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1.2 Eigenvalues and Eigenvectors

Definition 7.12

If A 1s a square matrix, the characteristic polynomial of A is defined by

p() = det(A — Al). 0

Definition 7.13

If p i1s the characteristic polynomial of the matrix A, the zeros of p are eigenvalues,
or characteristic values, of the matrix A. If A is an eigenvalue of A and x # 0 satisfies
(A — Al)x = 0, then x 1s an eigenvector, or characteristic vector, of A corresponding to
the eigenvalue A. R
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2.6 Zeros of Polynomials and Miiller's Method

A polynomial of degree n has the form

P(x) = .{‘1”.1"" T an—lxn_ + -+ a X + do,

where the a;’s, called the coefficients of P, are constants and a,, #= 0. The zero function,
P(x) = 0 for all values of x, is considered a polynomial but is assigned no degree.

Theorem 216

(Fundamental Theorem of Algebra)

If P(x) is a polynomial of degree n = 1 with real or complex coefficients, then P(x) = 0
has at least one ( possibly complex) root. |
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Corollary 2.17

If P(x) is a polynomial of degree n = 1 with real or complex coefficients, then there exist
unique constants xy, xa, . . ., Xx, possibly complex, and unique positive integers m, ms, . . .,
my. such that ZLI m; = n and

P(x) = a,(x —x)"™ (x — x)"™2 -+« (x — xp)"™. O
By Corollary 2.17 the collection of zeros of a polynomial is unique and, if each zero

x; 1s counted as many times as its multiplicity m;, a polynomial of degree n has exactly n
Zeros.

Corollary 2.18

Let P(x) and Q(x) be polynomials of degree at most n. If xy, x2, ..., xx, with k = n, are
distinct numbers with P(x;) = Q(x;) fori = 1,2,.... k. then P(x) = (Q(x) for all values
of x. ]
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Horner’s Method

To use Newton’s method to locate approximate zeros of a polynomial P(x), we need to
evaluate P(x) and P’(x) at specified values. Since P(x) and P'(x) are both polynomials,
computational efficiency requires that the evaluation of these functions be done in the nested
manner discussed in Section 1.2. Horner’s method incorporates this nesting technique, and,
as a consequence, requires only n multiplications and n additions to evaluate an arbitrary

nth-degree polynomial.
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Polynomials and Nested Brackets

Polynomials can be rewritten using brackets within
brackets. This is known as nested form.

Example  f(x) ax* + bx3 + ex2 +dx + e

(ax® + bx2 + cx +d)x + e
= ((ax? + bx + c)x+d)x + e

(((ax+b)x+c)x+d)x + e

S PN PEN Fr N P P +e




Theorem 2.19 (Horner’s Method) MAP2210

Let
P(x) = apx" + ap_1 X" ' 4 - + a1x + ap.
Define b, = a, and

by =ay + byr1xg. fork=n—-1.n-2,...,1,0.

Then by = P(xy). Moreover, if
O(x) = bpx" ' + by x" 2+ -+ box + by,
then

P(x) = (x — x0)Q(x) + by.
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Proof By the definition of Q(x),

(x — x0)Q(x) + bp = (x — x0) (bpX" " + -+ + box + by) + by
= (b X"+ b,_ X"+ 4 box® + byx)

— (byxox" " + -+ - 4 byxox + byxg) + by

nX" + (bp_y — bnxﬂ)-rn_l + -+ (b1 — baxo)x + (bp — byxp).
By the hypothesis, b, = a, and b, — by x5 = ay., so

(x —x0)Q(x)+ by = P(x) and by = P(xp).
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Example 2

Use Horner’s method to evaluate P(x) = 2x* — 3x? 4+ 3x — 4 at xg = —2.
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Solution  When we use hand calculation in Horner’s method, we first construct a table,
which suggests the synthetic division name that is often applied to the technique. For this
problem, the table appears as follows:

Coefficient Coefficient Coefhicient Coefficient Constant

of x* of x° of x* of x term
xu:—? ﬂ'q_:g (]3:0 (]3:—3 ﬂ|:3 HD:—I_].
bqr.l’ﬂ = —4 bj.!['[. = 8§ bgl‘[} = —10 b|..t'[| =14
by =2 by = —4 b, =5 by, = -7 by = 10
So,
P(x) = (x +2)(2x° —4x? 4+ 5x = 7) + 10. O

b, = a, and

by =ar + broyxo, fork=n—1,n-2,....1,0.
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An additional advantage of using the Horner (or synthetic-division) procedure is that,
since

P(x) = (x —x0) Q(x) + bo.
where
Q) = b X"+ b, X"+ -+ byx +by.
differentiating with respect to x gives
P'(x) =0Q(x)+ (x —x0)Q (x) and P'(xp) = Q(xp). (2.16)

When the Newton-Raphson method is being used to find an approximate zero of a polyno-
mial, P(x) and P'(x) can be evaluated in the same manner.
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2.3 Newton's Method and Its Extensions

Newton’s (or the Newton-Raphson) method is one of the most powerful and well-known
numerical methods for solving a root-finding problem. There are many ways of introducing
Newton’s method.

This sets the stage for Newton’s method, which starts with an initial approximation pg
and generates the sequence {p,} <. by

SPa1)
fF{pn—l)q

Pn = Pn—1 — forn > 1. (2.7)
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Example 3

Find an approximation to a zero of
P(x) = 2x* — 3x* + 3x — 4.

using Newton’s method with xp = —2 and synthetic division to evaluate P(x,) and P’(x,)

for each 1terate x,,.
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Solution  With xo = —2 as an 1nitial approximation, we obtained P(—2) in Example 1 by
Xp = —2 2 0 —3 3 —4
—4 8 —10 14
2 —4 5 —7 10 = P(-2).

Using Theorem 2.19 and Eq. (2.16),
Ox) =2x" —4x*+5x—7 and P'(=2) = Q0(-2),

so P'(—2) can be found by evaluating Q(—2) in a similar manner:

Xo=-2 12 -4 5 7
4 16 -4
2 -8 21 —49 =0Q(-2) =P(-2)
and
P P 10
Y= xg— o0 P, 19 176

_ = X,
P'(xo) Q(xp) —49
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Repeating the procedure to find x; gives

1796 | 2 0 _3 3 —4
~3.592 6.451 —6.197 5.742
> 3592 3.451 ~3.197 1742 = P(x))
23592 12902  —29.368
2 7184 16353 32565 =0@) =Px)

So P(—1.796) = 1.742. P'(—1.796) = Q(—1.796) = —32.565, and

= —1.796 1742 1.7425
RETY T TnEes T
In a similar manner, x3 = —1.73897, and an actual zero to five decimal places 1s —1.73896.

Note that the polynomial Q(x) depends on the approximation being used and changes
from iterate to iterate. ]
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Horner's

To evaluate the polynomial
Pix)=aux" +a, x" '+ +ax+a;=(x—x)0x) + by

and its derivative at x;:

INPUT degree n; coefficients ag. ay, .. ..a,; xp.
OUTPUT vy = P(xp):z = P'(x0p).

Step 1 Sety=a,: (Computeb, for P.)
z=da,. (Computeb,_, for Q.)

Step2 Forj=n—1,n—-2,...,1
sety = xpy +a;; (Compute b; for P.)
z=2x0z +y. (Compute bj_, for Q.)

Step 3 Sety=xyv+ ay. (Compute by for P.)

Step 4 OUTPUT (y, z);
STOP.

O output é acoplado ao método de Newton
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1. Find the approximations to within 10~* to all the real zeros of the following polynomials using
Newton’s method.

a.
b.
c'

d.

flx)y=x"—2x* -5

f)=x+3x* -1
fxX)y=x'—x—1
fO=x*4+2x*—x-3

f(x) =x4+4.001x* +4.002x + 1.101
fxX)=x —x*+ 2" -3 +x—4

Considere implementar em Python
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