
We need:
<latexit sha1_base64="7IfwNASmEgTSWidTz+fxioFYjFQ=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KklFFE9FLx4r2A9pQ9lsJu3SzSbsboRS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IBVcG9f9dlZW19Y3Ngtbxe2d3b390sFhUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD26nfekKleSIfzChFP6Z9ySPOqLHSYwuJRAyvSa9UdivuDGSZeDkpQ456r/TVDROWxSgNE1Trjuemxh9TZTgTOCl2M40pZUPax46lksao/fHs4Ak5tUpIokTZkobM1N8TYxprPYoD2xlTM9CL3lT8z+tkJrryx1ymmUHJ5ouiTBCTkOn3JOQKmREjSyhT3N5K2IAqyozNqGhD8BZfXibNasU7r1zcV8u1mzyOAhzDCZyBB5dQgzuoQwMYxPAMr/DmKOfFeXc+5q0rTj5zBH/gfP4ArA6Pqw==</latexit>

A vector space V , with vectors | vi
<latexit sha1_base64="OvIZNeFM9XUZ0W/jRC/WAXpRZas="></latexit>

Operators D acting on V
<latexit sha1_base64="+8I4To6FSysQiscn6i24rhvLbMM="></latexit>

D : V ! V D | vi =| v0i
<latexit sha1_base64="EbWZ5uTD+rl5gGzpgnkR3yF4HWg="></latexit>

An homomorphism G ! D
<latexit sha1_base64="fxp4vHxtTB/v8IIuKTpjPvQyVIY="></latexit>

D<latexit sha1_base64="PmRJfOE/NXe78+c5+NOi27gM3Xo="></latexit>G
<latexit sha1_base64="pznomoJc6LfRVBD/XJIdOmQ1B+M="></latexit>

g1
<latexit sha1_base64="Rc8o3s00BSR3Bc5tlVSu5PRKOG0="></latexit>

g2
<latexit sha1_base64="prcz7nmeHdyuHsugzzruS/jwiXc="></latexit>

g3
<latexit sha1_base64="Yv727cXcAeMfasZHaph3NpO8mg8="></latexit>

D1
<latexit sha1_base64="E8un6AgBJQcAWm5ZJWm80Mbaw2M="></latexit>

D2
<latexit sha1_base64="S2tnvvHfQapeiPCkv/IiXwXNj/s="></latexit>

D (g) D (g0) | vi = D (g g0) | vi
<latexit sha1_base64="6aTCKZ/QZ3p/kSa8zyDSfRvNnAs="></latexit>

for all | vi 2 V
<latexit sha1_base64="Vx9VZXDNzp8CQHUjWgzLdSLnnMQ="></latexit>

• Representation Theory (Groups)
<latexit sha1_base64="SUVPulKN0kJchTaOtv45+/dgidM="></latexit>



We need:
<latexit sha1_base64="7IfwNASmEgTSWidTz+fxioFYjFQ=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KklFFE9FLx4r2A9pQ9lsJu3SzSbsboRS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IBVcG9f9dlZW19Y3Ngtbxe2d3b390sFhUyeZYthgiUhUO6AaBZfYMNwIbKcKaRwIbAXD26nfekKleSIfzChFP6Z9ySPOqLHSYwuJRAyvSa9UdivuDGSZeDkpQ456r/TVDROWxSgNE1Trjuemxh9TZTgTOCl2M40pZUPax46lksao/fHs4Ak5tUpIokTZkobM1N8TYxprPYoD2xlTM9CL3lT8z+tkJrryx1ymmUHJ5ouiTBCTkOn3JOQKmREjSyhT3N5K2IAqyozNqGhD8BZfXibNasU7r1zcV8u1mzyOAhzDCZyBB5dQgzuoQwMYxPAMr/DmKOfFeXc+5q0rTj5zBH/gfP4ArA6Pqw==</latexit>

A vector space V , with vectors | vi
<latexit sha1_base64="OvIZNeFM9XUZ0W/jRC/WAXpRZas="></latexit>

Operators D acting on V
<latexit sha1_base64="+8I4To6FSysQiscn6i24rhvLbMM="></latexit>

D : V ! V D | vi =| v0i
<latexit sha1_base64="EbWZ5uTD+rl5gGzpgnkR3yF4HWg="></latexit>

An homomorphism G ! D
<latexit sha1_base64="dweE+ZoKx95FLbfEbADc+SX8QsU="></latexit>

D<latexit sha1_base64="PmRJfOE/NXe78+c5+NOi27gM3Xo=">AAAHb3icjVXdbts2FFa7NW69bmu3i14UGIg5ARLADSx1xXpZLAXa3HVtkhaJjIKiaEkISWkk5cYg9Ai7XZ+tj9E32KFEWnKciwqQffid7xyeP1JJxQqlZ7Mvt25/9/2dndHde+Mf7v/4088PHv5ypspaEnpKSlbKDwlWlBWCnupCM/qhkhTzhNH3yeWR1b9fUqmKUpzoVUXnHGeiWBQEa4De7b7c/fhgMjuctQ/aFkInTAL3vPn4cOcsTktScyo0YVipi3BW6bnBUheE0WYc14pWmFzijF6AKDCnam7aWBu0B0iKFqWEV2jUokMLg7lSK54Ak2Odq+s6C96ku6j14vncFKKqNRWk22hRM6RLZBNHaSEp0WwFAiaygFgRybHEREN5xuM4pYs4oQberBCG/lO3FWqaTkNBQ0W6hSeytxBYSrxaW0hvsYkn2Fts0nFH3wCFMLEoRc0TKh10Am5t8mVlYsnRifTcHBsTxiU0G5mo8ShLDLyQ5aUDJAByCDAgwLyk2K33YU0Xet8tD4BeZLk+cOsK4qxsqzFzCACYVbm3T2x62q9SA39svcxMnGHO/TI38QJCMWFjQ+4wlRsTK+hQpZVeMYrifF2jShn7UzBoQActoS9LLDdBiV3QUMzyk8/TojazLQ3JYEeCGXrlNyK5Q157pIKyV7Lg1EcJMRYZ/8ai2R4OO7lnURNfUh01k3ASQUuLFJlJ2MRTNEXwYyZRgyARkdkTtedmDUcdm7X4DQbgxm0Jvidh77f35V1Z7cCPtxX0EymhQzCKlgVumotovk1tN1w7HfsQ6dX6PFw1PnBq0fYs9FjSVqCjgih6cquw7A040bmn67wnW9RyBxhcfdxTQey5LW7JQzQh5foIg9izW9yyO7QbLAaJSMrwFbQbL+mSl6kv6fG5sfo4T0ogqQU6hx5I8eTwD8rRufdw/HbIggN87Fjhc6C9XdOOhrTpblyIBEtHfWrzANOjZtfzSwHnoCXDWXK06BnlHcbsdTBsbawS2XUVhtbdD/HUj5OVoLfTbob722JgXzl7c4NVc53q9yK1ZDftYnE7QvAlCq9/d7aFs+gwfHr47O9o8uIv9026GzwOfg/2gzD4M3gRvA7eBKcBCbLg3+C/4PPO19Gj0W8j1FFv33I2vwYbz+jgfzxlmSA=</latexit>

D1
<latexit sha1_base64="E8un6AgBJQcAWm5ZJWm80Mbaw2M="></latexit>

D2
<latexit sha1_base64="S2tnvvHfQapeiPCkv/IiXwXNj/s="></latexit>

G
<latexit sha1_base64="4OrRMdZDzYnir4iXq33+R5WHbCU="></latexit>

T1
<latexit sha1_base64="37WA5jl5So+XVBGg56upT74kWRE="></latexit>

T2
<latexit sha1_base64="K5BBompLHUnW/b/IqQJxeekC1x4="></latexit>

T3
<latexit sha1_base64="P1uAhWC+21P52cBdVq/AHK49LF0="></latexit>

for all | vi 2 V
<latexit sha1_base64="Vx9VZXDNzp8CQHUjWgzLdSLnnMQ="></latexit>

(D (T ) D (T 0)�D (T 0) D (T )) | vi = D ([T , T 0 ]) | vi
<latexit sha1_base64="nJw2XgxA+sydvbSZYax+i0cGa6U="></latexit>

• Representation Theory (Lie Algebras)
<latexit sha1_base64="PdBZYxWh63MyvTReqALksegdJQk=">AAACF3icdVDLTgIxFO3gC/GFunTTCCa4IdMxEdihbly4QMMrAUI65QINnUfajgkh/IUbf8WNC41xqzv/xg5gokZP0uTknHva3uOGgitt2x9WYml5ZXUtuZ7a2Nza3knv7tVVEEkGNRaIQDZdqkBwH2qaawHNUAL1XAENd3QR+41bkIoHflWPQ+h4dODzPmdUG6mbzmfbbiQE6Cy+AZNU4OuZhatDCOQY56444DMxAFdSddxNZ+y8bduEEBwTUji1DSmVig4pYhJbBhm0QKWbfm/3AhZ55lomqFItYoe6M6FScyZgmmpHCkLKRnQALUN96oHqTGZ7TfGRUXq4H0hzfI1n6vfEhHpKjT3XTHpUD9VvLxb/8lqR7hc7E+6HkQafzR/qRwLrAMcl4R6XwLQYG0KZ5OavmA2ppEybKlOmhK9N8f+k7uTJSd65djLl80UdSXSADlEOEVRAZXSJKqiGGLpDD+gJPVv31qP1Yr3ORxPWIrOPfsB6+wQBxJ81</latexit>



• Two Theorems
<latexit sha1_base64="MndGWVy7tMrcviHIKdzqtkntVr4=">AAAB/3icdVBNSwMxEM36WetXVfDiJdgKnspmBdveil48VugXtKVk02kbmt0sSVYptQf/ihcPinj1b3jz35htK6jog4HHezPMzPMjwbVx3Q9naXlldW09tZHe3Nre2c3s7de1jBWDGpNCqqZPNQgeQs1wI6AZKaCBL6Dhjy4Tv3EDSnMZVs04gk5AByHvc0aNlbqZw1zbj4UAk8PVW4mrQ5AKAt3NZN2867qEEJwQUjh3LSmVih4pYpJYFlm0QKWbeW/3JIsDCA0TVOsWcSPTmVBlOBMwTbdjDRFlIzqAlqUhDUB3JrP7p/jEKj3cl8pWaPBM/T4xoYHW48C3nQE1Q/3bS8S/vFZs+sXOhIdRbCBk80X9WGAjcRIG7nEFzIixJZQpbm/FbEgVZcZGlrYhfH2K/yd1L0/O8t61ly1fLOJIoSN0jE4RQQVURleogmqIoTv0gJ7Qs3PvPDovzuu8dclZzBygH3DePgFSVZWs</latexit>

Chapter 3

Representation theory
of Lie algebras

3.1 Introduction

In this chapter we shall develop further the concepts introduced in section 1.5
for group representations. The concept of a representation of a Lie algebra
is analogous to that of a group. A set of operators D1, D2, . . . acting on
a vector space V is a representation of a Lie algebra in the representation
space V if we can define an operation between any two of these operators such
that it reproduces the commutation relations of the Lie algebra. We will be
interested mainly on matrix representations and the operation will be the usual
commutator of matrices. In addition we shall consider the representations of
compact Lie algebras and Lie groups only, since the representation theory of
non compact Lie groups is beyond the scope of these lecture notes.

Some results on the representation theory of finite groups can be extended
to the case of compact Lie groups. In some sense this this is true because the
volume of the group space is finite for the case of compact Lie groups, and
therefore the integration over the group elements converge. We state without
proof two important results on the representation theory of compact Lie groups
which are also true for finite groups:

Theorem 3.1 A finite dimensional representation of a compact Lie group is
equivalent to a unitary one.

Theorem 3.2 A unitary representation can be decomposed into unitary irre-
ducible representations.
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We then see that the irreducible representations (irreps.) constitute the
building blocks for constructing finite dimensional representations of compact
Lie groups. The aim of this chapter is to show how to classify and construct
the irreducible representations of compact Lie groups and Lie algebras.

3.2 The notion of weights

We have defined in section 2.6 (see definition 2.12) the Cartan subalgebra of a
semisimple Lie algebra as the maximal abelian subalgebra wich can be diago-
nalized simultaneously. Therefore we can take the basis of the representation
space V as the eigenstates of the Cartan subalgebra generators. Then we have

Hi | µi = µi | µi i = 1, 2, 3...r(rank) (3.1)

The eigenvalues of the Cartan subalgebra generators constitute r-component
vectors and they are called weights. Like the roots, the weights live in a r-
dimensional Euclidean space. There can be more than one base state associated
to a single weight. So the base states can be degenerated.

In section 2.8 we have seen that the operator H↵ = 2↵ ·H/↵2, has integer
eigenvalues. Therefore from (3.1) we have

H↵ | µi =
2↵ · µ

↵2
| µi (3.2)

and consenquently we have that

2↵ · µ

↵2
is an integer for any root ↵ (3.3)

Any vector µ satisfying this condition is a weight, and in fact this is the
only condition a weight has to satisfy. From (2.148) we see that any root is a
weight but the converse is not true. Notice that 2↵·µ

µ2 does not have to be an
integer and therefore the table 2.2 does not apply to the weights.

A weight is called dominant if it lies in the Fundamental Weyl Chamber or
on its borders. Obviously a dominant weight has a non negative scalar product
with any positive root. It is possible to find among the dominant weights, r
weights �a, a = 1, 2...r, satisfying

2�a · ↵b

↵2
b

= �ab for any simple root ↵b (3.4)
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In orther words we can find r dominant weights which are orthogonal to all
simple roots except one. These weights are called fundamental weights. They
play an important role in representation theory as we will see below.

Consider now a simple root ↵a and any weight µ. From (3.3) we have that

2µ · ↵a

↵2
a

= ma = integer (3.5)

Using (3.4) we have
2↵a

↵2
a

·

 

µ�

rX

a=1

ma�a

!

= 0 (3.6)

Since the simple roots constitute a basis of an r-dimensional Euclidean space
we conclude that

µ =
rX

a=1

ma�a (3.7)

Therefore any weight can be written as a linear combination of the funda-
mental weights with integer coe�cients. We now want to show that any vector
formed by an integer linear combination of the fundamental weights is also a
weight, i.e., it satisfies the condition (3.3). In order to do that we introduce
the concept of co-root , which is a root devided by its squared lenght

↵v
⌘

↵

↵2
(3.8)

Since

(↵v)2 =
1

↵2
(3.9)

and
2↵v

· �v

(↵v)2
=

2↵ · �

�2
(3.10)

one sees that the co-roots satisfy all the properties of roots and consequently
are also roots. However the co-roots of a given algebra G are the roots of
another algebra G

v , called the dual algebra to G. The simply laced algebras,
su(N) (AN1), so(2N) (DN), E6 , E7 and E8, together with the exceptional
algebras G2 and F4 are self-dual algebras, in the sense that G = G

v . However
so(2N+1) (BN) is the dual algebra to sp(N) (CN) and vice versa. The Cartan
matrix of the dual algebra G

v is the transpose of the Cartan matrix of G since

(Kab)
v =

2↵v

a
· ↵v

b

(↵v

b
)2

=
2↵a · ↵b

↵2
a

= Kba (3.11)
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where we have used the fact that the simple co-roots are given by

↵v

a
=

↵a

↵2
a

(3.12)

Any co-root can be written as a linear combination of the simple co-roots with
integer coe�cients all of the same sign. To show that we observe from theorem
2.7 that

↵v =
↵

↵2
=

rX

a=1

na

↵2
a

↵2
↵v

a
(3.13)

and from (3.4) we get

na =
2�a · ↵

↵2
a

(3.14)

Therefore

↵v =
rX

a=1

2�a · ↵

↵2
↵v

a
⌘

rX

a=1

ma↵
v

a
(3.15)

since from (3.3) we have that 2�a·↵
↵2 is an integer. In additon these integers are

all of the same sign since all �a’s lie on the Fundamental Weyl Chamber or on
its border.

Let ⌫ be a vector defined by

⌫ =
rX

a=1

ka�a (3.16)

where �a are the fundamental weights and ka are arbitrary integers. Using
(3.15) and (3.4) we get

2↵ · ⌫

↵2
= 2↵v

· ⌫ =
X

a,b

makb
2�b · ↵a

↵2
a

=
X

a

maka (3.17)

Therefore ⌫ is a weight. So we have shown that any integer linear combination
of the fundamental weights is a weigtht and that all weights are of this form.
Consequently the weights constitute a lattice ⇤ called the weight lattice. This
quantized spectra of weights is a consequence of the fact that H↵ has integer
eigenvalues and is an important feature of representation theory of compact
Lie algebras.

As we have said any root is a weight and consequently belong to ⇤. We can
also form a lattice by taking all vectors which are integer linear combinations
of the simple roots. This lattice is called the root lattice and is denoted by ⇤r .
All points in ⇤r are weights and therefore ⇤r is a sublattice of ⇤. The weight
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also form a lattice by taking all vectors which are integer linear combinations
of the simple roots. This lattice is called the root lattice and is denoted by ⇤r .
All points in ⇤r are weights and therefore ⇤r is a sublattice of ⇤. The weight
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lattice forms an abelian group under the addition of vectors. The root lattice is
an invariant subgroup and consequently the coset space ⇤/⇤r has the structure
of a group (see section 1.4). One can show that ⇤/⇤r corresponds to the center
of the covering group corresponding to the algebra which weight lattice is ⇤.
We will show that all the weights of a given irreducible representation of a
compact Lie algebra lie in the same coset.

Before giving some examples we would like to discuss the relation between
the simple roots and the fundamental weights, which constitute two basis for
the root (or weight) space. Since any root is a weight we have that the simple
roots can be written as integer linear combination of the fundamental weights.
Using (3.4) one gets that the integer coe�cients are the entries of the Cartan
matrix, i.e.

↵a =
X

b

Kab�b (3.18)

and then
�a =

X

b

K�1
ab

↵b (3.19)

So the fundamental weights are not, in general, written as integer linear com-
bination of the simple roots.

Example 3.1 SU(2) has only one simple root and consequently only one fun-
damental weight. Choosing a normalization such that ↵ = 1, we have that

2� · ↵

↵2
= 1 and so � =

1

2
(3.20)

Therefore the weight lattice of SU(2) is formed by the integers and half integer
numbers and the root lattice only by the integers. Then

⇤/⇤r = ZZ2 (3.21)

which is the center of SU(2).

Example 3.2 SU(3) has two fundamental weights since it has rank two. They
can be constructed solving (3.4) or equivalently (3.19). The Cartan matrix of
SU(3) and its inverse are given by (see example 2.13)

K =

 
2 �1

�1 2

!

K�1 =
1

3

 
2 1
1 2

!

(3.22)

So, from (3.19), we get that fundamental weights are

�1 =
1

3
(2↵1 + ↵2) �2 =

1

3
(↵1 + 2↵2) (3.23)
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lattice forms an abelian group under the addition of vectors. The root lattice is
an invariant subgroup and consequently the coset space ⇤/⇤r has the structure
of a group (see section 1.4). One can show that ⇤/⇤r corresponds to the center
of the covering group corresponding to the algebra which weight lattice is ⇤.
We will show that all the weights of a given irreducible representation of a
compact Lie algebra lie in the same coset.

Before giving some examples we would like to discuss the relation between
the simple roots and the fundamental weights, which constitute two basis for
the root (or weight) space. Since any root is a weight we have that the simple
roots can be written as integer linear combination of the fundamental weights.
Using (3.4) one gets that the integer coe�cients are the entries of the Cartan
matrix, i.e.

↵a =
X

b

Kab�b (3.18)

and then
�a =

X

b

K�1
ab

↵b (3.19)

So the fundamental weights are not, in general, written as integer linear com-
bination of the simple roots.

Example 3.1 SU(2) has only one simple root and consequently only one fun-
damental weight. Choosing a normalization such that ↵ = 1, we have that

2� · ↵

↵2
= 1 and so � =

1

2
(3.20)

Therefore the weight lattice of SU(2) is formed by the integers and half integer
numbers and the root lattice only by the integers. Then

⇤/⇤r = ZZ2 (3.21)

which is the center of SU(2).

Example 3.2 SU(3) has two fundamental weights since it has rank two. They
can be constructed solving (3.4) or equivalently (3.19). The Cartan matrix of
SU(3) and its inverse are given by (see example 2.13)
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�1 2

!

K�1 =
1

3

 
2 1
1 2

!

(3.22)

So, from (3.19), we get that fundamental weights are

�1 =
1

3
(2↵1 + ↵2) �2 =

1

3
(↵1 + 2↵2) (3.23)
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lattice forms an abelian group under the addition of vectors. The root lattice is
an invariant subgroup and consequently the coset space ⇤/⇤r has the structure
of a group (see section 1.4). One can show that ⇤/⇤r corresponds to the center
of the covering group corresponding to the algebra which weight lattice is ⇤.
We will show that all the weights of a given irreducible representation of a
compact Lie algebra lie in the same coset.

Before giving some examples we would like to discuss the relation between
the simple roots and the fundamental weights, which constitute two basis for
the root (or weight) space. Since any root is a weight we have that the simple
roots can be written as integer linear combination of the fundamental weights.
Using (3.4) one gets that the integer coe�cients are the entries of the Cartan
matrix, i.e.

↵a =
X

b

Kab�b (3.18)

and then
�a =

X

b

K�1
ab

↵b (3.19)

So the fundamental weights are not, in general, written as integer linear com-
bination of the simple roots.

Example 3.1 SU(2) has only one simple root and consequently only one fun-
damental weight. Choosing a normalization such that ↵ = 1, we have that

2� · ↵

↵2
= 1 and so � =

1

2
(3.20)

Therefore the weight lattice of SU(2) is formed by the integers and half integer
numbers and the root lattice only by the integers. Then

⇤/⇤r = ZZ2 (3.21)

which is the center of SU(2).

Example 3.2 SU(3) has two fundamental weights since it has rank two. They
can be constructed solving (3.4) or equivalently (3.19). The Cartan matrix of
SU(3) and its inverse are given by (see example 2.13)

K =

 
2 �1

�1 2

!

K�1 =
1

3

 
2 1
1 2

!

(3.22)

So, from (3.19), we get that fundamental weights are

�1 =
1

3
(2↵1 + ↵2) �2 =

1

3
(↵1 + 2↵2) (3.23)112 CHAPTER 3. REPRESENTATION THEORY OF LIE ALGEBRAS
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Figure 3.1: The fundamental weights of A2 (SU(3) or SL(3))

In example 2.10 we have seen that the simple roots of SU(3) are given by

↵1 = (1, 0) and ↵2 =
⇣
�1/2,

p
3/2

⌘
. Therefore

�1 =

 
1

2
,

p
3

6

!

�2 =

 

0,

p
3

3

!

(3.24)

The vectors representing the fundamental weights are given in figure 3.1.

The root lattice, ⇤r , generated by the simple roots ↵1 and ↵2, corresponds
to the points on the intersection of lines shown in the figure 3.2. The weight
lattice, generated by the fundamental weights �1 and �2 , are all points of ⇤r

plus the centroid of the triangles, shown by circles and plus signs on the figure
3.2.

The points of the weight lattice can be obtained from the origin, �1 and �2

by adding to them all points of the root lattice. Therefore the coset space ⇤/⇤r

has three points which can be represented by 0, �1 and �2. Since �1 + �2 =
↵1 + ↵2 and 3�1 = 2↵1 + ↵2 lie in the same coset as 0, we see that ⇤/⇤r has
the structure of the cyclic group ZZ3 which is the center of SU(3).

3.3 The highest weight state

In a irreducible representation one can obtain all states of the representation
by starting with a given state and applying sequences of step operators on it.
If that was not possible the representation would have an invariant subspace
and therefore would not be irreducible.
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Consider a state with weight µ satisfying (3.1). The state defined by

| µ0
i ⌘ E↵ | µi (3.25)

satisfies

Hi | µ
0
i = HiE↵ | µi

= (E↵Hi + [Hi , E↵ ]) | µi

= (µi + ↵i)E↵ | µi (3.26)

and therefore it has weight µ+ ↵. Therefore the state

E↵1E↵2 . . . E↵n | µi (3.27)

has weight µ+ ↵1 + . . .+ ↵n.
For this reason the weights in an irreducible representation di↵er by a sum

of roots, and consequently they all lie in the same coset in ⇤/⇤r. Since that
is the center of the covering group we see that the weights of an irreducible
representation is associated to only one element of the center.

In a finite dimensional representation, the number of weights is finite, since
this is at most the number of base states (remember the weights can be degen-
erated). Therefore, by applying sequences of step operators corresponding to
positive roots on a given state we will eventually get zero. So, an irreducible
finite dimensional representation possesses a state such that

E↵ | �i = 0 for any ↵ > 0 (3.28)

This state is called the highest weight state of the representation, and � is the
highest weight. It is possible to show that there is only one highest weight
in an irrep. and only one highest weight state associated to it. That is, the
highest weight is unique and non degenerate.

All other states of the representation are obtained from the highest weight
state by the application of a sequence of step operators corresponding to neg-
ative roots. The state defined by

| µi ⌘ E�↵1E�↵2 . . . E�↵n | �i (3.29)

according to (3.26) has weight �� ↵1 � ↵2 . . .� ↵n. All the basis states are of
the form (3.29). If one applies a positive step operator on the state (3.29) the
resulting state of the representation can be written as a linear combination of
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states of the form (3.29). To see this, let � be a a positive root and ↵ any of
the negative roots appearing in (3.29). Then we have

E� | µi = (E�↵1E� + [E� , E�↵1 ])E�↵2 . . . E�↵n | �i (3.30)

In the cases where ��↵1 is a negative root or it is not a root or even ��↵1 = 0,
we obtain that the second term on the r.h.s. of (3.30) is a state of the form of
(3.29). In the case � � ↵1 is a positive root we contiunue the process until all
positive step operators act directly on the highest state | �i, and consequently
annihilate it. Therefore the state (3.30) is a linear combination of the states
(3.29).

The weight lattice ⇤ is invariant by the Weyl group. If µ is a weight, and
therefore satisfies (3.3), it follows that �� (µ) also satisfies (3.3) for any root
�, and so is a weight. To show this we use the fact that �� (x) · �� (y) = x · y
and �2

�
= 1. Then (denoting � = �� (↵))

2↵ · �� (µ)

↵2
=

2µ · �� (↵)

�� (↵)
2 =

2� · µ

�2
= integer (3.31)

However we can show that the set of weights of a given representation, which
is a finite subset of ⇤, is invariant by the Weyl group. The state defined by

| µ̄i ⌘ S↵ | µi (3.32)

where | µi is a state of the representation and S↵ is defined in (2.154), is also
a state of the representation since it is obtained from | µi by the action of an
operator of the representation. Using (2.155) we get

x ·H | µ̄i = S↵S
�1
↵

x ·HS↵ | µi

= S↵�↵ (x) ·H | µi

= �↵ (x) · µ | µ̄i

= �↵ (µ) · x | µ̄i (3.33)

Since the vector x is arbitrary we obtain that the state | µ̄i has, weight �↵ (µ)

Hi | µ̄i = HiS↵ | µi = �↵ (µ)i S↵ | µi = �↵ (µ)i | µ̄i (3.34)

Therefore if µ is a weight of the representation so is �↵ (µ) for any root ↵.
One can easily check that the root lattice ⇤r is also invariant by the Weyl
reflections.
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2.9 The Weyl group

In the section 2.8 we have shown that to each pair of roots ↵ and �↵ of a
semisimple Lie algebra we can construct a sl(2) (or su(2)) subalgebra generated
by the operators H↵ , E↵ and E�↵ (see eq. (2.145)). We now define the
hermitian operators:

T1(↵) =
1

2
(E↵ + E�↵)

T2(↵) =
1

2i
(E↵ � E�↵) (2.152)

which satisfy the commutation relations

[Hi, T1(↵)] = i↵iT2(↵)

[Hi, T2(↵)] = �i↵iT1(↵)

[T1(↵), T2(↵)] =
i

2
H↵ (2.153)

The operator T2(↵) is the generator of rotations about the 2-axis, and a rota-
tion by ⇡ is generated by the element

S↵ = exp(i⇡T2(↵)) (2.154)

Using (2.27) and (2.153) one can check that

S↵(x.H)S�1
↵

= x.H + x.↵T1(↵) sin ⇡ +
x.↵

↵2
↵.H(cos ⇡ � 1)

=
✓
xi � 2

x.↵

↵2
↵i

◆
Hi

= �↵(x).H (2.155)

where we have defined the operator �↵, acting on the root space, by

�↵(x) ⌘ x� 2
x.↵

↵2
↵ (2.156)

This operator corresponds to a reflection w.r.t the plane perpendicular to ↵.
Indeed, if ✓ is the angle between x and ↵ then x.↵

↵2 ↵ =| x | cos ✓ ↵

|↵| . Therefore

�↵(x) is obtained from x by subtracting a vector parallel (or anti-parallel)
to ↵ and with lenght twice the projection of x in the direction of ↵. These
reflections are called Weyl reflections on the root space.
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A consequence of the above result is that the highest weight � of an irrep.
is a dominant weight. By taking its Weyl reflection

�↵ (�) = ��
2� · ↵

↵2
↵ (3.35)

one obtains that 2� · ↵ has to be non negative if ↵ is a positive root, since
�↵ (�) is also a weight of the representation and consequenlty can not exceed
� by a multiple of a positive root. Therefore

� · ↵ � 0 for any positive root ↵ (3.36)

and the highest weight � is a dominant weight.
The highest weight � can be used to label the representation. This is one

of the consequences of the following theorem which we state without proof.

Theorem 3.3 There exists a unique irreducible representation of a compact
Lie algebra (up to equivalence) with highest weight state | �i for each � of the
weight lattice in the Fundamental Weyl Chamber or on its border.

The importance of this theorem is that it provides some sort of classifica-
tion of all irreps. of a compact Lie algebra. All other reducible representations
are constructed from these ones. The irreps. can be labelled by their high-
est weight � as D� or D(n1,n2,...nr) where the na’s are non-negative integers
appearing in the expansion of � in terms of the fundamental weights �a, i.e.
� =

P
r

a=1 na�a, and na =
2�·↵a
↵2
a
.

An irrep. is called a fundamental representation when its highest weight is
a fundamental weight. Therefore the number of fundamental representations
of a semisimple compact Lie algebra is equal to its rank.

The highest weight of the adjoint representation is the highest positive root
(see section 2.13). It follows that the weights of the adjoint representation are
all roots of the algebra together with zero which is a weight r-fold degenerated
(r= rank).

We say a weight µ is a minimal weight if it satisfies

2µ · ↵

↵2
= 0 or ±1 for any root ↵ (3.37)

The representation for which the highest weight is minimal is said to be a
minimal representation. These representations play an important role in grand
unified theories (GUT) in the sense that the constituent fermions prefer, in
general, to form multiplets in such minimal representations.
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Example 3.3 In the example 3.1 we have seen that the only fundamental
weight of SU(2) is � = 1

2 . Therefore the dominant weights of SU(2) are
the positive integers and half integers. Each one of these dominant weights
corresponds to an irreducible representation of SU(2). Then we have that
� = 0 corresponds to the scalar representation, � = 1

2 the spinorial rep. which
is the fundamental rep. of SU(2) (dim = 2), � = 1 is the vectorial rep. which
is the adjoint of SU(2) (dim = 3) and so on.

Example 3.4 In the case of SU(3) we have two fundamental representations
with highest weights �1, and �2 (see example 3.2. They are respectively the
triplet and antitriplet representations of SU(3). The rep. with highest weight
�1+�2 = ↵3 is the adjoint. All representations with highest weight of the form
with � = n1�1 + n2�2, with n1 and n2 non negative integers are irreducible
representations of SU(3). 0
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Example 3.3 In the example 3.1 we have seen that the only fundamental
weight of SU(2) is � = 1

2 . Therefore the dominant weights of SU(2) are
the positive integers and half integers. Each one of these dominant weights
corresponds to an irreducible representation of SU(2). Then we have that
� = 0 corresponds to the scalar representation, � = 1

2 the spinorial rep. which
is the fundamental rep. of SU(2) (dim = 2), � = 1 is the vectorial rep. which
is the adjoint of SU(2) (dim = 3) and so on.

Example 3.4 In the case of SU(3) we have two fundamental representations
with highest weights �1, and �2 (see example 3.2. They are respectively the
triplet and antitriplet representations of SU(3). The rep. with highest weight
�1+�2 = ↵3 is the adjoint. All representations with highest weight of the form
with � = n1�1 + n2�2, with n1 and n2 non negative integers are irreducible
representations of SU(3).

+ + + + +

+ + +

+ + + + +

h 2

h 1
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3.4 Weight strings and multiplicities

If we apply the step operator E↵ or E�↵, for a fixed root ↵, successively on a
state of weight µ of a finite dimensional representation, we will eventually get
zero. That means that there exist positive integer numbers p and q such that

E↵ | µ+ p↵i and E�↵ | µ� q↵i (3.38)

p and q are the greatest positive integers for which µ+p↵ and µ�q↵ are weights
of the representation. One can show that all vectors of the form µ + n↵ with
n integer and �q < n < p , are weights of the representation. Therefore the
weights form unbroken strings, called weight strings , of the form

µ+ p↵ ;µ+ (p� 1)↵ ; . . . µ+ ↵ ;µ ;µ� ↵ ; . . . µ� q↵ (3.39)

We have shown in the last section that the set of weights of a representation is
invariant under the Weyl group. The e↵ect of the action of the Weyl reflection
�↵ on a weight is to add or subtract a multiple of the root ↵, since �↵ (µ) =
µ� 2µ·↵

↵2 ↵, and from (3.3) we have that 2µ·↵
↵2 is an integer. Therefore the weight

string (3.39) is invariant by the Weyl reflection �↵. In fact, �↵ reverses the
string (3.39) and consenquently we have that

�↵ (µ+ p↵) = µ� q↵ = µ�
2µ · ↵

↵2
↵� p↵ (3.40)

and so
2µ · ↵

↵2
= q � p (3.41)

This result is similar to (2.187) which was obtained for root strings. However,
notice that the possible values of q � p , in this case, are not restrict to the
values given in (2.187) (q� p can, in principle, have any integer value). In the
case where µ is the highest weight of the representation we have that p is zero if
↵ is a positive root, and q is zero if ↵ is negative. The relation (3.41) provides
a practical way of finding the weights of the representation. In some cases it is
easier to find some weights of a given representation by taking successive Weyl
reflections of the highest weight. However, this method does not provide, in
general, all the weights of the representation.

Once the weights are known one has to calculate their multiplicities. There
exists a formula, due to Kostant, which expresses the multiplicities directly as
a sum over the elements of the Weyl group. However, it is not easy to use
this formula in practice. There exists a recursive formula, called Freudenthal’s
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formula , which is much easier to use. According to it the multiplicity m (µ)
of a weight µ in an irreducible representation of highest weight � is given
recursively as (see sections 22.3 and 24.2 of [HUM 72])

⇣
(�+ �)2 � (µ+ �)2

⌘
m (µ) = 2

X

↵>0

p(↵)X

n=1

↵ · (µ+ n↵)m (µ+ n↵) (3.42)

where

� ⌘
1

2

X

↵>0

↵ (3.43)

The first summation on the l.h.s. is over the positive roots and the second one
over all positive integers n such that µ+ n↵ is a weight of the representation,
and we have denoted by p (↵) the highest value of n. By starting withm (�) = 1
one can use (3.43) to calculate the multiplicities of the weights from the higher
ones to the lower ones.

If the states | µi1 and | µi2 have the same weight, i.e., µ is degenerated,
then the weight �↵ (µ) is also degenerate and has the same multiplicity as µ.
Using (3.32) we obtain that the states

| �↵ (µ)i1 = S↵ | µi1 and | �↵ (µ)i2 = S↵ | µi2 (3.44)

have weight �↵ (µ) and their linear independence follows from the linear inde-
pendence of | µi1 and | µi2. Indeed,

0 = x1 | �↵ (µ)i1 + x2 | �↵ (µ)i2 = S↵ (x1 | µi1 + x2 | µi2) (3.45)

So, if | µi1 and | µi2 are linearly independent one gets that one must have
x1 = x2 = 0 and so, | �↵ (µ)i1 and | �↵ (µ)i2 are also linearly independent.

Therefore all the weights of a representation which are conjugate under the
Weyl group have the same multiplicity. This fact can be used to make the
Freudenthal’s formula more e�cient in the calculation of the multiplicities.

Example 3.5 Using the results of example 2.14 we have that the Cartan ma-
trix of so(5) ond its inverse are

K =

 
2 �1
�2 2

!

K�1 =
1

2

 
2 1
2 2

!

(3.46)

Then, using (3.19), we get that the fundamental weights of so(5) are

�1 =
1

2
(2↵1 + ↵2) �2 = ↵1 + ↵2 (3.47)
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formula , which is much easier to use. According to it the multiplicity m (µ)
of a weight µ in an irreducible representation of highest weight � is given
recursively as (see sections 22.3 and 24.2 of [HUM 72])

⇣
(�+ �)2 � (µ+ �)2

⌘
m (µ) = 2

X

↵>0

p(↵)X

n=1

↵ · (µ+ n↵)m (µ+ n↵) (3.42)

where

� ⌘
1

2

X

↵>0

↵ (3.43)

The first summation on the l.h.s. is over the positive roots and the second one
over all positive integers n such that µ+ n↵ is a weight of the representation,
and we have denoted by p (↵) the highest value of n. By starting withm (�) = 1
one can use (3.43) to calculate the multiplicities of the weights from the higher
ones to the lower ones.

If the states | µi1 and | µi2 have the same weight, i.e., µ is degenerated,
then the weight �↵ (µ) is also degenerate and has the same multiplicity as µ.
Using (3.32) we obtain that the states

| �↵ (µ)i1 = S↵ | µi1 and | �↵ (µ)i2 = S↵ | µi2 (3.44)

have weight �↵ (µ) and their linear independence follows from the linear inde-
pendence of | µi1 and | µi2. Indeed,

0 = x1 | �↵ (µ)i1 + x2 | �↵ (µ)i2 = S↵ (x1 | µi1 + x2 | µi2) (3.45)

So, if | µi1 and | µi2 are linearly independent one gets that one must have
x1 = x2 = 0 and so, | �↵ (µ)i1 and | �↵ (µ)i2 are also linearly independent.

Therefore all the weights of a representation which are conjugate under the
Weyl group have the same multiplicity. This fact can be used to make the
Freudenthal’s formula more e�cient in the calculation of the multiplicities.

Example 3.5 Using the results of example 2.14 we have that the Cartan ma-
trix of so(5) ond its inverse are

K =

 
2 �1
�2 2

!

K�1 =
1

2

 
2 1
2 2

!

(3.46)

Then, using (3.19), we get that the fundamental weights of so(5) are

�1 =
1

2
(2↵1 + ↵2) �2 = ↵1 + ↵2 (3.47)
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formula , which is much easier to use. According to it the multiplicity m (µ)
of a weight µ in an irreducible representation of highest weight � is given
recursively as (see sections 22.3 and 24.2 of [HUM 72])

⇣
(�+ �)2 � (µ+ �)2

⌘
m (µ) = 2

X

↵>0

p(↵)X

n=1

↵ · (µ+ n↵)m (µ+ n↵) (3.42)

where

� ⌘
1

2

X

↵>0

↵ (3.43)

The first summation on the l.h.s. is over the positive roots and the second one
over all positive integers n such that µ+ n↵ is a weight of the representation,
and we have denoted by p (↵) the highest value of n. By starting withm (�) = 1
one can use (3.43) to calculate the multiplicities of the weights from the higher
ones to the lower ones.

If the states | µi1 and | µi2 have the same weight, i.e., µ is degenerated,
then the weight �↵ (µ) is also degenerate and has the same multiplicity as µ.
Using (3.32) we obtain that the states

| �↵ (µ)i1 = S↵ | µi1 and | �↵ (µ)i2 = S↵ | µi2 (3.44)

have weight �↵ (µ) and their linear independence follows from the linear inde-
pendence of | µi1 and | µi2. Indeed,

0 = x1 | �↵ (µ)i1 + x2 | �↵ (µ)i2 = S↵ (x1 | µi1 + x2 | µi2) (3.45)

So, if | µi1 and | µi2 are linearly independent one gets that one must have
x1 = x2 = 0 and so, | �↵ (µ)i1 and | �↵ (µ)i2 are also linearly independent.

Therefore all the weights of a representation which are conjugate under the
Weyl group have the same multiplicity. This fact can be used to make the
Freudenthal’s formula more e�cient in the calculation of the multiplicities.

Example 3.5 Using the results of example 2.14 we have that the Cartan ma-
trix of so(5) ond its inverse are

K =

 
2 �1
�2 2

!

K�1 =
1

2

 
2 1
2 2

!

(3.46)

Then, using (3.19), we get that the fundamental weights of so(5) are

�1 =
1

2
(2↵1 + ↵2) �2 = ↵1 + ↵2 (3.47)
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Figure 3.3: The weights of the spinor representation of so(5).

where ↵1 and ↵2 are the simple roots of so(5). Let us consider the fundamen-
tal representation with highest weight �1. The scalar products of �1 with the
positive roots of so(5) are

2�1 · ↵1

↵2
1

= 1
2�1 · ↵2

↵2
2

= 0

2�1 · (↵1 + ↵2)

(↵1 + ↵2)
2 = 1

2�1 · (2↵1 + ↵2)

(2↵1 + ↵2)
2 = 1 (3.48)

Therefore using (3.41) (with p = 0 since �1 is the highest weight) we get that

�1 ; (�1 � ↵1) ; (�1 � ↵1 � ↵2) ; (�1 � 2↵1 � ↵2) (3.49)

are weights of the representation. By taking Weyl reflections of these weights
or using (3.41) further one can check that these are the only weights of the
fundamental rep. with highest weight �1.

Since all weights are conjugate under the Weyl group they all have the same
multiplicity as �1 , which is one. Therefore they are not degenerate and the
representation has dimension 4. This is the spinor representation of so(5).
One can check that the weights of the fundamental representation of so(5) with
highest weight �2 are

�2 ; �2 � ↵2 = ↵1 ; �2 � ↵1 � ↵2 = 0 ; (3.50)

�2 � 2↵1 � ↵2 = �↵1 ; �2 � 2↵1 � 2↵2 = � (↵1 + ↵2)
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3.4 Weight strings and multiplicities

If we apply the step operator E↵ or E�↵, for a fixed root ↵, successively on a
state of weight µ of a finite dimensional representation, we will eventually get
zero. That means that there exist positive integer numbers p and q such that

E↵ | µ+ p↵i and E�↵ | µ� q↵i (3.38)

p and q are the greatest positive integers for which µ+p↵ and µ�q↵ are weights
of the representation. One can show that all vectors of the form µ + n↵ with
n integer and �q < n < p , are weights of the representation. Therefore the
weights form unbroken strings, called weight strings , of the form

µ+ p↵ ;µ+ (p� 1)↵ ; . . . µ+ ↵ ;µ ;µ� ↵ ; . . . µ� q↵ (3.39)

We have shown in the last section that the set of weights of a representation is
invariant under the Weyl group. The e↵ect of the action of the Weyl reflection
�↵ on a weight is to add or subtract a multiple of the root ↵, since �↵ (µ) =
µ� 2µ·↵

↵2 ↵, and from (3.3) we have that 2µ·↵
↵2 is an integer. Therefore the weight

string (3.39) is invariant by the Weyl reflection �↵. In fact, �↵ reverses the
string (3.39) and consenquently we have that

�↵ (µ+ p↵) = µ� q↵ = µ�
2µ · ↵

↵2
↵� p↵ (3.40)

and so
2µ · ↵

↵2
= q � p (3.41)

This result is similar to (2.187) which was obtained for root strings. However,
notice that the possible values of q � p , in this case, are not restrict to the
values given in (2.187) (q� p can, in principle, have any integer value). In the
case where µ is the highest weight of the representation we have that p is zero if
↵ is a positive root, and q is zero if ↵ is negative. The relation (3.41) provides
a practical way of finding the weights of the representation. In some cases it is
easier to find some weights of a given representation by taking successive Weyl
reflections of the highest weight. However, this method does not provide, in
general, all the weights of the representation.

Once the weights are known one has to calculate their multiplicities. There
exists a formula, due to Kostant, which expresses the multiplicities directly as
a sum over the elements of the Weyl group. However, it is not easy to use
this formula in practice. There exists a recursive formula, called Freudenthal’s
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Figure 3.3: The weights of the spinor representation of so(5).

where ↵1 and ↵2 are the simple roots of so(5). Let us consider the fundamen-
tal representation with highest weight �1. The scalar products of �1 with the
positive roots of so(5) are

2�1 · ↵1

↵2
1

= 1
2�1 · ↵2

↵2
2

= 0

2�1 · (↵1 + ↵2)

(↵1 + ↵2)
2 = 1

2�1 · (2↵1 + ↵2)

(2↵1 + ↵2)
2 = 1 (3.48)

Therefore using (3.41) (with p = 0 since �1 is the highest weight) we get that

�1 ; (�1 � ↵1) ; (�1 � ↵1 � ↵2) ; (�1 � 2↵1 � ↵2) (3.49)

are weights of the representation. By taking Weyl reflections of these weights
or using (3.41) further one can check that these are the only weights of the
fundamental rep. with highest weight �1.

Since all weights are conjugate under the Weyl group they all have the same
multiplicity as �1 , which is one. Therefore they are not degenerate and the
representation has dimension 4. This is the spinor representation of so(5).
One can check that the weights of the fundamental representation of so(5) with
highest weight �2 are

�2 ; �2 � ↵2 = ↵1 ; �2 � ↵1 � ↵2 = 0 ; (3.50)

�2 � 2↵1 � ↵2 = �↵1 ; �2 � 2↵1 � 2↵2 = � (↵1 + ↵2)3.5. THE WEIGHT � 121

Again these weights are not degenerate and the representation has dimension
5. This is the vector representation of so(5).

Example 3.6 Consider the irrep. of su(3) with highest weight � = ↵3 =
↵1 + ↵2 , i.e., the highest positive root. Using (3.41) and performing Weyl
reflections one can check that the weights of such rep. are all roots plus the
zero weight. Since the roots are conjugated to ↵3 = � under the Weyl group we
conclude that they are non degenerated weights. The multiplicity of the zero
weight can be calculated from the Freundenthal’s formula. From (3.43) we have
that, in this case, � = ↵3 and so from (3.42) we get

⇣
4↵2

3 � ↵2
3

⌘
m (0) = 2

⇣
m (↵1)↵

2
1 +m (↵2)↵

2
2 +m (↵3)↵

2
3

⌘
(3.51)

Since m (↵1) = m (↵2) = m (↵3) = 1 and ↵2
1 = ↵2

2 = ↵2
3 we obtain that

m (0) = 2. So there are two states with zero weight and consequently the
representation has dimension 8. This is the adjoint of su(3).

3.5 The weight �

A vector which plays an important role in the representation theory of Lie
algebras is the vector � defined in (3.43). It is half of the sum of all positive
roots. In same cases � is a root, but in general that is not so. However � is
always a dominant weight of the algebra. In other to show that we need some
results which we now prove.

Let ↵a be a simple root and let � be a positive root non proportional to
↵a. If we write � =

P
r

b=1 nb↵b we have that nb 6= 0 for some b 6= a. Now,
the coe�cient of ↵b in �↵a (�) is still nb, and consequently �↵a (�) has at least
one positive coe�cient. So, �↵a (�) is a positive root, and it is di↵erent from
↵a, since ↵a is the image of �↵a under �↵a . Therefore we have proved the
following lemma.

Lemma 3.1 If ↵a is a simple root, then �↵a permutes the positive roots other
than ↵a.

From this lemma it follows that

�↵a (�) = � � ↵a (3.52)

and consequently

2� · ↵a

↵2
a

= 1 for any simple root ↵a (3.53)
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Again these weights are not degenerate and the representation has dimension
5. This is the vector representation of so(5).

Example 3.6 Consider the irrep. of su(3) with highest weight � = ↵3 =
↵1 + ↵2 , i.e., the highest positive root. Using (3.41) and performing Weyl
reflections one can check that the weights of such rep. are all roots plus the
zero weight. Since the roots are conjugated to ↵3 = � under the Weyl group we
conclude that they are non degenerated weights. The multiplicity of the zero
weight can be calculated from the Freundenthal’s formula. From (3.43) we have
that, in this case, � = ↵3 and so from (3.42) we get

⇣
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3 � ↵2
3

⌘
m (0) = 2

⇣
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2
1 +m (↵2)↵

2
2 +m (↵3)↵

2
3

⌘
(3.51)

Since m (↵1) = m (↵2) = m (↵3) = 1 and ↵2
1 = ↵2

2 = ↵2
3 we obtain that

m (0) = 2. So there are two states with zero weight and consequently the
representation has dimension 8. This is the adjoint of su(3).

3.5 The weight �

A vector which plays an important role in the representation theory of Lie
algebras is the vector � defined in (3.43). It is half of the sum of all positive
roots. In same cases � is a root, but in general that is not so. However � is
always a dominant weight of the algebra. In other to show that we need some
results which we now prove.

Let ↵a be a simple root and let � be a positive root non proportional to
↵a. If we write � =

P
r

b=1 nb↵b we have that nb 6= 0 for some b 6= a. Now,
the coe�cient of ↵b in �↵a (�) is still nb, and consequently �↵a (�) has at least
one positive coe�cient. So, �↵a (�) is a positive root, and it is di↵erent from
↵a, since ↵a is the image of �↵a under �↵a . Therefore we have proved the
following lemma.

Lemma 3.1 If ↵a is a simple root, then �↵a permutes the positive roots other
than ↵a.

From this lemma it follows that

�↵a (�) = � � ↵a (3.52)

and consequently

2� · ↵a

↵2
a

= 1 for any simple root ↵a (3.53)
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formula , which is much easier to use. According to it the multiplicity m (µ)
of a weight µ in an irreducible representation of highest weight � is given
recursively as (see sections 22.3 and 24.2 of [HUM 72])

⇣
(�+ �)2 � (µ+ �)2

⌘
m (µ) = 2

X

↵>0

p(↵)X

n=1

↵ · (µ+ n↵)m (µ+ n↵) (3.42)

where

� ⌘
1

2

X

↵>0

↵ (3.43)

The first summation on the l.h.s. is over the positive roots and the second one
over all positive integers n such that µ+ n↵ is a weight of the representation,
and we have denoted by p (↵) the highest value of n. By starting withm (�) = 1
one can use (3.43) to calculate the multiplicities of the weights from the higher
ones to the lower ones.

If the states | µi1 and | µi2 have the same weight, i.e., µ is degenerated,
then the weight �↵ (µ) is also degenerate and has the same multiplicity as µ.
Using (3.32) we obtain that the states

| �↵ (µ)i1 = S↵ | µi1 and | �↵ (µ)i2 = S↵ | µi2 (3.44)

have weight �↵ (µ) and their linear independence follows from the linear inde-
pendence of | µi1 and | µi2. Indeed,

0 = x1 | �↵ (µ)i1 + x2 | �↵ (µ)i2 = S↵ (x1 | µi1 + x2 | µi2) (3.45)

So, if | µi1 and | µi2 are linearly independent one gets that one must have
x1 = x2 = 0 and so, | �↵ (µ)i1 and | �↵ (µ)i2 are also linearly independent.

Therefore all the weights of a representation which are conjugate under the
Weyl group have the same multiplicity. This fact can be used to make the
Freudenthal’s formula more e�cient in the calculation of the multiplicities.

Example 3.5 Using the results of example 2.14 we have that the Cartan ma-
trix of so(5) ond its inverse are

K =

 
2 �1
�2 2

!

K�1 =
1

2

 
2 1
2 2

!

(3.46)

Then, using (3.19), we get that the fundamental weights of so(5) are

�1 =
1

2
(2↵1 + ↵2) �2 = ↵1 + ↵2 (3.47)
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formula , which is much easier to use. According to it the multiplicity m (µ)
of a weight µ in an irreducible representation of highest weight � is given
recursively as (see sections 22.3 and 24.2 of [HUM 72])

⇣
(�+ �)2 � (µ+ �)2

⌘
m (µ) = 2

X

↵>0

p(↵)X

n=1

↵ · (µ+ n↵)m (µ+ n↵) (3.42)

where
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1

2

X

↵>0

↵ (3.43)

The first summation on the l.h.s. is over the positive roots and the second one
over all positive integers n such that µ+ n↵ is a weight of the representation,
and we have denoted by p (↵) the highest value of n. By starting withm (�) = 1
one can use (3.43) to calculate the multiplicities of the weights from the higher
ones to the lower ones.

If the states | µi1 and | µi2 have the same weight, i.e., µ is degenerated,
then the weight �↵ (µ) is also degenerate and has the same multiplicity as µ.
Using (3.32) we obtain that the states

| �↵ (µ)i1 = S↵ | µi1 and | �↵ (µ)i2 = S↵ | µi2 (3.44)

have weight �↵ (µ) and their linear independence follows from the linear inde-
pendence of | µi1 and | µi2. Indeed,

0 = x1 | �↵ (µ)i1 + x2 | �↵ (µ)i2 = S↵ (x1 | µi1 + x2 | µi2) (3.45)

So, if | µi1 and | µi2 are linearly independent one gets that one must have
x1 = x2 = 0 and so, | �↵ (µ)i1 and | �↵ (µ)i2 are also linearly independent.

Therefore all the weights of a representation which are conjugate under the
Weyl group have the same multiplicity. This fact can be used to make the
Freudenthal’s formula more e�cient in the calculation of the multiplicities.

Example 3.5 Using the results of example 2.14 we have that the Cartan ma-
trix of so(5) ond its inverse are

K =

 
2 �1
�2 2

!

K�1 =
1

2

 
2 1
2 2

!

(3.46)

Then, using (3.19), we get that the fundamental weights of so(5) are

�1 =
1

2
(2↵1 + ↵2) �2 = ↵1 + ↵2 (3.47)
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Again these weights are not degenerate and the representation has dimension
5. This is the vector representation of so(5).

Example 3.6 Consider the irrep. of su(3) with highest weight � = ↵3 =
↵1 + ↵2 , i.e., the highest positive root. Using (3.41) and performing Weyl
reflections one can check that the weights of such rep. are all roots plus the
zero weight. Since the roots are conjugated to ↵3 = � under the Weyl group we
conclude that they are non degenerated weights. The multiplicity of the zero
weight can be calculated from the Freundenthal’s formula. From (3.43) we have
that, in this case, � = ↵3 and so from (3.42) we get
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2
1 +m (↵2)↵

2
2 +m (↵3)↵

2
3

⌘
(3.51)

Since m (↵1) = m (↵2) = m (↵3) = 1 and ↵2
1 = ↵2

2 = ↵2
3 we obtain that

m (0) = 2. So there are two states with zero weight and consequently the
representation has dimension 8. This is the adjoint of su(3).

3.5 The weight �

A vector which plays an important role in the representation theory of Lie
algebras is the vector � defined in (3.43). It is half of the sum of all positive
roots. In same cases � is a root, but in general that is not so. However � is
always a dominant weight of the algebra. In other to show that we need some
results which we now prove.

Let ↵a be a simple root and let � be a positive root non proportional to
↵a. If we write � =

P
r

b=1 nb↵b we have that nb 6= 0 for some b 6= a. Now,
the coe�cient of ↵b in �↵a (�) is still nb, and consequently �↵a (�) has at least
one positive coe�cient. So, �↵a (�) is a positive root, and it is di↵erent from
↵a, since ↵a is the image of �↵a under �↵a . Therefore we have proved the
following lemma.

Lemma 3.1 If ↵a is a simple root, then �↵a permutes the positive roots other
than ↵a.

From this lemma it follows that

�↵a (�) = � � ↵a (3.52)

and consequently

2� · ↵a

↵2
a

= 1 for any simple root ↵a (3.53)
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formula , which is much easier to use. According to it the multiplicity m (µ)
of a weight µ in an irreducible representation of highest weight � is given
recursively as (see sections 22.3 and 24.2 of [HUM 72])

⇣
(�+ �)2 � (µ+ �)2

⌘
m (µ) = 2

X

↵>0

p(↵)X

n=1

↵ · (µ+ n↵)m (µ+ n↵) (3.42)

where

� ⌘
1

2

X

↵>0

↵ (3.43)

The first summation on the l.h.s. is over the positive roots and the second one
over all positive integers n such that µ+ n↵ is a weight of the representation,
and we have denoted by p (↵) the highest value of n. By starting withm (�) = 1
one can use (3.43) to calculate the multiplicities of the weights from the higher
ones to the lower ones.

If the states | µi1 and | µi2 have the same weight, i.e., µ is degenerated,
then the weight �↵ (µ) is also degenerate and has the same multiplicity as µ.
Using (3.32) we obtain that the states

| �↵ (µ)i1 = S↵ | µi1 and | �↵ (µ)i2 = S↵ | µi2 (3.44)

have weight �↵ (µ) and their linear independence follows from the linear inde-
pendence of | µi1 and | µi2. Indeed,

0 = x1 | �↵ (µ)i1 + x2 | �↵ (µ)i2 = S↵ (x1 | µi1 + x2 | µi2) (3.45)

So, if | µi1 and | µi2 are linearly independent one gets that one must have
x1 = x2 = 0 and so, | �↵ (µ)i1 and | �↵ (µ)i2 are also linearly independent.

Therefore all the weights of a representation which are conjugate under the
Weyl group have the same multiplicity. This fact can be used to make the
Freudenthal’s formula more e�cient in the calculation of the multiplicities.

Example 3.5 Using the results of example 2.14 we have that the Cartan ma-
trix of so(5) ond its inverse are

K =

 
2 �1
�2 2

!

K�1 =
1

2

 
2 1
2 2

!

(3.46)

Then, using (3.19), we get that the fundamental weights of so(5) are

�1 =
1

2
(2↵1 + ↵2) �2 = ↵1 + ↵2 (3.47)
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From the definition (3.43) it follows that � is a vector on the root (or weight)
space and therefore can be written in terms of the simple roots or the funda-
mental weights. Writing

� =
rX

b=1

xb�b (3.54)

we get from (3.4) and (3.53) that

2� · ↵a

↵2
a

= 1 =
rX

b=1

xb

2�b · ↵a

↵2
a

= xa (3.55)

So we have shown that

� =
rX

b=1

�b (3.56)

and consequently � is a dominant weight.
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3.6 Casimir operators

Let �s1s2...sn be a tensor invariant under the adjoint representation of a Lie
group G. By that we mean

�s1s2...sn = ds1
s
0
1
(g) ds2

s
0
2
(g) . . . dsn

s0n
(g) �s

0
1s

0
2...s

0
n (3.57)

for any g 2 G, and where d
sj

s
0
j
(g) is the matrix representing g in the adjoint

representation, i.e. gTsg�1 = Ts0ds
0
s
(g) (see (2.31)).

Consider now a representation D of G and construct the operator

C(D)
n

⌘ �s1s2...sn D (Ts1)D (Ts2) . . . D (Tsn) (3.58)

Notice that such operator can only be defined on a given representation since
it involves the product of operators and not Lie brackets of the generators.

We then have

D (g)C(D)
n

= �s1s2...sn D
⇣
gTs1g

�1
⌘
D

⇣
gTs2g

�1
⌘
. . . D

⇣
gTsng

�1
⌘
D (g)

= ds
0
1
s1
(g) . . . ds

0
n
sn
(g) �s1...snD

⇣
Ts

0
1

⌘
. . . D

⇣
Ts0n

⌘
D (g)

= �s
0
1...s

0
nD

⇣
Ts

0
1

⌘
. . . D

⇣
Ts0n

⌘
D (g)

= C(D)
n

D (g) (3.59)

So, we have shown that C(D)
n

commutes with any matrix of the representation

h
C(D)

n
, D (g)

i
= 0 (3.60)

We are interested in operators that can not be reduced to lower orders.
That implies that the tensor �s1s2...sn has to be totally symmetric. Indeed,
suppose that �s1s2...sn has an antisymmetric part in the indices sj and sj+1.
Then we write

D
⇣
Tsj

⌘
D

⇣
Tsj+1

⌘
=

1

2
{D

⇣
Tsj

⌘
, D

⇣
Tsj+1

⌘
}+

1

2

h
D

⇣
Tsj

⌘
, D

⇣
Tsj+1

⌘ i

=
1

2
{D

⇣
Tsj

⌘
, D

⇣
Tsj+1

⌘
}+ f t

sjsj+1
D (Tt) (3.61)

and so, C(D)
n

will have terms involving the product of (n�1) operators. There-
fore, by totally symmetrizing the tensor �s1s2...sn we get operators C(D)

n
which

are monomials of order n in D (Ts)’s. Such operators are called Casimir opera-
tors, and n is called their order. They play an important role in representation
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Ar SU(r + 1) 2, 3, 4, . . . r + 1
Br SO(2r + 1) 2, 4, 6, . . . 2r
Cr Sp(r) 2, 4, 6 . . . 2r
Dr SO(2r) 2, 4, 6 . . . 2r � 2, r
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
G2 2, 6

Table 3.1: The orders of the Casimir operators for the simple Lie Groups

theory. From Schur’s lemma 1.1 it follows that in an irreducible representation
the Casimir operators have to be proportional to the identity.

One way of constructing tensors which are invariant under the adjoint
representation, is by considering traces of products of generators in a given
representation D0, since

Tr (D0 (Ts1Ts2 . . . Tsn)) = Tr
⇣
D0

⇣
gTs1g

�1gTs2g
�1 . . . gTsng

�1
⌘⌘

(3.62)

Then taking

�s1s2...sn ⌘
1

n!

X

permutations

Tr (D0 (Ts1Ts2 . . . Tsn)) (3.63)

we get Casimir operators. However, one finds that after the symetrization pro-
cedure very few tensors of the form above survive. It follows that a semisimple
Lie algebra of rank r possesses r invariant Casimir operators functionally in-
dependent. Their orders, for the simple Lie algebras, are given in table 3.1.

3.6.1 The Quadratic Casimir operator

Notice from table 3.1 that all simple Lie groups have a quadratic Casimir
operator. That is because all such groups have an invariant symmetric tensor
of order two which is the Killing form (see section 2.4)

⌘st = Tr (d (Ts) d (Tt)) (3.64)

and
C(D)

2 ⌘ ⌘stD (Ts)D (Tt) (3.65)
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where ⌘st is the inverse of ⌘st.
Using the normalization (2.134) of the Killing form, we have that the

Casimir operator in the Cartan-Weyl basis is given by

C(D)
2 =

rX

i=1

D (Hi)D (Hi)+
X

↵>0

↵2

2
(D (E↵)D (E�↵) +D (E�↵)D (E↵)) (3.66)

Since the Casimir operator commutes with all generators, we have from the
Schur’s lemma 1.1 that in an irreducible representation it must be propor-
tional to the unit matrix. Denoting by � the highest weight of the irreducible
representation D we have

C(D)
2 | �i =

 
rX

i=1

�2
i
+
X

↵>0

↵2

2
[D (E↵) , D (E�↵) ]

!

| �i

=

 

�2 +
X

↵>0

↵2

2
H2

↵

!

| �i

=

 

�2 +
X

↵>0

↵ · �

!

| �i (3.67)

where we have used (3.28) and (2.125). So, if D, with highest weight �, is
irreducible, we can write using (3.43) that

C(D)
2 = � · (�+ 2�) 1l =

⇣
(�+ �)2 � �2

⌘
1l (3.68)

where 1l is the unit matrix in the representation D under consideration.

Example 3.7 In the case of SU(2) the quadratic operator is J2 , i.e., the
square of the angular momentum. Indeed, from example 3.1 we have that
↵ = 1, and then � = 1/2 and therefore C(D)

2 = � (�+ 1). Since � is a positive
integer or half integer we see that these are really the eigenvalues of J2.

3.7 Characters

In definition 1.13 we defined the character of an element g of a group G in a
given finite dimensional representation of G, with highest weight �, as being
the trace of the matrix that represents that element, i.e.

�� (g) ⌘ Tr (D (g)) (3.69)

Obviously equivalent representations (see section 1.5) have the same charac-
ters. Analogously, two conjugate elements, g1 = g3g2g

�1
3 , have the same char-

acter in all representations. Therefore the conjugacy classes can be labelled
by the characters.








