The multi-faceted role of ATP in control of melatonin synthesis – new insights for onset and progression of diseases.

Zulma S. Ferreira Laboratory of Cronofarmacology – Instituto de Biociências Universidade de São Paulo – Brazil

Melatonin: the chemical signal of darkness

Jockers et al., British Journal of Pharmacology, 2017

Fine-tuning melatonin production is essential for regulating defense response

Lotufo et al., Sci Rep, 2001

Fine-tuning melatonin production is essential for regulating defense response

Infection TNF LPS Zymosan Pam3CSK4 heparan sulfate Malaria Leishimaniasis

Models of disease

Alzheimer's (Aβ)

Inflammation in Humans

Caesarean Mastitis Hysterectomy

Environmental danger signals

Air pollution (São Paulo city)

Inflammatory mediators regulating pineal melatonin synthesis

• LPS – in vitro

- LPS *in vivo*, icv
- Amyloid β peptide

Da Silveira Cruz-Machado et al., J Pineal Res, 2010

TNF – controlling the nocturnal melatonin surge in humans

Mastitis \rightarrow suppresses nocturnal MEL surge

Colostrum (milk of the first days after delivery; contains cells) \rightarrow day 3

Maternity Unit at the Obstetric Clinics – USP, Br.

The criteria for recently delivered mothers were: age (18–40), gestational age (37 weeks or more). All the mothers had given birth to healthy term babies.

Restoration of daily rhythm of melatonin

obtained after a great reduction in the levels of TNF- α .

Pontes et al., 2006

Contribution of the purinergic system in the modulation of the pineal output

\checkmark ATP acts as a cotransmitter in the pineal gland

Mortani-Barbosa, Ferreira & Markus. Eur. J. Pharmacol. 401:59, 2000

✓ Ectonucleotidases are expressed in the pineal

Ornelas et al., in preparation

✓ ATP triggers P2Y1 and P2X7 receptors

Ferreira & Markus. Eur. J. Pharmacol. 415:151, 2001. Souza-Teodoro et al., J. Pineal Res 2016

✓ Purinergic stimulus is translated by increasing activity of PLC and $[Ca^{2+}]_i$

Ferreira et al., Pharmacology 69:33-37, 2003

Cecon et al., unpublished

Functional role of purinergic signaling in the pineal physiology and the immune-pineal axis Dargenio-Garcia et al., submited

The sympathetic co-transmission in the rat pineal gland

Mortani-Barbosa et al., 2000

Expression and daily variation of nucleotide and nucleoside hydrolysis

✓ The ectonucleotidase activity showed a significantly increase in ATP and AMP hydrolysis in the dark phase (* p<0.05).</p>

Therefore, the purinergic system presents a daily adaptation for regulating physiological pineal gland activity

NTPDase1 expression in rat pineal gland

NTPDase3 expression in rat pineal gland

5'nucleotidase expression in rat pineal gland

Pharmacological profile – P2Y1 and P2X7 receptor

Ferreira et al., 2003

Purinergic receptors in the pineal gland

P2Y1 mRNA

Immunohystochemistry

Purinergic signaling in the pineal gland

 \checkmark ATP-stimulus is translated by increasing the activity of PLC, and $[Ca^{2+}]_i$,

Functional role of purinergic signalling in the pineal

Control of AA-NAT by ATP

Inhibition of NF-kB

Aa-nat mRNA

Souza-Teodoro et al., J. Pineal Res., 2016

Souza-Teodoro et al., J. Pineal Res., 2016

Dual ATP/ADP effect opposite directions on pineal melatonergic system

Therefore: an independent functional role of melatonin and its precursor

Souza-Teodoro et al., J. Pineal Res. 2016

Dual effect of ATP in vivo

Therefore: an independent functional role of melatonin and its precursor

Souza et al., on going

N-acetylserotonin: unexpected roles in neuronal cell biology

neuroprotective actions by activating TrkB/CREB/BDNF pathway

 induces the increase in AA-NAT/P-AANAT protein content via the NFκB pathway

through P2X7 receptor stimulation

Dargenio-Garcia et al., submitted

induces melatonin synthesis

Dargenio-Garcia et al., submitted

 potentiates the macrophage phagocytic ability through melatonin receptors

Dargenio-Garcia et al., submitted

L'heure, c'est l'heure ; avant l'heure, c'est pas l'heure ; apres l'heure, c'est plus l'heure

Jules Jouy

"Time is the hour; before the hour, it's not time; after the hour, it's more time"

Researches Regina Pekelmann Markus Zulma Silva Ferreira Pedro A. C. M. Fernandes

Post-Doctoral Sanseray S. Cruz-Machado

PhD students Isabela Lopes Trevisan Caroline L. Quiles Kassiano dos Santos Sousa

Master students Luis Henrique Souza-Teodoro Letícia Dargenio-Garcia Priscilla Rachel Bastos Camila Lopes Petrilli Flavia Illa Ornelas Everton da Silva de Souza Edson Paz

Undergraduate students Gabriela de Souza Danilo Pereira Mori Victória Andrade

Laboratório de Cronofarmacologia - IB-USP

Collaborators

UNESP – Campus Marília Luciana Pinato

UFSM

Maria Rosa C. Schetinger

Université Laval du Quebec Jean Sévigny

ICB - USP Patricia Castellucci

 \checkmark ATP acts as a cotransmitter in the pineal gland;

Mortani-Barbosat al., Eur. J. Pharmacol. 401:59, 2000

✓ Ectonucleotidases enzymes present daily variation;

Ornelas et al., in preparation

 ✓ ATP triggers P2Y1 and P2X7 receptors potentiating N-acetylserotonin and inhibiting melatonin synthesis;

Ferreira & Markus. Eur. J. Pharmacol. 415:151, 2001

Souza-Teodoro et al., J. Pineal Res., 2016

[Ca²⁺]_i mediate a PLC-induced enhance in N-acetylserotonin synthesis, while melatonin reduction is related to an ASMT inhibition in the pineal;
Ferreira et al., Pharmacology 69:33-37, 2003

Souza-Teodoro et al., J. Pineal Res., 2016

✓ In RAW 264.7 cells ATP increases melatonin production through P2X7 receptors, NF_KB pathway, AA-NAT/P-AANAT, which further potentiates phagocytosis.
Dargenio-Garcia et al., submitted

Putative control of Aa-nat by ATP

Inhibition of NF-kB

Aa-nat mRNA

Souza-Teodoro et al., J. Pineal Res., 2016

✓ The ectonucleotidase activity showed a significantly increase in ATP and AMP hydrolysis in the dark phase (* p<0.05).</p>

Therefore, the purinergic system presents a daily adaptation for regulating physiological pineal gland activity

Purinergic receptor involved

Souza-Teodoro et al., J. Pineal Res, 2016

NAS may be an endogenous neuroprotectant.

NAS