𝑦0

′ , will result in the
current profit 𝐹 𝑡, 𝑦 𝑡 , 𝑦0

′ 𝑡 .



Specialized Transversality Conditions

• The imputed (or shadow) value to the firm of a unit of capital is
measured by the derivative 𝐹𝑦′·

• This means that if we decide to leave (not use up) a unit of capital at
the terminal time, it will entail a negative value equal to −𝐹𝑦′ ·

• Thus, at 𝑡 = 𝑇, the value measure of 𝑦0
′ is 𝑦0

′𝐹𝑦0′ ·

• Accordingly, the overall profit implication of the decision to choose

the investment rate 𝑦0
′ is 𝐹 𝑡, 𝑦, 𝑦0

′ − 𝑦0
′𝐹𝑦0′ ·

• The general expression for this is 𝐹 − 𝑦′𝐹𝑦′, as in (17).



Specialized Transversality Conditions

• Now we can interpret the transversality condition (17) to mean that, in a
problem with a free terminal time, the firm should select a 𝑇 such that a
decision to invest and accumulate capital will, at 𝑡 = 𝑇, no longer yield any
overall (current and future) profit.

• In other words, all the profit opportunities should have been fully taken
advantage of by the optimally chosen terminal time.

• In addition, (16), which can equivalently be written as −𝐹𝑦′ 𝑡=𝑇
= 0.,

instructs the firm to avoid any sacrifice of profit that will be incurred by
leaving a positive terminal capital.

• In other words, in a free-terminal-state problem, in order to maximize
profit in the interval ሾ0, ሿ𝑇 but not beyond, the firm should, at time 𝑇, use
up all the capital it ever accumulated.



Terminal Curve

• With a terminal curve 𝑦𝑇 = 𝜙 𝑇 , neither ∆𝑦𝑇 nor
∆𝑇 is assigned a zero value, so neither term in (15’)
drops out.

• However, for a small arbitrary ∆𝑇, the terminal
curve implies that ∆𝑦𝑇 = 𝜙′∆𝑇. So it is possible to
eliminate ∆𝑦𝑇 in (15’) and combine the two terms
into the form:

(15’) 𝐹 − 𝑦′𝐹𝑦′ 𝑡=𝑇
∆𝑇 + 𝐹𝑦′

𝑡=𝑇
∆𝑦𝑇 = 0

(18) 𝐹 − 𝑦′𝐹𝑦′ + 𝐹𝑦′𝜙
′

𝑡=𝑇
∆𝑇 = 0

• Since ∆𝑇 is arbitrary, the transversality condition is:

(19) 𝐹 + 𝜙′ − 𝑦′ 𝐹𝑦′ 𝑡=𝑇
= 0

Figure 4c – Terminal curve problem.



Truncated Vertical Terminal Line

• The usual case of vertical terminal line, with ∆𝑇 = 0, specializes (15’)
to

(20) 𝐹𝑦′ 𝑡=𝑇
∆𝑦𝑇 = 0

• When the line is truncated, restricted by the terminal condition 𝑦𝑇 ≥
𝑦𝑚𝑖𝑛, where 𝑦𝑚𝑖𝑛 is a minimum permissible level of 𝑦, the optimal
solution can have two possible types of outcome:

𝑦𝑇
∗ > 𝑦𝑚𝑖𝑛 or 𝑦𝑇

∗ = 𝑦𝑚𝑖𝑛

• If 𝒚𝑻
∗ > 𝒚𝒎𝒊𝒏, the terminal restriction is automatically satisfied; that

is, it is nonbinding. Thus, the transversality condition is in that event
the same as (16):

(21) 𝐹𝑦′ 𝑡=𝑇
= 0 for 𝑦𝑇

∗ > 𝑦𝑚𝑖𝑛



Truncated Vertical Terminal Line

• The other outcome, 𝑦𝑇
∗ = 𝑦𝑚𝑖𝑛 , on the other hand, only admits

neighboring paths with terminal values 𝑦𝑇
∗ ≥ 𝑦𝑚𝑖𝑛.

• This means that ∆𝑦𝑇 = 𝑦𝑇 − 𝑦𝑇
∗ is no longer completely arbitrary

(positive or negative), but is restricted to be nonnegative.

• Assuming the perturbing curve 𝑦 𝑡 = 𝑦∗ 𝑡 + 𝜖𝑝 𝑡 to have
terminal value 𝑝 𝑇 > 0, ∆𝑦𝑇 ≥ 0 would mean that 𝜖 ≥ 0. The
nonnegativity of 𝜖 means that the transversality condition (20), which
has its roots in the first-order condition Τⅆ𝑉 ⅆ𝜖 = 0 must be changed
to an inequality as in the Kuhn-Tucker conditions, and (20) should
become:

(22) 𝐹𝑦′ 𝑡=𝑇
∆𝑦𝑇 ≤ 0



Truncated Vertical Terminal Line

• And since ∆𝑦𝑇 ≥ 0, (22) implies condition

(23) 𝐹𝑦′ 𝑡=𝑇
≤ 0 for 𝑦𝑇

∗ = 𝑦𝑚𝑖𝑛

• Combining (21) and (23), we may write the following summary
statement of the transversality condition for a maximization problem:

(24) 𝐹𝑦′ 𝑡=𝑇
≤ 0 𝑦𝑇

∗ ≥ 𝑦𝑚𝑖𝑛 𝑦𝑇
∗ − 𝑦𝑚𝑖𝑛 𝐹𝑦′ 𝑡=𝑇

= 0

• [for maximization of 𝑉]

• If the problem is instead to minimize 𝑉, then the inequality sign in
(22) must be reversed, and the transversality condition becomes

(25) 𝐹𝑦′ 𝑡=𝑇
≥ 0 𝑦𝑇

∗ ≥ 𝑦𝑚𝑖𝑛 𝑦𝑇
∗ − 𝑦𝑚𝑖𝑛 𝐹𝑦′ 𝑡=𝑇

= 0



Truncated Horizontal Terminal Line

• The horizontal terminal line may be truncated by the restriction 𝑇 ≤ 𝑇𝑚𝑎𝑥, where
𝑇𝑚𝑎𝑥 represents a maximum permissible time for completing a task deadline.

• The analysis of such a situation is very similar to the truncated vertical terminal
line just discussed. By analogous reasoning, we can derive the following
transversality condition for a maximization problem:

(26) 𝐹 − 𝑦′𝐹𝑦′ 𝑡=𝑇
≥ 0 𝑇∗ ≤ 𝑇𝑚𝑎𝑥 𝑇∗ − 𝑇𝑚𝑎𝑥 𝐹 − 𝑦′𝐹𝑦′ 𝑡=𝑇

= 0

• [for maximization of 𝑉]

• If the problem is t o minimize V, the first inequality in (26) must be changed, and
the transversality condition is

(27) 𝐹 − 𝑦′𝐹𝑦′ 𝑡=𝑇
≤ 0 𝑇∗ ≤ 𝑇𝑚𝑎𝑥 𝑇∗ − 𝑇𝑚𝑎𝑥 𝐹 − 𝑦′𝐹𝑦′ 𝑡=𝑇

= 0

• [for maximization of 𝑉]
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Second-Order Conditions

• Our discussion has so far concentrated on the identification of the
extremal(s) of a problem, without attention to whether they
maximize or minimize the functional 𝑉 𝑦 .

• This involves checking the second-order conditions.

• To distinguish between maximization and minimization problems, we
can take the second derivative Τⅆ2𝑉 ⅆ𝜖2 , and use the following
standard second-order necessary conditions in calculus:

ⅆ2𝑉

ⅆ𝜖2
≤ 0 for a maximization of 𝑉 𝑦

ⅆ2𝑉

ⅆ𝜖2
≥ 0 for a minimization of 𝑉 𝑦



Second-Order Conditions

• Second-order sufficient conditions:

ⅆ2𝑉

ⅆ𝜖2
< 0 for a maximization of 𝑉 𝑦

ⅆ2𝑉

ⅆ𝜖2
> 0 for a minimization of 𝑉 𝑦

• To find Τⅆ2𝑉 ⅆ𝜖2, we differentiate Τⅆ𝑉 ⅆ𝜖 with respect to 𝜖, bearing
in mind that:

1. all the partial derivatives of 𝐹 𝑡, 𝑦, 𝑦′ are, like 𝐹 itself, functions of
𝑡, 𝑦 and 𝑦′;

2. 𝑦 and 𝑦′ are, in turn, both functions of 𝜖.



Second-Order Derivative of 𝑉

• Remember that:

V 𝜖 = 0
𝑇
𝐹 𝑡, 𝑦∗ 𝑡 + 𝜖𝑝 𝑡

𝑦 𝑡

, 𝑦∗′ 𝑡 + 𝜖𝑝′ 𝑡
𝑦′ 𝑡

ⅆ𝑡

ⅆ𝑉

ⅆ𝜖
= 0

𝑇 ⅆ𝐹

ⅆ𝜖
ⅆ𝑡 = 0

𝑇 𝜕𝐹

𝜕𝑦

ⅆ𝑦

ⅆ𝜖
+

𝜕𝐹

𝜕𝑦′
ⅆ𝑦′

ⅆ𝜖
ⅆ𝑡 = 0

𝑇
𝐹𝑦𝑝 𝑡 + 𝐹𝑦′𝑝

′ 𝑡 ⅆ𝑡

• Therefore:

(1)
ⅆ𝑦

ⅆ𝜖
= 𝑝 𝑡 and

ⅆ𝑦′

ⅆ𝜖
= 𝑝′ 𝑡

• Thus, we have:

(2)
ⅆ2𝑉

ⅆ𝜖2
=

ⅆ

ⅆ𝜖

ⅆ𝑉

ⅆ𝜖
=

ⅆ

ⅆ𝜖
0
𝑇
𝐹𝑦𝑝 𝑡 + 𝐹𝑦′𝑝

′ 𝑡 ⅆ𝑡



Second-Order Derivative of 𝑉

(2’)
ⅆ2𝑉

ⅆ𝜖2
= 0

𝑇
𝑝 𝑡

ⅆ

ⅆ𝜖
𝐹𝑦 + 𝑝′ 𝑡

ⅆ

ⅆ𝜖
𝐹𝑦′ ⅆ𝑡

[by Leibniz 's rule]

• In view of the fact that

(3)
ⅆ

ⅆ𝜖
𝐹𝑦 = 𝐹𝑦𝑦

ⅆ𝑦

ⅆ𝜖
+ 𝐹𝑦′𝑦

ⅆ𝑦′

ⅆ𝜖
= 𝐹𝑦𝑦𝑝 𝑡 + 𝐹𝑦′𝑦𝑝

′ 𝑡

(3’)
ⅆ

ⅆ𝜖
𝐹𝑦′ = 𝐹𝑦𝑦′

ⅆ𝑦

ⅆ𝜖
+ 𝐹𝑦′𝑦′

ⅆ𝑦′

ⅆ𝜖
= 𝐹𝑦𝑦′𝑝 𝑡 + 𝐹𝑦′𝑦′𝑝

′ 𝑡

• the second derivative (2’) emerges as

(4)
ⅆ2𝑉

ⅆ𝜖2
= 0

𝑇
ൣ

൧

𝐹𝑦𝑦𝑝 𝑡 𝑝 𝑡 + 𝐹𝑦′𝑦𝑝 𝑡 𝑝′ 𝑡 + 𝐹𝑦𝑦′𝑝 𝑡 𝑝′ 𝑡 +

𝐹𝑦′𝑦′𝑝
′ 𝑡 𝑝′ 𝑡 ⅆ𝑡



Second-Order Derivative of 𝑉

(4’)
ⅆ2𝑉

ⅆ𝜖2
= 0

𝑇
𝐹𝑦𝑦𝑝

2 𝑡 + 2𝐹𝑦𝑦′𝑝 𝑡 𝑝′ 𝑡 + 𝐹𝑦′𝑦′𝑝
′2 𝑡 ⅆ𝑡

• if it can be established that the quadratic form, with 𝐹𝑦𝑦, 𝐹𝑦𝑦′ and
𝐹𝑦′𝑦′ evaluated on the extremal, is negative definite for every 𝑡, then

Τⅆ2𝑉 ⅆ𝜖2 < 0, and the extremal maximizes 𝑉.

• Similarly, positive definiteness of the quadratic form for every 𝑡 is
sufficient for minimization of 𝑉.

• Even if we can only establish sign semidefiniteness, we can at least
have the second-order necessary conditions checked.


