Avaliação de Sistemas de Medição

TERMINOLOGIA

CALIBRAÇÃO (antiga aferição)

Procedimento metrológico em que se determina a relação entre uma grandeza qualquer com um padrão apropriado, de mesma natureza. Tem caráter passivo, ou seja, apenas verifica e determina erros, mas não os corrige.

AJUSTE (antiga calibração)

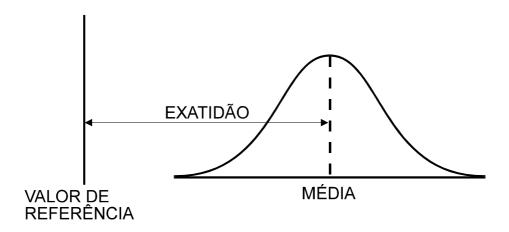
Procedimento metrológico que consiste em ajustar uma determinada grandeza a um padrão apropriado, de mesma natureza. Difere em relação à calibração, já que agora são feitas correções/ajustes.

ERRO

Diferença entre o valor medido e o valor de referência (VR).

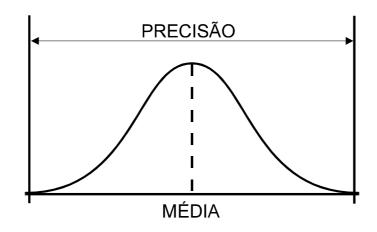
ERRO ALEATÓRIO

Erro caracterizado por uma dispersão de natureza aleatória.

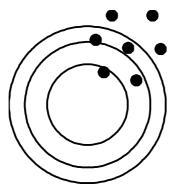

ERRO SISTEMÁTICO

Erro caracterizado pela diferença entre um valor supostamente exato e um valor de referência.

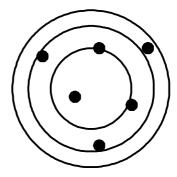
© Alberto W. Ramos 2020


EXATIDÃO

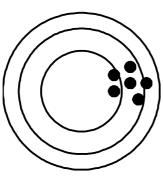
Diferença entre o valor de referência e o valor médio, ou média, de uma sequência de medições.

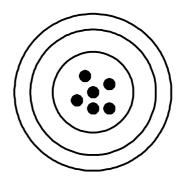

PRECISÃO

Medida da variabilidade de um sistema de medição de qualquer grandeza.



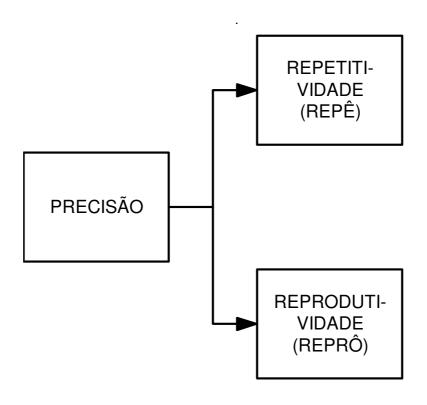
© Alberto W. Ramos 2020


EXATIDÃO x PRECISÃO


IMPRECISO E INEXATO

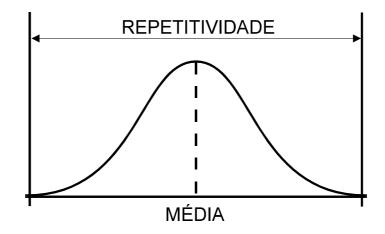
EXATO MAS IMPRECISO

PRECISO MAS INEXATO

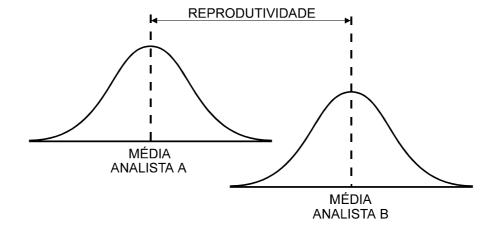

EXATO E PRECISO

PERGUNTAS

- A) O que é melhor: um instrumento exato e impreciso ou, um instrumento inexato e preciso?
- B) O que é (normalmente) alterado num ajuste: a exatidão ou a precisão?


DECOMPOSIÇÃO DA PRECISÃO

A precisão de um sistema de medição pode ser decomposta em duas partes: repetitividade e reprodutividade.


REPETITIVIDADE

Variação entre várias medições obtidas quando um mesmo operador mede a mesma dimensão várias vezes, com o mesmo instrumento e método.

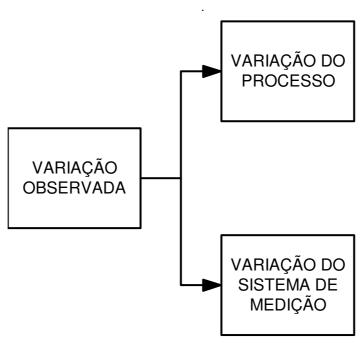
REPRODUTIVIDADE

Variação entre médias das medições quando mais de um operador mede a mesma dimensão, usando o mesmo instrumento e método ou, então, quando um mesmo operador mede a mesma dimensão usando o mesmo método, mas mais de um instrumento.

© Alberto W. Ramos 2020

AVALIAÇÃO DE SISTEMAS DE MEDIÇÃO

A medição é um processo e, portanto, também está sujeita a variações.


Um sistema de medição (composto por instrumento, analista e método) deve ser adequado, possuindo baixa variabilidade para ser útil.

CAUSAS DE VARIAÇÃO EM SISTEMAS DE MEDIÇÃO

O erro total de medição tem os seguintes componentes:

- variação do analista
- variação entre analistas
- variação do material
- variação do instrumento de medição
- variação entre instrumentos de medição
- variação do procedimento de medição
- variação entre laboratórios
- etc.

A consequência é que a variação observada numa medição é função da variação do processo e, também, da variação do sistema de medição.

© Alberto W. Ramos 2020

EXEMPLOS

 $\sigma^2_{OBS} = variância observada$

 σ^2_{PR} = variância do processo

 σ^2_{SM} = variância do sistema de medição

$$\sigma^2_{OBS} = \sigma^2_{PR} + \sigma^2_{SM}$$

CASO 1: a variação do sistema de medição é baixa se comparada à variação do processo

$$\sigma^{2}_{OBS} = 121$$
 $\sigma^{2}_{SM} = 4$
 $\Rightarrow \sigma^{2}_{PR} = 117 \Rightarrow \sigma_{PR} = 10.8$

CASO 2: a variação do sistema de medição é alta se comparada à variação do processo (situação indesejada)

$$\sigma^{2}_{OBS} = 529$$
 => $\sigma^{2}_{PR} = 304 => \sigma_{PR} = 17,4$ = $\sigma^{2}_{SM} = 225$

AVALIAÇÃO DA PRECISÃO (r & R)

- Coletar uma amostra aleatória de k peças;
- Identificar cada peça com um número ou código não facilmente memorizável;
- Medir cada peça uma primeira vez, em ordem aleatória;
- Medir cada peça uma segunda vez, também em ordem aleatória;
- Continuar a medir as peças, uma por vez, até completar o número de leituras (r) do avaliador;
- Repetir o procedimento para cada avaliador no estudo;
- Construir um gráfico R para as amplitudes das medições de cada avaliador e avaliar a estabilidade estatística;
- Calcular o desvio-padrão da Repê, através da fórmula:

$$\hat{\sigma}_{REPE} = \frac{\overline{R}}{d_2^*}$$

• Determinar a repê, através da fórmula:

$$REPE = 6.\hat{\sigma}_{REPE} *$$

- Calcular a média geral (x-duas barras) de cada avaliador e/ou de cada instrumento;
- Calcular a amplitude (R₀) das médias gerais, definida como:

$$R_0 = \overline{x}_{MAX} - \overline{x}_{MIN}$$

• Determinar o desvio-padrão da Reprô, através da fórmula:

Nota: alguns autores adotam 5,15. GREPE

$$\hat{\sigma}_{REPRO} = \frac{R_0}{d_2^{**}}$$

• Calcular a Reprô através de:

REPRO =
$$\sqrt{(6.\hat{\sigma}_{REPRO})^2 - \frac{(6.\hat{\sigma}_{REPE})^2}{k.r}}$$

onde:

k = número de itens em avaliação;r = número de leituras feitas em cada peça.

• Calcular o desvio-padrão total, através de:

$$\hat{\sigma}_{\text{R\&R}} = \sqrt{\hat{\sigma}_{\text{REPE}}^2 + \hat{\sigma}_{\text{REPRO}}^2}$$

• Calcular PTC_{R&R}, definida como:

$$PTC_{R\&R} = \frac{6.\hat{\sigma}_{R\&R}}{LSE-LIE}x100\%$$

• Determinar a condição do sistema de medição:

VALOR DE PTC	CONDIÇÃO
< 10%	ACEITÁVEL
> 10% e < 30%	MARGINAL
> 30%	INACEITÁVEL

Nota: alternativamente, a avaliação da reprô pode ser feito mediante a análise de variância, comparando-se se as médias dos instrumentos e/ou avaliadores são iguais ou não.

AVALIAÇÃO DA EXATIDÃO

- Selecionar dimensões da peça e identificá-las com número ou código;
- Obter um valor de referência (VR) adequado e utilizá-lo como padrão;
- Medir cada dimensão uma primeira vez, em ordem aleatória;
- Medir cada dimensão novamente, também em ordem aleatória;
- Prosseguir desta forma, até obter todas as r medições de cada dimensão;
- Calcular a média (x-barra) e o desvio-padrão (s) obtidos para cada dimensão;
- Determinar t_{CALC}, através da fórmula:

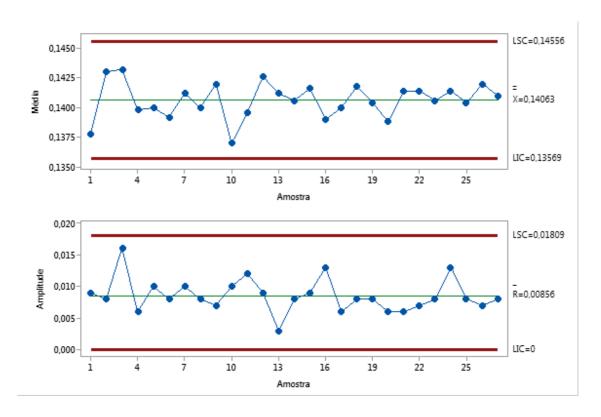
$$t_{CALC} = \frac{|\overline{x} - VR|}{\frac{s}{\sqrt{r}}}$$

- Obter t_{CRITICO}, na tabela do anexo, em função do número de repetições (r);
- Se t_{CALC} > t_{CRITICO}, então o sistema de medição é inexato e deve ser ajustado;
- Se o sistema for exato, determinar a exatidão através da fórmula:

$$EXATID\tilde{A}O = \frac{VR - \overline{X}}{TOL} x100\%$$

TERMINOLOGIA II

RESOLUÇÃO

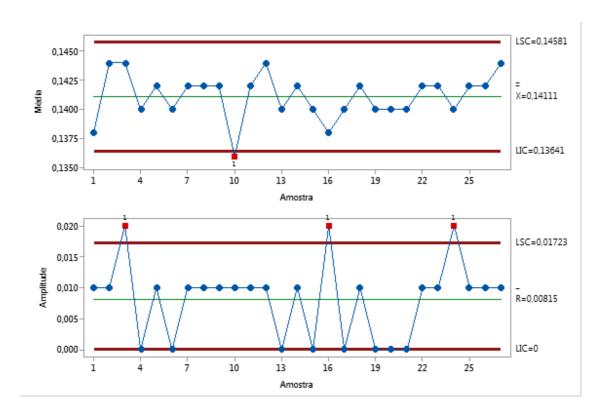

Menor variação da grandeza medida que causa uma variação perceptível na indicação correspondente.

SISTEMAS DE MEDIÇÃO COM RESOLUÇÃO INADEQUADA

Foram retiradas 27 amostras de um processo, a intervalos regulares, cada uma de tamanho n = 5.

Amostra	х1	x2	хЗ	х4	х5	x-barra	R
1	0,140	0,143	0,137	0,134	0,135	0,1378	0,009
2	0,138	0,143	0,143	0,145	0,146	0,1430	0,008
3	0,139	0,133	0,147	0,148	0,149	0,1432	0,016
4	0,143	0,141	0,137	0,138	0,140	0,1398	0,006
5	0,142	0,142	0,145	0,135	0,136	0,1400	0,010
6	0,136	0,144	0,143	0,136	0,137	0,1392	0,008
7	0,142	0,147	0,137	0,142	0,138	0,1412	0,010
8	0,143	0,137	0,145	0,137	0,138	0,1400	0,008
9	0,141	0,142	0,147	0,140	0,140	0,1420	0,007
10	0,142	0,137	0,134	0,140	0,132	0,1370	0,010
11	0,137	0,147	0,142	0,137	0,135	0,1396	0,012
12	0,137	0,146	0,142	0,142	0,146	0,1426	0,009
13	0,142	0,142	0,139	0,141	0,142	0,1412	0,003
14	0,137	0,145	0,144	0,137	0,140	0,1406	0,008
15	0,144	0,142	0,143	0,135	0,144	0,1416	0,009
16	0,133	0,132	0,144	0,145	0,141	0,1390	0,013
17	0,137	0,137	0,142	0,143	0,141	0,1400	0,006
18	0,137	0,142	0,142	0,145	0,143	0,1418	0,008
19	0,142	0,142	0,143	0,140	0,135	0,1404	0,008
20	0,136	0,142	0,140	0,139	0,137	0,1388	0,006
21	0,142	0,144	0,140	0,138	0,143	0,1414	0,006
22	0,139	0,146	0,143	0,140	0,139	0,1414	0,007
23	0,140	0,145	0,142	0,139	0,137	0,1406	0,008
24	0,134	0,147	0,143	0,141	0,142	0,1414	0,013
25	0,138	0,145	0,141	0,137	0,141	0,1404	0,008
26	0,140	0,145	0,143	0,144	0,138	0,1420	0,007
27	0,145	0,145	0,137	0,138	0,140	0,1410	0,008

Para este conjunto de dados, pode-se construir gráficos de controle x-barra e R

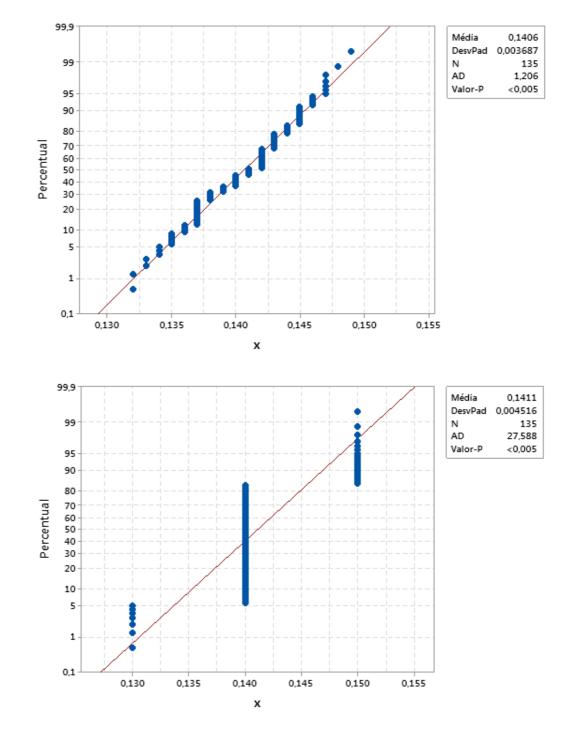


O gráfico de controle mostra um processo estável ou previsível (sem causas especiais).

Entretanto, se os dados originais forem arredondados para apenas duas casas após a vírgula:

Amostra	x1	x2	хЗ	х4	х5	x-barra	R
1	0,14	0,14	0,14	0,13	0,14	0,138	0,01
2	0,14	0,14	0,14	0,15	0,15	0,144	0,01
3	0,14	0,13	0,15	0,15	0,15	0,144	0,02
4	0,14	0,14	0,14	0,14	0,14	0,140	0,00
5	0,14	0,14	0,15	0,14	0,14	0,142	0,01
6	0,14	0,14	0,14	0,14	0,14	0,140	0,00
7	0,14	0,15	0,14	0,14	0,14	0,142	0,01
8	0,14	0,14	0,15	0,14	0,14	0,142	0,01
9	0,14	0,14	0,15	0,14	0,14	0,142	0,01
10	0,14	0,14	0,13	0,14	0,13	0,136	0,01
11	0,14	0,15	0,14	0,14	0,14	0,142	0,01
12	0,14	0,15	0,14	0,14	0,15	0,144	0,01
13	0,14	0,14	0,14	0,14	0,14	0,140	0,00
14	0,14	0,15	0,14	0,14	0,14	0,142	0,01
15	0,14	0,14	0,14	0,14	0,14	0,140	0,00
16	0,13	0,13	0,14	0,15	0,14	0,138	0,02
17	0,14	0,14	0,14	0,14	0,14	0,140	0,00
18	0,14	0,14	0,14	0,15	0,14	0,142	0,01
19	0,14	0,14	0,14	0,14	0,14	0,140	0,00
20	0,14	0,14	0,14	0,14	0,14	0,140	0,00
21	0,14	0,14	0,14	0,14	0,14	0,140	0,00
22	0,14	0,15	0,14	0,14	0,14	0,142	0,01
23	0,14	0,15	0,14	0,14	0,14	0,142	0,01
24	0,13	0,15	0,14	0,14	0,14	0,140	0,02
25	0,14	0,15	0,14	0,14	0,14	0,142	0,01
26	0,14	0,15	0,14	0,14	0,14	0,142	0,01
27	0,15	0,15	0,14	0,14	0,14	0,144	0,01

E novos gráficos x-barra e R forem construídos:



Tem-se a indicação de várias causas especiais atuando no processo. Por que ocorre isto?

Quando o desvio-padrão de um processo é menor que ou próximo da resolução do instrumento de medição, os valores começam a ser arredondados para um mesmo valor.

Em um gráfico de controle para a amplitude (R), isto pode ser detectado quando há vários valores iguais a zero.

A avaliação da distribuição de probabilidade também é afetada por este fenômeno, conforme mostram as figuras abaixo:

© Alberto W. Ramos 2020

Anexos

FATORES PARA CÁLCULO DE LIMITES DE CONTROLE

n	A 2	Аз	E ₂	Вз	B ₄
2	1,880	2,695	2,660	-	3,267
3	1,023	1,954	1,772	-	2,568
4	0,729	1,628	1,457	-	2,266
5	0,577	1,427	1,290	-	2,089
6	0,483	1,287	1,184	0,030	1,970
7	0,419	1,182	1,109	0,118	1,882
8	0,373	1,099	1,054	0,185	1,815
9	0,337	1,032	1,010	0,239	1,761
10	0,308	0,975	0,975	0,284	1,716

n	Dз	D ₄	D	C 4	d ₂
2	-	3,267	0,709	0,798	1,128
3	-	2,574	0,524	0,886	1,693
4	-	2,282	0,446	0,921	2,059
5	-	2,114	0,403	0,940	2,326
6	-	2,004	0,375	0,952	2,534
7	0,076	1,924	0,353	0,959	2,704
8	0,136	1,864	0,338	0,965	2,847
9	0,184	1,816	0,325	0,969	2,970
10	0,223	1,777	0,314	0,973	3,078

FONTE: MONTGOMERY, D.C. Introduction to statistical quality control. 2 ed. New York, John Wiley, 1991.

FATOR t-CRÍTICO

 $(\alpha = 5\%)$

n	t-CRÍTICO
2	6,314
3	2,920
4	2,353
5	2,132
6	2,015
7	1,943
8	1,895
9	1,860
10	1,833
11	1,812
12	1,796
13	1,782
14	1,771
15	1,761

FONTE: Costa Neto, P.L.O. Estatística. São Paulo, Edgard Blucher, 1978.

FATOR d₂*

					r				
g	2	3	4	5	6	7	8	9	10
1	1,41	1,91	2,24	2,48	2,67	2,83	2,96	3,08	3,18
2	1,28	1,81	2,15	2,40	2,60	2,77	2,91	3,02	3,13
3	1,23	1,77	2,12	2,38	2,58	2,75	2,89	3,01	3,11
4	1,21	1,75	2,11	2,37	2,57	2,74	2,88	3,00	3,10
5	1,19	1,74	2,10	2,36	2,56	2,73	2,87	2,99	3,10
6	1,18	1,73	2,09	2,35	2,56	2,73	2,87	2,99	3,10
7	1,17	1,73	2,09	2,35	2,55	2,72	2,87	2,99	3,10
8	1,17	1,72	2,08	2,35	2,55	2,72	2,87	2,98	3,09
9	1,16	1,72	2,08	2,34	2,55	2,72	2,86	2,98	3,09
10	1,16	1,72	2,08	2,34	2,55	2,72	2,86	2,98	3,09
11	1,16	1,71	2,08	2,34	2,55	2,72	2,86	2,98	3,09
12	1,15	1,71	2,07	2,34	2,55	2,72	2,85	2,98	3,09
13	1,15	1,71	2,07	2,34	2,55	2,71	2,85	2,98	3,09
14	1,15	1,71	2,07	2,34	2,54	2,71	2,85	2,98	3,08
15	1,15	1,71	2,07	2,34	2,54	2,71	2,85	2,98	3,08
>15	1,128	1,693	2,059	2,326	2,534	2,704	2,847	2,970	3,078

onde:

r = número de leituras (repetições) feitas na mesma peça
 g = número de avaliadores x número de instrumentos x número de peças

FONTE: AUTOMOTIVE INDUSTRY ACTION GROUP. *Measurement systems analysis.* 2 ed. Southfield, AIAG, 1995.

FATOR d₂**

m	d
2	1,41
3	1,91
4	2,24
5	2,48
6	2,67
7	2,83
8	2,96
9	3,08
10	3,18

onde:

m = número de avaliadores ou de instrumentos em estudo

FONTE: AUTOMOTIVE INDUSTRY ACTION GROUP. *Measurement systems analysis.* 2 ed. Southfield, AIAG, 1995.

BIBLIOGRAFIA

- AMERICAN SOCIETY FOR QUALITY CONTROL. *Statistical process control*. Milwaukee, ASQC, 1986.
- AUTOMOTIVE INDUSTRY ACTION GROUP. *Measurement systems analysis*. 2 ed. Southfield, AIAG, 1995.
- HRAEDESKY, J. L. *Aperfeiçoamento da qualidade e produtividade*. São Paulo, McGraw-Hill, 1989.
- KHALESSI, S. *Measurement system evaluation*. Signetics, 1988.
- LEITNAKER, M.G.; SANDERS, R.D.; HILD,C. *The power of statistical thinking*. Reading, Addison-Wesley, 1995.
- MONTGOMERY, D.C. *Introduction to statistical quality control*. 3 ed. New York, John Wiley, 1996.
- SERVIÇO NACIONAL DE APRENDIZADO INDUSTRIAL. *CEP: controle estatístico de processo*. São Paulo, SENAI, 1987.
- WHEELER, D.J.; LYDAY, R.W. *Evaluating the measurement process*. Knoxville, SPC Press, 1989.