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Abstract

Background: An integrative multi-omics analysis approach that combines multiple types of omics data including genomics,
epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics has become increasing popular for
understanding the pathophysiology of complex diseases. Although many multi-omics analysis methods have been
developed for complex disease studies, only a few simulation tools that simulate multiple types of omics data and model
their relationships with disease status are available, and these tools have their limitations in simulating the multi-omics
data. Results: We developed the multi-omics data simulator OmicsSIMLA, which simulates genomics (i.e., single-nucleotide
polymorphisms [SNPs] and copy number variations), epigenomics (i.e., bisulphite sequencing), transcriptomics (i.e., RNA
sequencing), and proteomics (i.e., normalized reverse phase protein array) data at the whole-genome level. Furthermore,
the relationships between different types of omics data, such as methylation quantitative trait loci (SNPs influencing
methylation), expression quantitative trait loci (SNPs influencing gene expression), and expression quantitative trait
methylations (methylations influencing gene expression), were modeled. More importantly, the relationships between
these multi-omics data and the disease status were modeled as well. We used OmicsSIMLA to simulate a multi-omics
dataset for breast cancer under a hypothetical disease model and used the data to compare the performance among
existing multi-omics analysis methods in terms of disease classification accuracy and runtime. We also used OmicsSIMLA
to simulate a multi-omics dataset with a scale similar to an ovarian cancer multi-omics dataset. The neural network-based
multi-omics analysis method ATHENA was applied to both the real and simulated data and the results were compared. Our
results demonstrated that complex disease mechanisms can be simulated by OmicsSIMLA, and ATHENA showed the
highest prediction accuracy when the effects of multi-omics features (e.g., SNPs, copy number variations, and gene
expression levels) on the disease were strong. Furthermore, similar results can be obtained from ATHENA when analyzing
the simulated and real ovarian multi-omics data. Conclusions: OmicsSIMLA will be useful to evaluate the performace of
different multi-omics analysis methods. Sample sizes and power can also be calculated by OmicsSIMLA when planning a
new multi-omics disease study.
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Complex diseases such as hypertension, type 2 diabetes, and
autism are caused by multiple genetic and environmental fac-
tors [1]. Genome-wide association studies have identified many
genetic variants (i.e., single-nucleotide polymorphisms [SNPs])
associated with the complex diseases. However, it remains diffi-
cult to understand the roles of the associated SNPs in the molec-
ular pathophysiology of the disease and how the SNPs inter-
act with other SNPs in a biological network [2]. With the ad-
vance of high-throughput sequencing technology such as next-
generation sequencing and massive parallel technology such as
mass spectrometry, multiple types of omics data (i.e., multi-
omics data) including genomics, epigenomics, transcriptomics,
proteomics, metabolomics, and microbiomics are rapidly gener-
ated [3]. Because a single type of data generally cannot capture
the complexity of molecular events causing the disease, an in-
tegrative approach to combining the multi-omics data would be
ideal to help elucidate the pathophysiology of the disease [2].

Integrative methods to combine multi-omics data for disease
studies have been developed rapidly [4-8]. They can be generally
classified into 2 categories: multi-staged and meta-dimensional
approaches [9]. The multi-staged approach aims to first identify
relationships between the multi-omics data and then test the
associations between the multi-omics data and the phenotype.
For example, Jennings et al. [7] constructed a Bayesian hierarchi-
cal model consisting of 2 stages. The first stage partitioned gene
expression into factors accounted for by methylation, copy num-
ber variation (CNV), and other unknown causes. These factors
were subsequently used as predictors for clinical outcomes in
the second-stage model. One advantage of this approach is that
the causal relationships between multi-omics data can be mod-
eled. In contrast, the meta-dimensional approach combines the
multi-omics data simultaneously. Raw or the transformed data
from the multi-omics data are combined into a single matrix for
the analysis. This approach allows for a more flexible inference
of the relationships among the multi-omics data, without the
assumptions of the causal relationships between these data.

Although many multi-omics analysis methods for disease
studies are available, they were generally evaluated by simula-
tions with data generated specifically to the methods. To com-
pare the performance among these methods, it is necessary to
use the same simulated multi-omics dataset with disease sta-
tus. Furthermore, when a multi-omics study is being planned,
sample size estimation to ensure sufficient power also becomes
important [3]. This also requires a simulation tool that simu-
lates realistic multi-omics data structures and models the ar-
chitecture of the complex disease. However, current simula-
tion tools for disease studies have mainly focused on simu-
lating a certain type of omics data. For example, >25 simula-
tors are available for simulating genetic data with phenotypic
trait, according to the Genetic Simulation Resources website [10].
Tools such as WGBSSuite [11] and pWGBSSimla [12] can simu-
late whole-genome bisulphite sequencing (WGBS) data in case-
control samples. Moreover, tools such as Polyester [13] and Sim-
Seq [14] simulate RNA sequencing (RNA-seq) data with differen-
tial gene expression between 2 groups of samples.

There are only a few available tools that can simulate multi-
omics data and allow relationships among different data types
to be modeled. One of them is HIBACHI [15], which provides
a prototype to simulate genetic interactions under a biological
architecture. The biological framework includes 6 genetic vari-
ants: 1 variant in a protein-coding gene that changes an amino
acid, 2 variants that are regulatory variants in a promoter and

an enhancer, 2 variants that code for transcription factors bind-
ing to the promoter and the enhancer, and 1 variant in an mi-
croRNA gene involved in post-translational regulation for the
protein-coding gene. A mathematical framework is then used
in HIBACHI to generate phenotypic values based on the biolog-
ical framework followed by a liability threshold model to gen-
erate the disease status. Hence, HIBACHI simulates genotypes
and phenotypes under the complex biological and mathemat-
ical models, but it cannot generate other types of omics data.
Another tool is InterSIM [16], which simulates methylation rates
and normalized gene and protein expression levels based on the
ovarian cancer (OV) data from The Cancer Genome Atlas (TCGA)
project [17]. The correlations within and between each data type
are also modeled on the basis of the correlation structures ob-
served in the OV data. A more recently developed tool is MOSim
[18], which simulates more multi-omics data types, including
RNA-seq, assay for transposase-accessible chromatin sequenc-
ing, chromatin immunoprecipitation sequencing, microRNA se-
quencing, and WGBS data. In contrast to InterSIM, the regulatory
relationships (i.e., activation and repression effects) between the
gene expression and other types of data (e.g., CpGs, transcrip-
tion factors, and microRNAs) are more specifically modeled in
MOSim. However, genomics data, the relationships between ge-
nomics data and other types of omics data, and the relationships
between genomics data and the disease status are not simulated
and modeled by InterSIM and MOSim.

Here, we developed the multi-omics data simulator Omic-
sSIMLA [19], which simulates genomics data including SNPs
and CNVs, epigenomics data such as WGBS data, transcrip-
tomics data (i.e.,, RNA-seq), and proteomics data such as the
normalized reverse phase protein array (RPPA) data at a whole-
genome level. Furthermore, the relationships between different
types of omics data, such as methylation quantitative trait loci
(ImeQTLs] SNPs influencing methylation), expression quantita-
tive trait loci ([eQTLs] SNPs influencing gene expression), and
expression quantitative trait methylation ((eQTM] methylation
influencing gene expression), were specifically modeled. More
importantly, the relationships between these multi-omics data
and disease status were modeled as well. The disease models
in OmicsSIMLA are flexible so that the main effects and/or in-
teraction effects (either risk or protective) of SNPs and CNVs on
the disease can be specified. Differential methylation and dif-
ferential gene and protein expression between cases and con-
trols can also be simulated. We demonstrated the usefulness of
OmicsSIMLA by simulating a multi-omics dataset for breast can-
cer under a hypothetical disease model and compared the per-
formance among existing multi-omics analysis tools based on
the data. We also simulated a multi-omics dataset with a scale
similar to the TCGA OV data (except for the methylation data,
where a smaller set of CpGs was simulated), and the effects of
the multi-omics data on the phenotype were modeled based on
the parameters estimated from the real OV data. We then com-
pared the results from a multi-omics analysis method when ap-
plied to both the real and simulated OV data.

Figure 1 shows the framework of OmicsSIMLA. The genomics
data that can be simulated include SNPs and CNVs. Genotypes
at SNPs in unrelated and/or family samples are simulated on the
basis of the SeqSIMLA2 algorithm [20]. CNV status (i.e., a dele-
tion, normal, 1 duplication, or 2 duplications) on a chromosome
is simulated on the basis of the user-specified chromosomal re-
gions and CNV frequencies. Affection status of each sample is
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Figure 1: Simulation framework of OmicsSIMLA. The black solid arrows represent the relationships among different types of omics data. The black dotted arrows
represent the causal effects of genomics data to the disease. The red dotted arrows represent the retrospective simulations of the methylation, gene expression, and

protein expression levels conditional on the disease status.

determined by a logistic penetrance function conditional on the
causal SNPs and CNVs, and/or the interactions among the causal
SNPs. The epigenomics data are the methylated and total read
counts at CpGs based on bisulphite sequencing, simulated using
the pWGBSSimla algorithm incorporating methylation profiles
for 29 human cell and tissue types [12]. Allele-specific methyla-
tion (ASM), in which paternal and maternal alleles have different
methylation rates, and differentially methylated regions (DMRs),
where the same CpGs in the region have different methylation
rates among different cell types, can also be simulated. Fur-
thermore, the transcriptomics data (i.e., RNA-seq read counts)
are simulated with a parametric model assuming a negative-
binomial (NB) distribution. Finally, the mass-action kinetic ac-
tion model [21] is used to simulate proteomics data at a certain
time point incorporating the gene expression data. Some SNPs
can be specified as meQTLs and eQTLs, and some CpGs can be
specified as eQTM. Allele-specific expression (ASE), which alle-
les in a gene have different expression levels caused by cis-eQTL,
can also be simulated. The differential methylation, gene ex-
pression, and protein expression levels between cases and con-
trols are simulated conditional on the affection status.

To simulate the SNP data, external reference sequences (i.e.,
haplotypes) generated by an external sequence generator, such
as COSI [22] or HAPGEN?2 [23], are required. Using HAPGEN2, we
compiled several reference sequence files for the African, Asian,
and European populations similar to the linkage disequilibrium
structures and allele frequencies of the variants on chromosome
1in the 1000 Genomes Project data [24]. For the CNV simulations,
a CNV information file, which contains the CNV types (i.e., dele-
tion, normal, or duplication), CNV frequencies, and odds ratios
(ORs) of the CNVs for the disease, is required. We compiled CNV
profiles based on the frequencies of 2,884 focal CNVs observed
in the TCGA data for 33 cancers. The optional files for simulat-
ing the genomics data include a recombination file, which spec-
ifies the recombination rates among SNPs; a pedigree file, which
specifies the pedigree structures if family data are simulated;
and a proband file, which specifies the affection status of the
family members. For the WGBS simulations, we compiled pro-
files of 29 human cell and tissue types such as liver, kidney, and
colon [12]. We also compiled profiles of normal and tumor tis-

sue types for 31 cancers to simulate the RNA-seq data. Finally,
we compiled profiles of tumor tissues for 26 cancers to simu-
late the protein expression data. Therefore, the user can easily
specify the tissue types and the numbers of samples to simu-
late the CNV, WGBS, RNA-seq, and protein expression data. The
formats of the profiles are clearly described in the OmicsSIMLA
user manual so that the user can alternatively compile profiles
based on his/her own data. Further details on how the profiles
are compiled and how OmicsSIMLA generates data based on the
profiles are described in the Methods section.

Several options are available in OmicsSIMLA to flexibly model
the relationships between the multi-omics data and the disease.
For example, the ORs for the main effects and pairwise interac-
tion effects of selected SNPs can be specified. An additive, domi-
nant, or recessive model can be assumed for the main effects,
and several interaction models can be specified, as described
in the Methods section. The user can also specify the propor-
tions of methylated (i.e., methylation rates > 70%), unmethy-
lated (i.e., methylation rates < 30%), and partially methylated
(i.e., methylation rates between 30% and 70%) CpGs that have
different methylation rates between cases and controls, and the
difference in the methylation rates can also be specified. The
fold changes of the gene expression levels for the differentially
expressed genes between cases and controls can also be speci-
fied. Several options are also available to model the relationships
between the multi-omics data. For example, the fold changes of
the methylation rates influenced by meQTLs can be specified.
Similarly, fold changes of the gene expression levels influenced
by eQTLs and eQTMs can be specified. A user-friendly web in-
terface is provided [25] to conveniently specify the abovemen-
tioned parameters. All of the input files and parameters that are
required and optional to OmicsSIMLA are clearly described on
the web interface.

Using OmicsSIMLA, we simulated a multi-omics dataset
based on hypothetical pathways for breast cancer as described
in Ritchie et al. [9] and illustrated in Figure 2. The data included
a deletion with a protective effect in the CYP1A1 gene, 3 com-
mon SNPs with risk effects in the CYP1B1 gene, 5 rare SNPs in
the COMT gene, which had interaction effects with an meQTL
for the XRCC1 gene, and 5 rare SNPs in the GSTM1 gene, which
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Figure 2: Hypothetical pathways involved in breast cancer. The brown solid arrows represent the main effects of SNPs and CNVs on the disease, while the green
solid arrows represent the interaction effects of SNPs on the disease. The black solid arrows represent the regulatory effects of the meQTL and eQTL on methylation
and gene expression, respectively. The red dotted arrows represent the retrospective simulations of the methylation, gene expression, and protein expression levels

conditional on the disease status.

also had interaction effects with an eQTL affecting the gene and
protein expression of the XRCC3 gene. Finally, 5 rare SNPs in the
GSTT1 gene also had interaction effects with an SNP in a regu-
latory region. A total of 2,022 SNPs in the 4 genes (i.e.,, CYP1B1,
COMT, GSTM1, and GSTT1) and a regulatory region consisting of
the meQTL, eQTL, and the SNP interacting with GSTT1, 1 CNV
in CYP1A1, 688 CpGs in XRCC1, and gene and protein expression
levels for 100 genes (including the expression for XRCC3 and 99
other hypothetical genes in the pathways) were simulated. More
details about the simulations can be found in the Methods sec-
tion.

Based on the simulated datasets, we compared the perfor-
mance of methods from the 2 categories of multi-omics analysis
methods (i.e., multi-staged and meta-dimensional approaches)
for disease prediction by measuring the area under the curve
(AUC). The SNPs, CNV, methylation levels at CpGs, and gene
and protein expression levels were used as the features for the
prediction. The disease status served as the label for classifica-
tion, and the prediction accuracy was measured based on the
numbers of cases and controls that were correctly predicted. For
the multi-staged method, we implemented the 3-stage method
[26]. Briefly, significant SNPs and CNV associated with the dis-
ease (i.e., association P-values <0.05) were first selected. The sig-
nificant SNPs and CNV were then tested for associations with
each feature in the methylation and gene and protein expres-
sion data, and the significant features were selected. Finally, a
logistic regression prediction model was constructed based on

these significant features. Further details on how the 3-stage
method was implemented are provided in the Supplementary
methods. The meta-dimensional methods we used included the
random forest-based method (RFomics), a graph-based integra-
tion method (CANetwork) [5], and a model-based integration
method (ATHENA) [4]. The RFomics combines the preprocessed
multi-omics data in a single matrix for constructing the pre-
diction model. As described in the Supplementary methods, a
gene-based risk score is calculated based on SNPs for each gene.
Then the risk scores and other multi-omics data are normalized
so that they can be evaluated on the same scale by the random
forest (RF) algorithm. In contrast, CANetwork calculates a graph
matrix to measure the distance between samples using the com-
posite association network algorithm [27], and the prediction
model is created on the basis of the distance matrix using the
graph-based semi-supervised learning algorithm [28]. Finally,
ATHENA uses grammatical evolution neural networks (GENNSs),
which optimize artificial neural networks based on genetic pro-
gramming, to construct a meta-dimensional model from multi-
omics data for prediction. The parameters for RFomics and
ATHENA used in our simulations are shown in Supplementary
Table S1.

Table 1 shows the AUC for the 4 methods under 3 scenarios.
Scenario 1 had 500 cases and 500 controls in the training set,
and 100 cases and 100 controls in the validation set. Scenario 2
had the same sample sizes as those in Scenario 1, but the multi-
omics data had weaker effects on the disease compared with
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Table 1: Area under the curve (AUC) for the 3-stage, RFomics, CANetwork, and ATHENA methods under 3 scenarios

Mean AUC (SE)*

Scenario 3-Stage RFomics CANetwork ATHENA

1 0.821 (0.028) 0.825 (0.028) 0.626 (0.037) 0.964 (0.017)
2 0.501 (0.042) 0.511 (0.038) 0.529 (0.027) 0.509 (0.041)
3 0.825 (0.013) 0.845 (0.013) 0.679 (0.019) 0.969 (0.005)

1Estimated on the basis of 100 batches.

Scenario 1. The effects of the multi-omics data were the same
in Scenario 3 as those in Scenario 1, but Scenario 3 had larger
sample size (i.e., 1,500 cases and 1,500 controls in the training
data and 500 cases and 500 controls in the validation data). More
details of the 3 scenarios are provided in the Methods section.
Prediction models for the 4 methods were created on the basis
of the training data, and their prediction accuracies were evalu-
ated by the validation data. In Scenarios 1 and 3, ATHENA had a
significantly higher AUC than the other 3 methods. The 3-stage
method had an AUC similar to RFomics, and CANetwork had the
lowest AUC. In Scenario 2, where the effects on the disease were
weaker, the 4 methods had similar AUCs. Table 2 shows the run-
time for the 4 methods. In Scenario 1, RFomics and CANetwork
had similar performance, whereas ATHENA had >500 times the
runtime of RFomics and CANetwork. In Scenario 3, CANetwork
was the most efficient method followed by the RFomics and the
3-stage method, and ATHENA had a significantly longer runtime
than the other 3 methods.

We also used OmicsSIMLA to simulate a multi-omics dataset
based on the TCGA OV data. The TCGA OV data included fo-
cal CNV, methylation, RNA-seq, and RPPA data in 66 individu-
als with short-term survival (i.e., survival time of <3 years) and
107 individuals with long-term survival (i.e., survival time of >3
years). Further details of the OV data are provided in the Meth-
ods section. Our simulation results showed that ATHENA had
a higher AUC than the other 3 multi-omics analysis methods;
hence, we applied ATHENA to the TCGA OV data several times
with different random seeds to identify a GENN model that can
classify the short-term and long-term survivals with the highest
AUC. As shown in Figure 3, the best GENN model constructed by
ATHENA (having an AUC of 0.826) comprised 5 features, includ-
ing methylation of a CpG at the KIF13B gene and gene expression
levels at the LRRN4, MARCH9, LRIG1, and TCEAL8 genes. By ex-
amining the correlation structures in the 5 features, we hypoth-
esized that the correlations among the gene expression levels of
MARCHSY, LRIG1, and TCEAL8 were caused by the CpG at KIF13B
(i.e., an eQTM), and the gene expression of LRRN4 exhibited an
independent effect on the survival time. We then used Omic-
sSIMLA to simulate similar numbers of focal CNVs and genes
with RNA-seq and RPPA data as those in the OV data. We also
simulated methylation levels at CpGs on chromosome 1. A CpG
with differential methylation was specified as an eQTM, which
affected the gene expression of 3 genes. The 3 genes were also
differentially expressed. Furthermore, an independent gene was
specified to be differentially expressed as well. The model for
the survival time is illustrated in Figure 4. A total of 50 replicates
of 500 cases (i.e., the short-term survival group) and 500 con-
trols (i.e., the long-term survival group) were simulated. Each
replicate included 2,884 focal CNVs, 2,753 CpGs, gene expres-
sion levels for 12,004 genes, and protein expression levels for
200 genes. Finally, ATHENA was applied to the 50 replicates. We
found that up to 3 of the 5 causal features can be selected in
the same model by ATHENA in the 50 replicates. The mean AUC

calculated from 5-fold cross-validation in ATHENA over the 50
replicates was 0.757, which was comparable to the AUC of 0.826
calculated from the real data. Figure 5 shows a GENN model from
1 of the 50 replicates that connected the features with a PDIV
node similar to the one in Figure 3. The results demonstrated
that OmicsSIMLA can simulate multi-omics data with a scale
similar to the real dataset and incorporate a model with simi-
lar effects on the survival time.

We have developed OmicsSIMLA, which simulates multi-omics
data (i.e., genomics, epigenomics, transcriptomics, and pro-
teomics data) with disease status. OmicsSIMLA simulates mul-
tiple types of omics data while the relationships between dif-
ferent types of omics data and the relationships between the
omics data and the disease are modeled. As the development
of integrative methods for analyzing multi-omics data has at-
tracted substantial interest from researchers, OmicsSIMLA will
be useful to simulate benchmark datasets for comparisons of
these methods. Furthermore, as more and more disease stud-
ies take advantage of multi-omics data, OmicsSIMLA will also be
useful for power calculations and sample size estimations when
planning a new study.

Performing simulation studies using OmicsSIMLA has sev-
eral advantages and disadvantages as compared with using HI-
BACHI, InterSIM, and MOSim. For example, the mathematical
framework in HIBACHI for the 6 genetic variants and an environ-
mental factor allows the user to generate complicated genetic
models, including high-order gene-gene interactions, but only
pairwise gene-gene interactions are modeled in OmicsSIMLA.
However, an advantage of OmicsSIMLA over HIBACHI is that
not only genomics data and disease status but also other types
of omics data can be simulated. On the other hand, InterSIM
models the correlations within and among the methylation,
gene expression, and protein expression data based on corre-
lation structures observed in the TCGA OV data. OmicsSIMLA
can model the correlations of methylation levels at local CpGs
[12]. The gene and protein expression levels for different genes
are generally independently simulated in OmicsSIMLA. The cor-
relations of gene and protein expression levels between differ-
ent genes can be modeled by a common regulatory variant, such
as an eQTL or an eQTM in OmicsSIMLA. By contrast, MOSim is
more flexible in simulating different experimental designs, such
as different numbers of experimental groups, data at different
time points, and different numbers of replicates under an exper-
imental condition. However, InterSIM and MOSim do not simu-
late genomics data; hence, eQTLs and meQTLs cannot be gen-
erated. From the above discussion, we emphasized that the 4
simulators have their own capabilities, advantages, and disad-
vantages; hence, the choice of a proper simulator must be based
on the purpose of the study performed.
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Table 2: Runtime for the 3-stage, RFomics, CANetwork, and ATHENA methods under Scenarios 1 and 3

Mean runtime (seconds)

Scenario 3-stage RFomics CANetwork ATHENA
1 72.90 37.78 40.54 39,533.91
3 230.32 143.91 94.16 113,872.50

1Estimated on the basis of 100 batches..

We used OmicsSIMLA to simulate a multi-omics dataset for
breast cancer based on hypothetical pathways. Four analysis
tools were compared using the dataset. The results showed that
the neural network-based method ATHENA achieved the high-
est AUC when the effects of the multi-omics features on the
disease were strong. However, the AUCs of the 4 methods were
similar when the effects were modest. Furthermore, RFomics
and CANetwork had comparable runtimes, and ATHENA was the
most computationally expensive approach. In practice, ATHENA
is the ideal tool to perform multi-omics data analysis because of
its high AUC if the execution time is acceptable.

We also used OmicsSIMLA to simulate a multi-omics dataset
with a scale similar to the TCGA OV data. The effects of the
multi-omics features on the phenotype were estimated and
modeled on the basis of the OV data. As shown in the simula-
tions of the breast cancer pathways and the simulations based
on the OV data, 3 main components are generally required to
perform the simulations in OmicsSIMLA. These include a bio-
logical model (i.e., the disease model), reference sequences and
profiles, and parameter values to model the effects of the multi-
omics features on the disease and to model the relationships
between multi-omics data. The biological model is usually hy-
pothesized on the basis of the literature results and observations
in real data. Profiles such as the CNV, methylation, gene expres-
sion, and protein expression profiles are then required to simu-
late the multi-omics data. Because we have compiled profiles for
many tissue types, the user can conveniently choose the profiles
to perform the simulations. Note that the profiles were compiled
using the tumor tissue data from the TCGA project, except for
the methylation profiles and some of the gene expression pro-
files. If multi-omics data for other tissue types are available, the
user can also compile the profiles based on the data following
the instructions in the user manual. To simulate genomics data,
we compiled several sets of reference sequences for the African,
Asian, and European populations based on allele frequencies
and linkage disequilibrium structures in human sequences. Fi-
nally, several parameters are needed in OmicsSIMLA to specify
the disease model and to model the relationships among the
multi-omics data; recommended values of some of these param-
eters are provided in the user manual. For example, the ORs of
common SNPs (i.e.,, minor allele frequencies [MAFs| > 5%) for
complex diseases were generally observed to be between 0.5 and
2 according to the GWAS (genome-wide association studies) cat-
alog [29], and the ORs of rare SNPs (MAFs < 5%) can be a function
of the MAFs [30]. Note that performing the simulations using the
pre-compiled profiles, reference sequences, and recommended
parameter values is simplified, but the user can still opt to cus-
tomize the profiles and reference sequences with specific pa-
rameter values to flexibly perform the simulations.

Currently, OmicsSIMLA focuses on simulating the dichoto-
mous trait (i.e., affection status). Because studies for quantita-
tive traits are also important, it is our future work to extend
OmicsSIMLA to simulate quantitative traits based on the classic
quantitative genetics model [31]. Furthermore, environmental

factors and the interactions between genes and environments
can also play important roles in complex disease etiology. There-
fore, simulating exposome data such as climate and air quality
data and modeling their interactions with genes are also impor-
tant in the future extensions of OmicsSIMLA.

In conclusion, we developed a useful multi-omics data sim-
ulator, OmicsSIMLA, for complex disease studies. Benchmark
datasets can be simulated by OmicsSIMLA for evaluating dif-
ferent multi-omics data analysis methods for disease studies.
OmicsSIMLA can also be used to estimate sample sizes and sta-
tistical power when designing a new multi-omics disease study.
OmicsSIMLA is freely available [19].

The SeqSIMLA2 package [20] is integrated in OmicsSIMLA to gen-
erate DNA sequences in unrelated/related individuals. Similar
to SeqSIMLA2, OmicsSIMLA expects a set of external reference
sequences (i.e., haplotypes) generated by an external sequence
generator such as COSI [22] or HAPGEN2 [23] that has been
widely adopted in genetics studies. Generally, a set of >10,000
reference sequences are expected. Optional files consisting of
recombination rate information and pedigree structures are also
accepted. A gene-dropping algorithm assuming random mating
with crossovers is performed based on the reference sequences,
recombination rates, and pedigree structures to generate haplo-
types in each individual.

For the simulation of CNVs, we considered 4 CNV states includ-
ing deletion (D), normal (N), 1 duplication (U), and 2 duplica-
tions (UU) on a chromosome. Therefore, there are 10 types of
CNV states on the 2 chromosomes in an individual, as shown
in Supplementary Table S2, and the total copy numbers on the
2 chromosomes range from 0 to 6. During meiosis, we use the
single-copy crossover model, assuming all crossovers occurred
between CNVs [32]. We compiled profiles of CNV frequencies of
D and U for 2,884 focal CNVs observed in the TCGA data for 33
cancers. Further details on how the CNV profiles were generated
are provided in the Supplementary methods. Alternatively, the
user can provide frequencies and ranges of the 4 CNV states for
different CNV regions.

Genetic variants, including SNPs and CNVs, are used to deter-
mine the affection status of an individual based on a logistic
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Figure 3: The GENN model with the best AUC for the TCGA OV dataset. Green and orange boxes represent gene expression and methylation features, respectively. W
is the weight associated with the feature, and PDIV is a division activation node.
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TCEALS

Ovarian
cancer
survival

MARCH9

Figure 4: Hypothetical model for the survival time (short-term and long-term) of OV. The black solid arrows represent the regulatory effects of the eQTM on gene
expression. The red dotted arrows represent the retrospective simulations of the methylation and gene expression levels conditional on the survival status.
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Figure 5: The GENN model constructed by ATHENA using the simulated OV data, which has a similar structure to the GENN model in Figure 3. W is the weight associated
with the feature, and PADD and PDIV are an addition and division activation node, respectively.
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penetrance function as follows:

logit(P (affected)) = By + Z Bc,, Ci1 + Z Bc,, Ciz

ieQ ieQ

+ZﬂG)Gj+ Z .anGmn’ 0

jew mneY

where P(affected) is the probability of being affected; B, deter-
mines the baseline prevalence; @, ¥, and T are sets of causal
CNVs, SNPs with main effects, and SNPs with interaction effects,
respectively, specified by the user; C;; and Cj, are the CNV states
for the first and second haplotypes at CNV i, respectively; G; is
the genotype coding at SNP j; and Gmy, is the genotype coding
at SNPs m and n. C;; and C;j, have values of -1, 0, 1, and 2 for
CNV states D, N, U, and UU, respectively, where N is the base-
line state. The coding of G; is based on a dominant, additive, or
recessive model, and the coding of G, is based on several in-
teraction models. If SNP j is in a CNV region, allelic CNV [33] is
considered in the coding of G;. More details of the coding of G;
and Gm, are provided in the Supplementary methods. The pa-
rameters Bc and B; are the effect sizes of the main effects for
CNVs and SNPs, respectively, and B,,,, determines the effect size
of the interaction effect between SNPs m and n. These parame-
ters are specified by the user.

The pWGBSSimla package [12] is integrated into OmicsSIMLA to
generate the WGBS data. The pWGBSSimla algorithm simulates
data using methylation profiles generated based on 41 WGBS
datasets for 29 human cell and tissue types. The profiles contain
the information for each CpG, such as its distance to the next
site, methylation rate, methylation status (i.e., methylated, un-
methylated, and fuzzily methylated), and read counts for each
type of methylation status. CpGs and the distances between the
CpGs are first determined on the basis of the profiles, and then
the total read count and methylated read count are simulated for
each CpG. Methylation level at a CpG influenced by an meQTL is
simulated on the basis of a genotype-specific methylation prob-
ability, which is the methylation rate of the CpG in the profiles
multiplied by a user-specified ratio. Furthermore, ASMs are sim-
ulated on the basis of father- and mother-specific methylation
rates for paternal and maternal alleles, respectively. Finally, a
DMR is generated by simulating the same genomic region using
profiles for different cell or tissue types. OmicsSIMLA currently
simulates methylation data for CpGs on the same chromosome
per run. Multiple runs of OmicsSIMLA can be executed to simu-
late CpGs on different chromosomes. More details of the pWG-
BSSimla algorithm can be found in Chung and Kang [12].

We implemented a parametric simulation procedure for simu-
lating the RNA-seq data similar to that described in Benidt and
Nettleton [14]. An NB distribution with mean u;; and dispersion
parameter oj is used to simulate the read count for gene i in in-
dividual j. The mean is calculated as u;j = xicj, where 1; is the
common mean for gene i and c; is the individual-specific nor-
malization factor for individual j. The individual-specific nor-
malization factor is used to model systematic variations among
individuals due to technical variation [34]. We compiled RNA-
seq profiles for normal and tumor tissues of 31 cancers based
on the TCGA whole-genome RNA-seq data. For each tissue type,

the profiles comprised a vector ¢ of individual-specific normal-
ization factors calculated based on the TCGA samples and vec-
tors A and w for genes across the genome. Further details on how
the RNA-seq profiles were generated are provided in the Supple-
mentary methods. Note that when there are no technical varia-
tions to simulate, the user can replace the vector ¢ with a vector
of 1, where the length of the vector is the number of samples to
be simulated. The parameters A; and w; are then randomly sam-
pled with replacement from A and w. If more samples than those
in the TCGA data are simulated, we use the smoothed bootstrap
procedure [35] to calculate ¢} forindividual j, and pi; is calculated
as A;c;. More details of the calculation of c; are also provided in
the Supplementary methods. The user can specify n differen-
tially expressed (DE) genes between cases and controls and their
fold changes, and the read count for DE gene i in individual j is
simulated on the basis of an NB distribution with mean f;u;; and
dispersion parameter w;, where f; is the fold change for gene i.

Simulation of eQTL and allele-specific reads

We followed the procedure in the simulation study by Sun [36] to
simulate eQTL and read counts for ASE. For eQTL | with a user-
specified fold change h;, the means for the 3 genotypes AA, Aa,
and aa at the eQTL are ujj, huij, and (2h — 1)uij, respectively,
and the dispersion parameter is w; in the NB distribution for
gene i influenced by the eQTL. ASE for a gene caused by a cis-
eQTL is simulated by assuming that reads were mapped to het-
erozygous SNPs (i.e., allele-specific reads) in the gene. A cis-eQTL
refers to the eQTL being located in the cis-regulatory elements
of the gene. Because the alleles at the cis-eQTL can be in the
same haplotype as the alleles of the gene, ASE can be observed
using the allele-specific reads of the gene. Furthermore, only
heterozygous SNPs can be tested for cis-eQTL with the allele-
specific reads. Therefore, we simulate allele-specific reads for
heterozygous eQTLs. Assuming t; is the total read count for gene
iin individual j, the total number of allele-specific reads is cal-
culated as 0.005t;, where 0.005 was estimated from real data by
Sun [36]. Furthermore, also suggested by Sun [36], the number
of allele-specific reads for a haplotype is simulated using a g-
binomial distribution with a mean determined by the effect size
of the cis-eQTL and an overdispersion parameter of 0.1. The ef-
fect size is defined as log,(expression of the alternative allele at
the eQTL/expression of the reference allele at the eQTL) [37] for a
heterozygous cis-eQTL and is set to 0 for a homozygous cis-eQTL.

Simulation of eQTM
We used linear regression to model the relationship between
gene expression and methylation:

Wi = E(yij) = i + Bixij, where y; and x;; are the RNA-seq read
count and the proportion of methylated reads, respectively, for
gene i influenced by methylation in individual j. Assuming that
the NB parameters for gene i are u; and ¢;, the parameter o; is
specified as i, and g is assumed to follow a normal distribution
with amean and a standard deviation specified by the user. Then
the gene expression of gene i is simulated by an NB distribution
with parameters of y; and ¢i.

We assumed that the protein expression level for protein k at
a time point t in sample j follows a normal distribution with a
mean 7 and a standard deviation 7, after normalization. We
used the mass-action kinetic action model [21] to simulate pro-
tein expression at a certain time point. The mean ;41 for the
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protein expression at time t+1 was determined as follows:
Mkjt41 = Nkjt + (Rejek§e — nkjtk}it), 0

where x; is the normalized gene expression for the gene en-
coding protein k, and «j, and xj-dt are the protein synthesis and
degradation rates, respectively, in individual j at time t. The nor-
malized gene expression x;; is calculated using the median ab-
solute deviation scale normalization [38] based on the RNA-seq
data simulated from the previous section. Similar to the simu-
lation study in Teo et al. [21], Kft is fixed to be 1, and «;, with a
default value of 1 can be changed by the user. We compiled pro-
tein expression profiles consisting of a vector of standard devia-
tions t for 26 cancers from the TCGA project. The standard devi-
ations were estimated from the level 4 protein expression data
of each tissue type with >50 patients. The level 4 data consisted
of protein expression data that have been normalized across the
samples as well as across the proteins, and a replication-based
method was used to account for differences in protein expres-
sion among different batches. More details about the generation
of the profiles are provided in the Supplementary methods. The
parameter t; is then randomly sampled with replacement from
T.

We used OmicsSIMLA to evaluate the performance of the 3-
staged method, RFomics, CANetwork, and ATHENA. A hypothet-
ical disease model for breast cancer involving multi-omics data
[9] was simulated, as shown in Figure 2. To be more specific, a
deletion with a frequency of 20%, which had a protective effect
with an OR of 0.67, in the CYP1Al gene and 3 common vari-
ants, which had main effects (ORs = 1.5) with MAFs > 10%, in
the CYP1B1 gene were simulated. We also simulated 5 rare vari-
ants with MAFs < 3% in the COMT gene, which had interaction
effects (ORs = 5) with an meQTL for the XRCC1 gene. The CpG in
XRCC1 influenced by the meQTL caused a difference in methyla-
tion rates of 10% between cases and controls. Furthermore, we
simulated 5 rare variants in the GSTM1 gene, which had inter-
action effects (ORs = 5) with a cis-eQTL for the XRCC3 gene, and
5 rare variants in the GSTT1 gene, which had interaction effects
(ORs = 5) with an SNP located in the same region as that of the
meQTL and eQTL. The eQTL caused a fold change of 1.5 in the
XRCC3 gene expression compared with the reference genotype,
and a fold change of 1.5 was simulated for the differential gene
expression of XRCC3 between cases and controls. In summary,
the total variables consisted of 200, 687, 264, and 176 SNPs in
the CYP1B1, COMT, GSTM1, and GSTT1 genes, respectively, and
695 SNPs harboring the meQTL, eQTL, and the SNP interacting
with GSTT1 in the regulatory region, a variable for CNV status in
CYP1A1, methylation levels at 688 CpGs in XRCC1, and gene and
protein expression levels for 100 genes and their encoded pro-
teins. More details for generating the reference sequences in the
genes and the simulations for each omics data type are provided
in the Supplementary methods.

We simulated a training dataset consisting of 500 cases and
500 controls as well as a validation dataset consisting of 100
cases and 100 controls. The training dataset was used by the 3-
staged method, RFomics, CANetwork, or ATHENA, to construct
a prediction model. The validation dataset was then used to
calculate the AUC based on the prediction model. Note that a
5-fold cross-validation was performed in ATHENA, and a best

model based on the testing dataset (i.e., 1 of the 5 random 20%
of the training dataset) was created for each cross-validation.
The model with the highest AUC based on the testing dataset
was selected and applied to the validation dataset. This simula-
tion scenario was referred to as Scenario 1. We also simulated a
scenario with weaker genetic effects (Scenario 2) and a scenario
with larger sample size (Scenario 3). More details about Scenar-
ios 2 and 3 are provided in the Supplementary methods. For each
scenario, 100 batches of training and validation datasets were
simulated, and the AUC for each algorithm was averaged over
the 100 batches.

We also used OmicsSIMLA to simulate a multi-omics dataset
based on the OV data from the TCGA project. The data were
downloaded using RTCGAToolbox [39], an R package that allows
the retrieval of the TCGA pre-processed data from the Firehose
pipeline [40]. A total of 173 tumor samples with clinical (i.e., the
survival time), CNV, methylation, RNA-seq, and RPPA data avail-
able were extracted. In accordance with the definition used by
Kim et al. [41], patients with a survival time shorter than 3 years
were referred to as short-term survivors, whereas patients with
a survival time longer than 3 years were referred to as long-
term survivors. The CNV data consisted of the discrete CNV sta-
tuses at focal CNVs based on GISTIC2 [42] calls in 2,884 genes.
The methylation data had methylation rates at 25,794 CpG sites
in 13,157 genes. The RNA-seq data comprised the RNA-Seq by
Expectation Maximization (RSEM) [43] counts of 17,946 genes,
and the RPPA data comprised the normalized protein expression
data of 204 genes.

Each of the features in each type of omics data was first
tested for association with the survival time (i.e., short-term
and long-term survival) by fitting a logistic regression model.
For each type of omics data, the 50 most significant features
sorted via the association P-values were used in ATHENA. The
parameter values shown in Supplementary Table S1 were spec-
ified in ATHENA. We then examined the pairwise correlations
among the 5 features identified by the best model shown in
Figure 3 from ATHENA. We found that the gene expression of
LRRN4 had low Pearson correlation coefficients with the other 4
features. However, there were significant correlations between
the methylation level of KIF13B and the gene expression lev-
els of MARCH9 and TCEAL8. There were also significant corre-
lations among the gene expression levels of MARCHY, LRIG1,
and TCEALS8. The Pearson correlation coefficients among the 5
features are presented in Supplementary Table S3. To establish
the correlations between methylation and gene expression fea-
tures as well as the correlations among gene expression fea-
tures using OmicsSIMLA, we hypothesized that the methylation
of KIF13B was an eQTM, which affected the gene expression lev-
els of MARCHY, LRIG1, and TCEAL8. We selected a CpG with a
similar methylation rate (i.e., 2%) to that in KIF13B. The CpG was
assumed to have a different methylation rate (i.e., 2.3%) in the
simulated long-term survival group compared to the 2% rate in
the short-term survival group. The rates were similar to those
observed in the OV data. Furthermore, the parameter 8, which
was used to model the relationship between the methylation of
the eQTM and gene expression levels of 3 genes, was assumed
to have a mean of 50 and a standard deviation of 20. The param-
eters were estimated from the OV data. The fold changes of the
3 genes influenced by the eQTM were all specified to be 0.6 in
the short-term survival group relative to the long-term survival
group. Finally, the fold change of the independent gene expres-
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sion was specified to be 2 in the short-term survival group rela-
tive to the long-term survival group. The fold changes were also
similar to those observed in the OV data. The simulations were
performed based on the CNV, methylation, gene expression, and
protein expression profiles compiled according to the TCGA OV
data. Further details on how the profiles were generated are pro-
vided in the Supplementary methods. A total of 50 batches of
data were simulated, with each having 2,884 focal CNVs, 2,753
CpGs on chromosome 1, gene expression levels for 12,004 genes,
and protein expression levels for 200 genes in 500 cases (i.e., the
short-term survival group) and 500 controls (i.e., the long-term
survival group).

Project name: OmicsSIMLA

Project home page: https://omicssimla.sourceforge.io
Operating system: Linux

Programming language: C++

Other requirements: C++11 compiler and Eigen and boost li-
braries if directly compiling the source code

License: GPL-3.0

RRID:SCR.017011

The simulated datasets supporting the conclusions of this arti-
cle are available from the OmicsSIMLA website [19]. Snapshots
of the code and other supporting data are available in the Giga-
Science repository, GigaDB [44].

Supplementary Methods:

The implementation of the three-stage method

Coding of Gjand Gmn

Generation of the CNV profiles

Generation of the RNA-seq profiles

Calculating the individual-specific normalization factor
Generation of the RPPA profiles

Calculating the risk score of a gene in RFomics

Simulation studies for the hypothetical breast cancer pathways
Generation of the TCGA ovarian cancer profiles

Supplementary Tables:

Table S1. Parameters for ATHENA and random forest

Table S2. CNV states considered in OmicsSIMLA

Table S3. Pearson correlation coefficients among the features se-
lected by ATHENA

ASM: allele-specific methylation; AUC: area under the curve;
CNV: copy number variation; DE: differentially expressed; DMR:
differentially methylated region; eQTL: expression quantitative
trait locus; eQTM: expression quantitative trait methylation;
GENN: grammatical evolution neural network; MAF: minor al-
lele frequency; meQTL: methylation quantitative trait locus; NB:
negative-binomial; OR: odds ratio; OV: ovarian cancer; RF: ran-
dom forest; RNA-seq: RNA sequencing; RPPA: reverse phase pro-
tein array; SNP: single-nucleotide polymorphism; TCGA: The
Cancer Genome Atlas; WGBS: whole-genome bisulphite se-
quencing.
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