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Dynamic optimization problem

• Optimization is a predominant theme in economic analysis.

• Useful as they are, such tools are applicable only to static
optimization problems

• The solution sought in such problems usually consists of a single
optimal magnitude for every choice variable.

• In contrast, a dynamic optimization problem poses the question of
what is the optimal magnitude of a choice variable in each period of
time within the planning period (discrete-time case) or at each point
of time in a given time interval, say [0, T] (continuous-time case).



Dynamic optimization problem

• Although dynamic optimization is mostly couched in terms of a sequence of time,
it is also possible to envisage the planning horizon as a sequence of stages in an
economic process.

• In that case, dynamic optimization can be viewed as a problem of multistage
decision making. The distinguishing feature, however, remains the fact that the
optimal solution would involve more than one single value for the choice
variable.

• Suppose that a firm engages in transforming a certain substance from an initial
state A (raw material state) into a terminal state Z (finished product state)
through a five-stage production process.

• In every stage, the firm faces the problem of choosing among several possible
alternative subprocesses, each entailing a specific cost. The question is: How
should the firm select the sequence of subprocesses through the five stages in
order to minimize the total cost?



Figure 1 - Cost minimization

In Figure 1, we illustrate such a
problem by plotting the stages
horizontally and the states
vertically.
The initial state A is shown by the
leftmost point (at the beginning of
state 1); the terminal state Z is
shown by the rightmost point (at
the end of stage 5).
The other points B, C, . . . , K show
the various intermediate states
into which the substance may be
transformed during the process.



Cost minimization problem

• Our problem is to choose a connected sequence of arcs going from left to
right, starting at A and terminating at Z, such that the sum of the values of
the component arcs is minimized. Such a sequence of arcs will constitute
an optimal path.

• A myopic, one-stage-at-a-time optimization procedure will not in general
yield the optimal path. For example, a myopic decision maker would have
chosen arc AB over arc AC in the first stage, because the former involves
only half the cost of the latter; yet, over the span of five stages, the more
costly first-stage arc AC should be selected instead.

• The example in Fig. 1 is simple enough so that a solution may be found by
enumerating all the admissible paths from A to Z and picking the one with
the least total arc values. For more complicated problems, however, a
systematic method of attack is needed.



Figure 2 – The continous variable version

In Figure 2, each possible path is
now seen to travel through an
infinite number of stages in the
interval [0, T]. There is also an
infinite number of states on each
path, each state being the result of
a particular choice made in a
specific stage.
For concreteness, let us visualize
Fig. 1.2 to be a map of an open
terrain, with the stage variable
representing the longitude, and
the state variable representing the
latitude. Our assigned task is to
transport a load of cargo from
location A to location Z at
minimum cost by selecting an
appropriate travel path.



The continous variable version

• For most of the problems discussed in the following, the stage variable will
represent time; then the curves in Fig. 2 will depict time paths.

• As a concrete example, consider a firm with an initial capital stock equal to
A at time 0, and a predetermined target capital stock equal to Z at time T.

• Each investment plan implies a specific capital path and entails a specific
potential profit for the firm. In this case, we can interpret the curves in Fig.
2 as possible capital paths and their path values as the corresponding
profits.

• The problem of the firm is to identify the investment plan, hence the
capital path-that yields the maximum potential profit.



The basic elements

• a simple type of dynamic optimization problem would contain the
following basic ingredients:

1. a given initial point and a given terminal point;

2. a set of admissible paths from the initial point to the terminal point;

3. a set of path values serving as performance indices (cost, profit,
etc.) associated with the various paths; and

4. a specified objective-either to maximize or to minimize the path
value or performance index by choosing the optimal path.



The concept of a functional

• A functional is a mapping from paths (curves) to real numbers
(performance indices). Let us think of the paths in question as time paths,
and denote them by 𝑦𝐼 𝑡 , 𝑦𝐼𝐼 𝑡 , and so on.

• Then the mapping is as shown in Fig. 3, where 𝑉𝐼 , 𝑉𝐼𝐼 represent the
associated path values. The general notation for the mapping should
therefore be 𝑉 𝑦 𝑡 . In the symbol 𝑉 𝑦 𝑡 the 𝑦 𝑡 component comes as
an integral unit - to indicate time paths - and therefore we should not take
𝑉 to be a function of t. Instead, V should be understood to be a function of
"𝑦 𝑡 ".

• This type of mapping is given a distinct name: functional.

• To further avoid confusion, many writers omit the " 𝑡 “ part of the symbol
and write the functional as 𝑉 𝑦 .



Example of a functional

• When the symbol 𝑦 is used to indicate
a certain state, it is suffixed, and
appears as, say, 𝑦 0 for the initial
state or 𝑦 𝑇 for the terminal state.

• In contrast, in the path connotation,
the 𝑡 in 𝑦 𝑡 is not assigned a specific
value.

• When we want to stress the specific
time interval involved in a path or a
segment thereof, we shall use the
notation 𝑦 0, 𝑇 or 𝑦ሾ0, ሻ𝜏 .

• The optimal time path is then denoted
by 𝑦∗ 𝑡 , or the 𝑦∗ path.

Figure 3 – Examples of functional



VARIABLE ENDPOINTS AND TRANSVERSALITY
CONDITIONS

• In the usual problem, the optimizing plan must start from some specific initial
position, say, the current position.

• The terminal position, on the other hand, may very well turn out to be a flexible
matter, with no inherent need for it to be predetermined.

• We may, for instance, face only a fixed terminal time, but have complete freedom
to choose the terminal state.

• On the other hand, we may also be assigned a rigidly specified terminal state, but
are free to select the terminal time.

• In such a case, the terminal point becomes a part of the optimal choice.

• We shall take the stage variable to be continuous time.

• We shall also retain the symbols 0 and 𝑇 for the initial time and terminal time.

• The symbols 𝐴 and 𝑍 for the initial and terminal states.



Vertical terminal-line 
problem

• As the first type of variable terminal point, we
may be given a fixed terminal time 𝑇, but a free
terminal state.

• In Fig. 4a, while the planning horizon is fixed at
time 𝑇, any point on the vertical line t = 𝑇 is
acceptable as a terminal point, such as 𝑍1, 𝑍2,
and 𝑍3.

• This type of problem is commonly referred to as
a fixed-time-horizon problem, or fixed-time
problem.

• Alternatively, we may refer to the fixed-time
problem as the vertical-terminal-line problem.

Figure 4a – Vertical terminal-line problem.



Horizontal terminal-line 
problem.

• The second type of variable terminal point
occurs when the terminal state 𝑍 is stipulated,
but the terminal time is free.

• In Fig. 4b, the horizontal line 𝑦 = 𝑍 constitutes
the set of admissible terminal points. Each of
these, depending on the path chosen, may be
associated with a different terminal time, as
exemplified by 𝑇1, 𝑇2, and 𝑇3.

• This type of problem is commonly referred to as
a fixed-endpoint problem.

• Alternatively, we may refer to the fixed-endpoint
problem as the horizontal-terminal-line
problem.

Figure 4b – Horizontal terminal-line problem.



Terminal curve problem

• In the third type of variable terminal point
problem, neither the terminal time T nor the
terminal state Z is individually preset, but the
two are tied together via a constraint equation
of the form 𝑍 = 𝜙 𝑇 .

• In Fig. 4c, such an equation plots as a terminal
curve (or, in higher dimension, a terminal
surface) that associates a particular terminal
time (say, 𝑇1 ) with a corresponding terminal
state (say, 𝑍1).

• Even though the problem leaves both 𝑇 and 𝑍
flexible, the planner actually has only one
degree of freedom in the choice of the terminal
point.

• This type of problem is commonly referred to as
terminal-curve (or terminal-surface) problem .

Figure 4c – Terminal curve problem 



Transversality Condition

• The common feature of variable-terminal-point problems is that the
planner has one more degree of freedom than in the fixed-terminal-
point case.

• But this fact automatically implies that, in deriving the optimal
solution, an extra condition is needed to pinpoint the exact path
chosen.

• Compare the boundary conditions for the optimal path in the fixed-
versus the variable-terminal-point cases. In the former, the optimal
path must satisfy the boundary (initial and terminal) conditions:

(1) y 0 = 𝐴 and y 𝑇 = 𝑍; (𝑇, 𝐴, and 𝑍 all given)



Transversality Condition

• In the variable-terminal-point case, the initial condition y 0 = 𝐴 still
applies by assumption. But since 𝑇 and 𝑍 are now variable, the
terminal condition y 𝑇 = 𝑍 is no longer capable of pinpointing the
optimal path for us.

• What is needed, therefore, is a terminal condition that can
conclusively distinguish the optimal path from the other admissible
paths.

• Such a condition is referred to as a transversality condition, because it
normally appears as a description of how the optimal path crosses
the terminal line or the terminal curve.



The integral form of functional

• Figure 1 suggests that three pieces of information are needed for 𝑎𝑟𝑐 identification:

1. the starting stage (time);

2. the starting state;

3. the direction in which the arc proceeds.

• With continuous time, since each 𝑎𝑟𝑐 is infinitesimal in length, these three items are represented
by, respectively:

1. 𝑡;

2. 𝑦 𝑡 ;

3. 𝑦′ 𝑡 =
𝑑𝑦

𝑑𝑡

• For instance, on a given path 𝑦𝐼 , the 𝑎𝑟𝑐 associated with a specific point of time 𝑡0 is
characterized by a unique value 𝑦𝐼 𝑡0 and a unique slope 𝑦𝐼

′ 𝑡0 . If there exists some function, F,
that assigns a 𝑎𝑟𝑐 values to 𝑎𝑟𝑐𝑠, then the value of the said 𝑎𝑟𝑐 can be written as:

(2) 𝐹 𝑡0, 𝑦𝐼 𝑡0 , 𝑦𝐼
′ 𝑡0



The integral form of functional

• It follows that the general expression for 𝑎𝑟𝑐 values is
𝐹 𝑡, 𝑦 𝑡 , 𝑦′ 𝑡 , and the path-value functional-the sum of arc values-
can generally be written as the definite integral:

(3) V 𝑦 = 0
𝑇
𝐹 𝑡, 𝑦 𝑡 , 𝑦′ 𝑡 𝑑𝑡

• The symbol 𝑉 𝑦 emphasizes that it is the variation in the 𝑦 path (𝑦𝐼
versus 𝑦𝐼𝐼) that alters the magnitude of 𝑉. Each different 𝑦 path
consists of a different set of 𝑎𝑟𝑐𝑠 in the time interval 0, 𝑇 , which,
through the 𝑎𝑟𝑐-𝑣𝑎𝑙𝑢𝑒-𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 function F, takes a different set of
𝑎𝑟𝑐 values.

• The definite integral sums those 𝑎𝑟𝑐 values on each 𝑦 path into a
path value.



The integral form of functional

• If there are two state variables, 𝑦 and 𝑧, in the problem, the 𝑎𝑟𝑐
values on both the 𝑦 and 𝑧 paths must be taken into account.

• The objective functional should then appear as:

(4) V 𝑦, 𝑧 = 0
𝑇
𝐹 𝑡, 𝑦 𝑡 , 𝑧 𝑡 , 𝑦′ 𝑡 , 𝑧′ 𝑡 𝑑𝑡

• A problem with an objective functional in the form of (3) or (4)
constitutes the standard problem.

• For simplicity, we shall often suppress the time argument 𝑡 for the
state variables and write the integrand function more concisely as
𝐹 𝑡, 𝑦, 𝑦′ or 𝐹 𝑡, 𝑦, 𝑧, 𝑦′, 𝑧′ F(t, y, z, y', z').



A macroeconomic example

• Let the social welfare of an economy at any time be measured by the
utility from consumption, 𝑈 = 𝑈 𝐶 .

• Consumption is by definition that portion of output not saved (and
not invested). If we adopt the production function Q = 𝑄 𝐾, 𝐿 , and
assume away depreciation, we can then write:

(5) C = 𝑄 𝐾, 𝐿 − 𝐼 = 𝑄 𝐾, 𝐿 − 𝐾′

• where 𝐾′ ≡ 𝐼 denotes net investment. This implies that the utility
function can be rewritten as:

(6) 𝑈 = 𝑈 𝑄 𝐾, 𝐿 − 𝐾′



A macroeconomic example

• If the societal goal is to maximize the sum of utility over a period
0, 𝑇 , then its objective functional takes the form:

(7) V 𝑦, 𝑧 = 0
𝑇
𝑈 𝑄 𝐾, 𝐿 − 𝐾′ 𝑑𝑡

• This exemplifies the functional in (4), where the two state variables 𝑦
and 𝑧 refer in the present example to 𝐾 and 𝐿, respectively.

• Note that while the integrand function of this example does contain
both 𝐾 and 𝐾′ as arguments, the 𝐿 variable appears only in its natural
form unaccompanied by 𝐾′. Moreover, the t argument is absent from
the 𝐹 function, too.



The Calculus of Variations

• The usual problem can be represented by the following general
formulation:

Maximize ou minimize V 𝑦 = 0
𝑇
𝐹 𝑡, 𝑦 𝑡 , 𝑦′ 𝑡 𝑑𝑡

(8) Subject to y 0 = 𝐴 𝐴 𝑔𝑖𝑣𝑒𝑛

and y 𝑇 = 𝑍 𝑇 𝑎𝑛𝑑 𝑍 𝑔𝑖𝑣𝑒𝑛

• Such a problem, with an integral functional in a single state variable,
with completely specified initial and terminal points, and with no
constraints, is known as the fundamental problem (or simplest
problem) of calculus of variations.



The Calculus of Variations

• In order to make such problems meaningful, it is necessary that the
functional be integrable (i.e., the integral must be convergent).

• We shall assume this condition is met whenever we write an integral of the
general form, as in (8).

• Furthermore, we shall assume that all the functions that appear in the
problem are continuous and continuously differentiable.

• This assumption is needed because the basic methodology underlying the
calculus of variations closely parallels that of the classical differential
calculus.

• The main difference is that, instead of dealing with the differential 𝑑𝑥 that
changes the value of 𝑦 = 𝑓 𝑥 , we will now deal with the "variation" of an
entire curve y 𝑡 that affects the value of the functional 𝑉 𝑦 .


