
C H A P T E R  4 

Material Balances and 
Data Consistency 

Quantitative analysis of metabolism requires experimental data for the 
determination of metabolic fluxes, flux distributions, and measures of flux 
control (see Chapter 11), among other parameters. As such, these calcula- 
tions exemplify methods and procedures for upgrading the information con- 
tent of primary fermentation data. Whereas our focus in this book is on 
metabolism and its control, the basic philosophy of information content 
upgrade is applicable throughout the life sciences, so long as quantitative 
measurements are available. 

Because these methods of information upgrade are data-driven, it is of the 
utmost importance to ensure the reliability of the data used. This can be 
done by applying the usual methods of random error minimization, i.e. use 
of repeat experiments, multiple sensors, careful calibrations, etc. An addi- 
tional consideration (which is the subject of this chapter) is the introduction 
of data redundancy for the validation of both the actual measurements, and 
the broader mechanistic framework within which such measurements are 
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analyzed. For example, in the context of metabolic analysis, flux calculations 
are based on the measurement of the specific rates for substrate uptake and 
product formation, which represent the fluxes in and out of the cells. Before 
any such derivative calculations are carried out, it is important that the 
consistency of the data be confirmed, for example, the closure of the carbon 
balance. 

Data redundancy is introduced when multiple sensors are employed for 
the measurement of the same variable or when certain constraints must be 
satisfied by the measurements so obtained, such as closure of material 
balances. Obviously, the greater the redundancy, the higher the degree of 
confidence for the data and their derivative parameters. Furthermore, redun- 
dancies can be employed for the systematic detection of the source of gross 
measurement errors or the identification of a particular element of the 
framework (i.e. model) most likely responsible for any observed inconsisten- 
cies. We demonstrate these ideas in this chapter in the context of fluxes, 
metabolism, and material balances. For this purpose, experimental data that 
are to be used for quantitative analysis must be 

Complete. This does not mean that all substrates and metabolic prodm 
ucts must be measured, but those present in sufficient amounts should 
be quantified to allow the validation of the carbon and nitrogen (and, in 
some cases, also sulfur and phosphorus) balances. This requirement 
necessitates the use of defined, minimal media and essentially elimio 
nates complex media from systematic metabolic studies. 
As much as possible, noise free. As discussed in Section 3.3, specific 
rates are derived from measurements of the concentration profiles, 
which make rate calculations difficult if these data are noisy. An 
important aspect of quantitative analysis of cellular metabolism there- 
fore is the development of reliable and accurate analytical techniques, 
generally computerized highmperformance bioreactors, where the most 
important culture variables are monitored on-line. 

There are two approaches in assessing the consistency of experimental data. 
The first is based on a very simple metabolic model, the so-called black box 
model, where all cellular reactions are lumped into a single one for the 
overall cell biomass growth, and the method basically consists of validating 
elemental balances. It is rather easy to apply as the only information needed 
is that of the elemental composition of the substrates, metabolic products, 
and biomass, together with a set of fluxes in and out of the cell. The second 
approach recognizes far more biochemical detail in the overall conversion of 
substrates into biomass and metabolic products. As such, it is mathematically 
more involved, but, of course, it provides a more realistic depiction of the 
actual degrees of freedom than a black box model. We develop such 
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metabolic models in connection with our discussion of metabolic flux 
analysis (in Section 8.3). Because our focus in this chapter is mostly on 
methodology development for consistency analysis, we have eliminated 
unnecessary complications due to metabolic complexity and instead use a 
black box model. 

4.1. THE BLACK BOX MODEL 

In the black box model, cell biomass is the black box exchanging material 
with the environment, as depicted in Fig. 4.1, and processing it through 
many cellular reactions lumped into one, that of biomass growth. The fluxes 
in and out of the black box are given by the specific rates (in grams or moles 
of the compound per gram or mole of biomass and unit time). These are the 
specific substrate uptake rates (elements of r s) and the specific product 
formation rates (elements of re). Additionally, there is accumulation of 
biomass within the box, which is represented as a flux with the specific rate 
/z. Because all cellular reactions are lumped into one overall reaction, the 
stoichiometric coefficients in this overall reaction are given by the yield 
coefficients introduced in Section 3.4: 

M N 
X + E Yxe, P~ - ~-~ Y:,r Si = 0 (4.1) 

i=l i=1 

where the specific rate of biomass formation is used as reference. Because the 
stoichiometric coefficient for biomass is 1, the forward reaction rate is given 
by the specific growth rate of the biomass, which, together with the yield 
coefficients of eq. (4.1), completely specifies the system. In the application of 

rp 

rs 

FIGURE 4.1 Representation of the black box model. The cell is considered as a black box, and 
fluxes in and out of the cell are the only variables measured. The fluxes of substrates into the 
cell are elements of the vector r s, and the fluxes of metabolic products out of the cell are 
elements of the vector rp. Some of the mass originally present in the substrates accumulates 
within the black box as formation of new biomass with the specific rate/z. 
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the black box model for analyzing data consistency, one may use either (1) a 
set of yield coefficients given in eq. (4.1) together with the specific growth 
rate; (2) a set of yield coefficients with respect to another reference, e.g., one 
of the substrates, along with the specific rate of formation/consumption of 
this reference compound; (3) a set of specific rates for all substrates and 
products, including biomass; or 4) a set of all volumetric rates that are the 
product of the specific rates by the biomass concentration. All of these 
variables supply the same information. In the following, we will use either 
the yield coefficients given in eq. (4.1) or the set of specific rates that we 
collect in the total rate vector r, given by 

r - -  rp = 

- - - r  s 

( 13 b rp,1 . . .  __Fs,1 . . .  )r  (4.2) 

EXAMPLE 4.1 

A Simple Black Box Model 

Consider the aerobic cultivation of the yeast Saccharomyces cerevisiae on a 
defined, minimal medium, i.e., glucose is the carbon and energy source and 
ammonia is the nitrogen source. During aerobic growth, the yeast oxidizes 
glucose completely to carbon dioxide. However, at very high glycolytic 
fluxes, a bottleneck in the oxidation of pyruvate leads to ethanol formation. 
Thus, at high glycolytic fluxes, both ethanol and carbon dioxide should be 
considered as metabolic products. Finally, water is formed in the cellular 
pathways, and this is also included as a product in the overall reaction. Thus, 
the black box model for this system is 

X + Y,,e ethanol + Y,, ,CO 2 + YxwH20-Y,,s glucose 

- Yxo 02-  YxN NH3 = 0 (1) 

which can be represented with the specific rate vector: 

r = ( / ~  r e r~ r~ - G  - ro  --rN) r (2) 

Obviously, the stoichiometric (or yield) coefficients of eq. (1) are not 
constant, as Yxe is zero at low specific growth rates (corresponding to low 
glycolytic fluxes) and greater than zero for higher specific growth rates. 
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4.2 .  E L E M E N T A L  B A L A N C E S  

In the black box model, we have M + N + 1 variables: M yield coefficients 
for the metabolic products, N yield coefficients for the substrates, and the 
forward reaction rate /z [see eq. (4.1)] or the M + N + 1 specific rates of 
eq. (4.2). Because mass is conserved in the overall conversion of substrates to 
metabolic products and biomass, the (M + N + 1) rates of the black box 
model are not completely independent but must satisfy several constraints. 
Thus, the elements flowing into the system must balance the elements 
flowing out of the system, e.g., the carbon entering the system via the 
substrates has to be recovered in the metabolic products and biomass. Each 
element considered in the black box obviously yields one constraint. Thus, a 
carbon balance gives 

M N 

1 + E hp, iYxp , -  E h,,iYx,, = 0 (4.3) 
i = 1  i = 1  

where hs, i and hp, i represent the carbon content (C-moles mole -1) in the ith 
substrate and the i th metabolic product, respectively. In this equation, the 
elemental composition of biomass is normalized with respect to carbon, i.e., 
it is represented by the form CHaObN c. The elemental composition of 
biomass depends on its macromolecular content and, therefore, on the 
growth conditions and the specific growth rate [ e.g., the nitrogen content is 
much lower under nitrogen-limited conditions than under carbon-limited 
conditions (see Table 4.1)]. However, except for extreme situations, it is 
reasonable to use the general composition formula CHI.sO0.~N0. 2 whenever 
the biomass composition is not known exactly. 

The carbon balance of eq. (4.3) may also be formulated in terms of the 
specific rates. Thus, after multiplying eq. (4.3) by /x and applying the 
definition of the yield coefficients: 

M N 

tx + ~_~ hp, irp, i - ~_~ hs, irs, i = 0 (4.4) 
i = 1  i = 1  

Often, we normalize the elemental composition of substrates and metabolic 
products with respect to their carbon content, e.g., glucose is specified as 
CH20. Equation (4.3) is then written on per C-mole basis as 

M N 

1 + E Y ~ p ~ -  E Y ~ , = 0  (4.5) 
i = l  i = l  
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TABLE 4.1 Elemental Composition of Biomass for Several Microorganisms a 

Ash 
Elemental content 

Microorganism composition ( w / w % )  Conditions 

Candida utilis 

Klebsiella aerogenes 

Saccharomyces 
cerevisiae 

Escherichia coli 

Pseudomonas 
~l~oresc~s 

Aerobacter aerogenes 
Penicillium 

chrysogenum 

CH1.8300.46No.19 7.0 
CH1.87Oo.56N0.20 7.0 
CH 1.83 00.54 N0.10 7.0 
CH1.8700.56N0.20 7.0 
CH1.7500.43 N0.22 3.6 
CH1.7300.43 N0.24 3.6 
CH1.7500.47N0.17 3.6 
CH 1.7300.43 N0.24 3.6 
CH 1.8200.58N0.16 7.3 

Glucose limited, D = 0.05 h -1 
Glucose limited, D -- 0.45 h -1 
Ammonia limited, D = 0.05 h -1 
Ammonia limited, D = 0.45 h -1 
Glycerol limited, D = 0.10 h -1 
Glycerol limited, D = 0.85 h -1 
Ammonia limited, D -- 0.10 h -1 
Ammonia limited, D = 0.08 h -1 
Glucose limited, D = 0.08 h -1 

CH1.7800.60N0.19 9.7 Glucose limited, D = 0.255 h -1 
CH 1.9400.52 No.25 P0.025 5.5 Unlimited growth 
CH1.77Oo.49No.24 Po.017 5.5 Unlimited growth 
CH 1.83Oo.50 N0.22 Po.o21 5.5 Unlimited growth 
CH 1.9600.55 N0.25 P0.022 5.5 Unlimited growth 
CH 1.93 00.55 No. 25 P0.021 5.5 Unlimited growth 
CH 1.83 00.55 N0.26 P0.o24 5.5 Unlimited growth 

7.9 Unlimited growth 
Glucose limited, D = 0.038 h -1 

CH 1.6400.52 N0.16 
CH1.70Oo.58No.15 

CH1.6800.53N0.17 
Aspergillus niger CH 1.72 O0.55 N0.17 7.5 
Average CH 1.81 O0.52 No.21 6.0 

Glucose limited, D = 0.098 h 1 
Unlimited growth 

The P content is given only for some microorganisms. The composition for P. chrysogenum is 
taken from Christensen et al. (1995), whereas the other data are taken from Roels (1983). 

In eq. (4.5), the yield coefficients have the unit C-moles per C-mole biomass. 
Conversion to this unit from other units is illustrated in Box 4.1. Equation 
(4.5) (or eq. (4.4)) is very useful for checking the consistency of experimental 
data. Thus, if the sum of carbon in the biomass and the metabolic products 
does not equal the sum of carbon in the substrates, there is an inconsistency 
in the experimental data. 

EXAMPLE 4.2 

Carbon Balance in a Simple Black Box Model 

We now retum to the black box model of Example 4.1 and rewrite the 
conversion eq. (1) using the elemental composition of the substrates and 
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metabolic products specified. For biomass we use the elemental composition 
of  CH1.83Oo.s6No.17 , and therefore have 

CH1.s3Oo.56No.17 -b YxeCH300.5 

+ Y,,~CO 2 + Y,,wH20 - Y,,~CH20 - Y,,o02- Y,,zvNH 3 = 0 (1) 

Some may find it difficult to identify CH300. s as ethanol, but the advantage 
of using the C-mole basis becomes apparent immediately when we look at 
the carbon balance: 

l+Yxe+Yx -Yxs=O (2) 

This simple equation is very useful for checking the consistency of experi- 
mental data. Thus, by using the classical data of yon Meyenburg (1969), we 
find Yxe = 0.713, Yxc = 1.313, and Yxs = 3.636 at a dilution rate of D = 0.3 
h "1 in a glucose-limited continuous culture. Obviously the data are not 
consistent as the carbon balance does not close. A more elaborate data 
analysis (Nielsen and Villadsen, 1994) suggests that the missing carbon is 
ethanol, which could have evaporated as a result of ethanol stripping due to 
intensive aeration of the bioreactor. 

By analogy to eq. (4.4), we find that a nitrogen balance gives 

Yx~ - 0.17 (3) 

or in terms of specific rates: 

r N = 0.17/z (4) 

If the measured rates of ammonia uptake and biomass formation do not 
conform with eq. (4), an inconsistency is identified in one of these two 
measurements or the nitrogen content of the biomass is different from that 
specified. 

Similar to eq. (4.3), balances can be written for all other elements 
participating in the conversion [eq. (4.1)]. These balances can be conve- 
niently written by collecting the elemental compositions of biomass, sub- 
strates, and metabolic products in the columns of a matrix E, where the first 
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BOX 4.1 

Calculation of Yields with Respect to C-mole Basis 

Yield coefficients are typically described as mol (g DW) -1 or g 
(g DW) "1. To convert the yield coefficients to a C-mol basis, informa- 
tion on the elemental composition and the ash content of biomass is 
needed. To illustrate the conversion, we calculate the yield of 0.5 g DW 
biomass (g glucose) -1 on a C-mol basis. First, we convert the grams dry 
weight biomass to an ash-free basis, i.e., determine the amount of 
biomass that is made up of carbon, nitrogen, oxygen, and hydrogen 
(and, in some cases, also phosphorus and sulfur). With an ash content 
of 8% we have 0.92 g ash-free biomass (g DW biomass) -1, which gives 
a yield of 0.46 g ash-free biomass (g glucose) -1. This yield can now be 
directly converted to a C-mol basis using the molecular masses in 
g C-mo1-1 for ash-free biomass and glucose. With the standard elemen- 
tal composition for biomass of CHI.sO0.sN0. 2, we have a molecular 
mass of 24.6 ash-free biomass C-mo1-1, and therefore we find a yield of 
0 .46/24 .6  = 0.0187 C-mol biomass (g glucose) -1. Finally, by multipli- 
cation with the molecular mass of glucose on a C-mol basis (30 g 
C-mo1-1), a yield of 0.56 C-mol biomass (C-mol glucose) -1 is found. 

column contains the elemental composition of biomass, columns 2 through 
M + 1 contain the elemental compositions of the M metabolic products, and 
columns M + 2 through M + N + 1 contain the elemental composition of 
the N substrates. If we consider I elements (normally four, namely, C, H, O 
and N), there are I rows in matrix E and the I elemental balances are 
represented by an equal number of algebraic equations similar to eq. (4.3), 
which can be summarized as 

Er = 0 (4.6) 

With N + M + 1 specific rates (or volumetric rates) and I constraints, the 
degree of freedom is F = M + N + 1 - I. If exactly F rates are measured, it 
may be possible to calculate the other rates by using the I algebraic 
equations given by eq. (4.6), but, in this case, there are no redundancies left 
to check the consistency of the data. For this reason, it is advisable to strive 
for more measurements than the degrees of freedom of the system. 
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EXAMPLE 4.3 

Elemental Balances in a Simple Black Box Model 

We return to the black box model of Examples 4.1 and 4.2. With the 
elemental composition of biomass given previously, we can write the elemen- 
tal composition matrix E as 

E 

1 1 1 0 1 0 0 
1.83 3 0 2 2 0 3 
0.56 0.5 2 1 1 2 0 
0.17 0 0 0 0 0 1 

<--- carbon 
<--- hydrogen 

<--- oxygen 

nitrogen 

(1) 

where the rows indicate the content of carbon, hydrogen, oxygen, and 
nitrogen, respectively, and the columns give the elemental composition of 
biomass, ethanol, carbon dioxide, water, glucose, oxygen, and ammonia, 
respectively. By using eq. (4.6), where r is replaced by a vector specifying the 
yield coefficients, we find 

1 1 1 0 1 0 0 
1.83 3 0 2 2 0 3 
0.56 0.5 2 1 1 2 0 
0.17 0 0 0 0 0 1 

1 

L e  

Yxw 

-Yxs 

l + Y x e + Y x c - Y x s  

1.83 + 3Yxe + 2Yxw - 2Yxs -  3YxN 

0.56 + 0.SYx  + 2yx  + - - 2Yxo 
0.17 - YxN 

(2)  

The first and last rows are identical to the balances derived in Example 4.2 
for carbon and nitrogen, respectively. The balances for hydrogen and oxygen 
introduce two additional constraints. However, because the rate of water 
formation is impossible to measure, one of these equations must be used to 
calculate this rate (or yield). This leaves only one additional constraint from 
these two balances. 
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Equation (4.6) summarizes the balances for all elements. As discussed in 
Example 4.3, there is actually one fewer constraint as either the hydrogen or 
oxygen balance must be used to calculate the (nonmeasurable) water produc- 
tion rate. Obviously, water can be excluded by eliminating the yield coeffi- 
cient for water between the O and H balances. A more elegant approach is to 
use the so-called generalized degree of reduction balance, which is derived as 
a linear combination of the elemental balances of eq. (4.6). This balance was 
introduced by Roels (1983) as a generalization of the earlier work of 
Erickson et al. (1978). It is generated by adding the elemental balances after 
multiplying them by a certain factor. By choosing appropriate multiplication 
factors, the yield coefficients (or rates) for water, carbon dioxide, and nitrogen 

source are eliminated from the resulting equation. To illustrate the proce- 
dure, consider the elemental balances given in Example 4.3, where we 
multiply the carbon balance by 4, the hydrogen balance by 1, the oxygen 
balance by-2,  and the nitrogen balance by-3  to obtain the following: 

4 +4Yxe +4Yxc -4Yxs =0  

1.83 + 3Yxe 2Yxw - 2Yx~ - 3YxN = 0 

(-2) 0.56 + (-2)0.5Yxe + (-2)2Yxc + (-2)Yxw - (-2)Yxs - (-2)2Yxo = 0 

(-3) 0.17 - (-3)YxN -- 0 

4.20 +6Yxe - 4Yxs  +4Yxo = 0 

The resulting equation is the generalized degree of reduction balance for 
the system. Of course, this balance is not independent of the other elemental 
balances. It normally replaces either the oxygen or hydrogen balance, while 
the other is used to calculate the rate of water formation. Finally, one has the 
carbon, nitrogen, and degree of reduction balances to use for consistency 
analysis or for the calculation of unmeasured rates. In the original formula- 
tion of Erickson et al. (1978), the multiplication factor of each of the C, H, 
O, and N balances was interpreted as the number of free electrons available 
in C, H, O, and N, respectively, for transfer to oxygen upon the combustion 
of each element to water, carbon dioxide, and ammonia (as the nitrogen 
source). For the nitrogen balance the multiplier was always taken to be -3, as 
this is the predominant valency of nitrogen in biomass. In the generalized 
concept of Roels, the multiplication factors are arbitrary coefficients free to 
be chosen such that the resulting coefficients for water, carbon dioxide, and 
nitrogen source vanish. In this way, if another nitrogen source is used, e.g., 

ammonium nitrate, a different multiplication factor is selected for the 
nitrogen balance in order to eliminate the yield coefficient for the nitrogen 
source from the generalized degree of reduction balance. 
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The coefficient multiplying the yield in the generalized degree of reduc- 
tion balance is called the degree of reduction of the corresponding compound. 
For the preceding system, the degree of reduction is 4.2 for biomass, 6 for 
ethanol, 4 for glucose, 0 for water, ammonia, and carbon dioxide, and-4 for 
oxygen. With the generalization of Roels, the degree of reduction of the 
nitrogen-containing compounds depends on the nitrogen source used. In 
most cases ammonium is used as either the sole nitrogen source or in 
combination with another nitrogen source, yielding the following general 
expression for the degree of reduction K of a compound with the elemental 
composition CH aOb No: 

K = 4 + a - -  2 b - 3 c  (4.7) 

Table 4.2 of the following section lists the degrees of reduction for 
compounds typically encountered in fermentation processes. Roels (1983), or 
the more recent publication of Nielsen and Villadsen (1994), can be con- 
sulted for further elaboration on the concept of the degree of reduction. With 
the introduction of a compound's degree of reduction K, the generalized 
degree of reduction balance for any system is given by 

M N 

Kx + E Kp,~Yxp, - E Ks, iYx~, - 0 (4.8) 
i=1 i=1 

This balance is very useful as it is simple to set up and, together with the 
carbon and nitrogen balances, contains all the constraints imposed by the 
four elemental balances. 

EXAMPLE 4.4 

Analysis of Data Consistency in Anaerobic Yeast Cultivations 

To illustrate the application of the generalized degree of reduction to the 
analysis of data consistency, we consider data from the anaerobic continuous 
cultures of S. cerevisiae obtained by Schulze (1995). Yield coefficients (all in 
C-moles or moles per C-mole biomass), obtained under conditions of glucose 
limitation, are listed for glucose (Yxs), ethanol (Yxe), carbon dioxide (Yxc), 
and glycerol (Yx g): 

Dilution rate h- 1 Yx s Yx e Y x  c Yx g 

0.1 7.81 3.88 2.13 0.67 

0.2 8.06 4.00 2.26 0.73 
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First, the carbon balance 

1 + + + = o ( 1 )  

is satisfied within 2% at D = 0.1 h -1 and within 1% at D -- 0.2 h -1. Such 
deviations (estimated relative to the carbon supply in the form of glucose) are 
very satisfactory. 

The generalized degree of reduction balance gives 

K x + 6Yxe + 4.67Yxg - 4Yxs = 0 (2) 

The elemental composition of yeast was determined to be CH1.7800.60N0.19. 
Thus, the degree of reduction of biomass is 4.01, and, upon substitution of 
the yield coefficients from the preceding table, the generalized degree of 
reduction balance is found to close within 3% in both cases (again the 
deviation is given relative to glucose). It is interesting to note that for 
D = 0.1 h "1 the degree of reduction of the "missing carbon" is found (by 
invoking the carbon balance as well) to be very close to 6, indicating that the 
ethanol measurement may be underestimated. This is a general problem in 
yeast and other cultivations where volatile compounds are produced, and a 
loss of carbon in the neighborhood of less than 2% in these cultivations 
generally is considered acceptable. 

4 .3 .  H E A T  B A L A N C E  

In the conversion of substrates to metabolic products and biomass, part of 
the Gibbs free energy in the substrates is dissipated to the surrounding 
environment as heat. Especially under aerobic conditions, the energy dissipa- 
tion may be substantial. Energy dissipation is determined by the difference 
between the total Gibbs free energy in the substrates and the total Gibbs free 
energy recovered in the metabolic products and biomass. The energy dissipa- 
tion normally gives rise to changes in both the enthalpy and entropy of the 
system, and it is difficult to quantify (see also Section 13.1). Attention is, 
therefore, generally focused on heat production determined by the change in 
enthalpy, as this heat production has direct consequences for process cooling 
requirements for temperature control. With the black box model, the heat 
production Qheat [kJ (C-mol biomass) -1 ] of the overall process can be 
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calculated from 

N M 

~hea t - "  - - A H O  "- E Yxs, all~ -- AH~ x - E Yxp, AH~162 (4.9) 
i=1 i = l  

where A H ~ is the heat of combustion [kJ (C-mol) -1 ] of the ith compound at r 
standard conditions (298 K and 1 atm). The yield coefficients in the 
preceding equation are given on a C-mole basis. Table 4.2 lists the heats of 
combustion for some compounds typically found in fermentation media. 
Notice that Qheat is actually a yield rather than a rate. To determine the rate 
of heat production, the preceding equation is multiplied by the growth rate. 
Equation (4.9) is useful for calculating the heat production from the yield 
coefficients and can be used for designing the cooling capacity of a bioreac- 
tor, as illustrated in Example 4.5. 

EXAMPLE 4.5 

Heat Generation at Anaerobic versus Aerobic Growth 

We consider the growth of S. cerevisiae under anaerobic and aerobic 
conditions. The black box models for these two growth conditions can be 
taken to be 

CH1.6200.53N0.15 Jr 4.78CH300. 5 + 2.42CO 2 

+ 0.41H20 - 8.20CH20 - 0.15NH 3 = 0 (i) 

for anaerobic growth and 

CH1.6200.53N0.15 Jr 0.67CO 2 + 1.08H20 

- 1.67CH20 - 0.15NH 3- 0.640 2 - 0 (2) 

for aerobic growth. We calculate the heat production for the two reactions to 
be 

Qanarob -- [(8.20)(467) + (0 .15) (383) -  560- (4 .78) (683) ]  

= 62.11 kJ (C-mol biomass) -1 (3) 

Qaerob = [(1.67)(467) + (0 .15) (383) -  560] 

= 277.3 kJ (C-mol biomass) 1 (4) 
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TABLE 4.2 Heats of Combus t ion  for Various Compounds  at Standard Condi t ions  
(298 K and 1 atm) and pH 7 a 

a/q~i 
Compound  Formula Degree of reduction (kJ C-mo1-1) 

Acetaldehyde C 2 H 4 ~ 5 583 

Acetic acid C 2 H402 4 437 

Acetone C 3 H 6 0  5.33 597 
Ammonia NH 3 383 c 

Biomass CH 1.800.s N0.2 4.2 560 
n-Bu tanol C 4 H 10 O 6 669 

Butyric acid C 4 HsO 2 5 546 
Citric acid C 6 H 8 0  7 3 327 

Ethane C 2 H 6 7 780 ~ 

Ethanol C 2 H 60 6 683 

Formaldehyde CH 20 4 57V 

Formic acid CH 20 2 2 255 

Fructose C6H1206 4 469 
Fumaric acid C 4 H 404 3 334 

Galactose C 6 H 12 06 4 468 

Glucose C6H1206 4 467 
Glycerol C 3 H 8 03 4.67 554 

Isopropanol C 3 H s O 6 673 

Lactic acid C 3 H 6 0  3 4 456 

Lactose C 12 H 22011 4 471 
Malic acid C 4 H 60s 3 332 
Methane CH 4 8 890 c 

Methanol C H 4 0  6 727 

Oxalic acid C 2 H 2 04 1 123 

Palmitic acid C 16 H3202 5.75 624 b 

Propane C 3 H 8 6.67 740 ~ 

Propionic acid C 3 H 60  2 4.67 509 
Succinic acid C 4 H604 3.5 373 

Sucrose C 12 H 22 O 11 4 470 
Urea CH4ON 2 632 

Valeric acid CsH 1002 5.2 568 

a The heat of combustion is given with the reference being CO 2, H 2 0  and N 2. 
b Solid form. 

c Gaseous form. 
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We see that much more heat is generated in the aerobic process [corre- 
sponding to 165 kJ (C-mol glucose metabolized) -1 ] than in the anaerobic 
process [corresponding to about 8 kJ (C-mol glucose) -1 ]. Thus, in the aerobic 
process, a large fraction of the free energy originally present in glucose 
dissipates as heat, whereas in the anaerobic process it is retrieved in ethanol. 
To illustrate the cooling requirements of a large-scale bioreactor, we calculate 
the total heat production for a typical industrial baker's yeast fermentation. 
We use a bioreactor volume of 100 m 3 and a biomass concentration of 50 g 
L -1 (corresponding to about 1.96 C-mol L -1). For the batch phase, of such a 
process the specific growth rate is approximately equal to 0.25 h -1. Using 
these data we first find the specific rate of heat production: 

Fq-- Qaerob jL/,-- [277.3 kJ (C-mol biomass)-l] (0.25 h -1) 

= 69 kJ (C-mol biomass) -1 h -1 (5) 

and from here we find the total heat production to be 

(69 kJ (C-mol b iomass )  -1 h-1)(1.96 C-mol L-1 ) (100 .000  L) -- 3.8 MW (6) 

This large heat production clearly illustrates the requirement for large 
amounts of cooling water to maintain a constant temperature in the bio- 
reactor. 

If the heat production rate can be measured accurately, such as by using a 
calorimeter [as illustrated in several publications; see, for example Larsson 
et al. (1991) and yon Stockar and Birou (1989)] or measuring the tempera- 
ture change in the bioreactor, the heat balance [eq. (4.9)] may be used to 
supply an additional redundancy along with the elemental balances of 
Section 4.2. If, however, the heat production rate cannot be measured (as 
would be the case of an anaerobic process where the heat production is very 
small), the introduction of an additional equation does not change the 
degrees of freedom due to the additional unknown variable (Qheat)" For  
aerobic processes, it is generally found that the rate of heat production is 
proportional to the oxygen uptake rate: 

~heat = ClYxo (4.10) 

Equation (4.10) is empirically found to be valid for microbial growth on 
different substrates with a proportionality constant approximately equal to 
460 kJ per mol 0 2 [see Table 4.3 and Example 4.5, where it was found to be 
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TABLE 4.3 Comparison of Yxo and Qheat for Bacteria Grown on Different 
Carbon Sources  a 

Vxo Qheat Q/Vxo 
Substrate [mmol 0 2 (g DW) -1 ] [kJ (g DW) -1 ] [kJ (mol O 2)-1] 

Malate 30.6 14.0 458 
Acetate 44.6 19.9 446 
Glucose 21.3 10.0 469 
Methanol 71.0 34.9 492 
Ethanol 51.2 23.2 453 
Isopropanol 135.8 56.5 416 
n-Paraffins 62.5 26.2 419 
Methane 156.3 68.6 439 

a The data are taken from Abbott and Clamen (1973). 

equal to 433 kJ (mol O2)-1]. Equat ion (4.10) may also be derived from a 
generalized degree of reduct ion balance, where  the reference for ni trogen- 
containing compounds  is taken to be N 2 (Roels, 1983; Nielsen and Villadsen, 
1994). A consequence of eq. (4.10) is that the measurement  of the rate of 
heat p roduct ion  is well-suited for checking the measurements  of the oxygen 
uptake rate or as an alternative to this measurement .  

4.4. ANALYSIS OF OVERDETERMINED 
SYSTEMS~IDENTIFICATION OF GROSS 
MEASUREMENT ERRORS 

If there are more  measurements  available than the degrees of f reedom F, the 
system is generally called overdetermined. In this case the redundancy  of the 
measurements  can be used to (a) calculate the rates of nonmeasured  metabo- 
lites; (b) increase the accuracy of the available measurements  through the 
application of essentially a least squares calculation; and (c) identify the most  
likely source of gross measurement  errors or even the source of inconsisten- 
cies in the formulat ion of the black box framework.  This can be carried out  
in a straightforward manner .  For example, if only one rate is not  measured,  
we can use the carbon balance to calculate that rate and the remaining 
(ni trogen and degree of reduct ion)  balances to check the overall consistency 
of the data. A more  effective analysis is based on the simultaneous use of all 
balances, elemental  and otherwise, for the calculation of the nonmeasured  
rates as well as for data consistency analysis. This is best carried out th rough  
the use of matrix manipulat ions.  We follow this procedure  here; however,  we 
have reduced the use of matrix operat ions to a m i n i m u m  in order to facilitate 
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the review of this material by those with limited exposure to this subject. 
Furthermore, we have provided a rudimentary review of matrix operations in 
Box 4.2. Finally, we provide several examples to illustrate these operations 
when applied to our system of aerobic yeast cultivation without ethanol 
formation. 

We begin our analysis with the elemental balances of eq. (4.6), which we 
rewrite in the following form by partitioning the rate vector r into two 
vectors: One, r m ,  collects all measured rates, and another, r c, collects the 
remaining rates (that need to be calculated, hence the subscript c): 

Er = Ecr c + E m r  m = 0 (4.11) 

Similarly, the elemental matrix E is partitioned by separating the columns 
with the elemental composition of the compounds that have been measured 
into one matrix E m and the columns of the nonmeasured compounds (that 
must be calculated from the balances) into matrix E c. Of course, if exactly F 
variables are measured, there are just enough equations to determine the 
nonmeasured rates. In this case E~ is a square matrix with dimensions (I x 
I) equal to the number of constraints (or balances; I). If it has full rank, i .e. ,  

rank(E c) = I (see Box 4.2), the nonmeasured specific rates of rc can be 
calculated by solving eq. (4.11): 

rc = -E/1Emrm (4.12) 

If E c is square and has full rank, the system is c a l l e d  o b s e r v a b l e ,  as there 
are exactly enough measurements to determine the unknown rates, i .e . ,  the 
system is overdetermined. If more rates are measured than the degrees of 
freedom F, there are more equations available than the minimum needed for 
the determination of the (now fewer) unknown rates. In this case, a least 
squares approach is usually employed, whereby the unknown rates are 
calculated from a combination of the available balances in order to increase 
the accuracy of the so-obtained estimates. The matrix equivalent of this 
situation is that the elemental submatrix E c now is not square, and its 
inverse therefore cannot be determined. However, multiplication of eq. (4.11) 
by the transpose matrix E~ (see Box 4.2) of E~ yields 

E~(Ecr~ + Emr~) = (E~Ec)r c + E~Emr ~ = 0 (4.13) 

ErEc is certainly square (see Box 4.2), and if it has full rank, it can be 
inverted to give the solution for re: 

# (4.14) r c - - Ec E m r m  
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BOX 4.2 

Matrix Operat ions  

A matrix is simply a set of numbers  arranged in some array. The 
arrays that you will use in this text will usually be in the form of either 
a vector with multiple components  or a square / rec tangu la r  matrix. In 
this box we give an introduct ion to the most  simple matrix operations 
that are used throughout  this text [for more details, see Strang (1988)]. 

Consider the generalized matrix A shown with two rows and two 
columns: 

A 
A1,1 A1,2 

A2,1 A2,2 

Note that in matrix notation Ai, j refers to the element of the i th row 
and the j t h  column, where i = 1..n, and j = 1..m. The dimension of a 
matrix is specified as n x m, and in this case A is a 2 x 2 matrix. 

Basic Matrix Operations 

Consider matrix A already shown and another  2 x 2 matrix B: 

B1,1 B1,2 1 
B2,1 B2,2 J 

The sum and difference of matrices A and B give 2 x 2 matrixes C and 
D, respectively: 

C - - A + B =  

D = A - B =  

A1, 1 if- B1, 1 A1,2 if- B1, 2 

A2,1 q- B2,1 A2,2 if- B2,2 

A1,1 - B1,1 A1,2 

A2,1 - B2,1 A2,2 

- -  B1, 2 

- B2, 2 

Matrices are multiplied by numerical  constants one component  at a 
time: 

E = 2 A = 2  
(A1, ::2)(2A,1= 2::,2) 

A2,1 ,2 2A2,1 2 ,2 
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The multiplication operation, of a matrix by a vector or a matrix by a 
matrix, is less apparent and is illustrated next. Consider a vector v, 
where v has the same number  of elements as the number  of columns 
of A: 

(vl) 
V ~- V2 

The product of A and v is then specified as 

Note that in essence each element of F represents the sum of the 
products of the corresponding rows of A and v. For the general case of 
a matrix A having dimensions m x n, and a vector v with dimensions 
r x 1, it is obviously necessary that r must  be equal to n; (i.e., the 
number  of columns of A), and the product  matrix will have dimensions 
m x  gl. 

In a similar fashion, one can multiply two matrices of compat- 
ible dimensions as shown next, where in this case each row of A 
is multiplied by the corresponding column of B to give the 2 x 2 
matrix G: 

G = A B  = 
,1 A2,2 B2 ,1  B2,2 

A1 1B1,1 + A 1 2B2,1 
-- A2',1B1,1 q- A2',2B2,1 

A1,1Bl'2 q- A1'2 B2'2 t 
A2,1B1,2 + A2, 2 B2,2 J 

Note that matrix multiplication is associative, i.e., (AB)C = A(BC), and 
distributive, i.e., A(B + C ) =  AB + BC, but not commutative, i.e., 
AB ~ BA. 

(continues) 



134 Metabolic Engineering 

(continued) 
Example 1 

Consider matrices A and B and vector v with the following numerical 
values: 

A:t0 1) 
2 3 ' 

A + B =  4 

2 A =  0 2 
4 6 

4) 
5 

Av --- 

B = ( 4  3 
2 2 

A - B =  

) 

13 ) ' v =  5 

AB -- 14 12 

The reader is strongly encouraged to reproduce these results as an 
exercise. 

Matrix Transpose 

The transpose of matrix A, denoted as A r, is a matrix whose columns 
are taken directly from the rows of A, i.e., row i of A becomes column 
i of A r. Thus, for the general case: 

A1 1 A1 2) 
At= A2',l A2',2 

AI,1 A2,1 ) 

A1,2 A2,2 

Note: The transpose of AB is (AB) r = A r B r. 

Matrix Inverse 

The inverse of an n x n matrix A, denoted as A -1, is another n x n 
matrix B, so that AB = BA = I, where I is the so-called identity matrix 
that contains l's on its diagonal and O's everywhere else. For example 
when n = 2, I i s  

1 0 
I =  0 1 

The inverse of the general matrix A is calculated as follows: 

A - l =  ( A l l  A12)  1 ( A22 -A1,2 

A211 A212 = det(A)  -A'2,1 A1,1 
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Where, det(A) is what is known as the determinant of A and is defined 
as 

All A12):(All A2,) 
det(A) d e t  

A2,1 Az,2 A1,2 A2,2 

-- A1, 1A2,2 -- A1, 2 A2,1 

To find the determinant of a matrix with dimensions larger than 2 x 2, 
we refer to textbooks on linear algebra [see, for example Strang (1988)]. 
It is important to note that the inverse of A does not exist when its 
determinant equals zero. Such matrices that cannot be inverted are 
commonly referred to as singular matrices. Note also that the transpose 
of A -1 i e. (A-l)  y is equal to (AT) -1 �9 , , 

Another important matrix property is the rank of a matrix (r),  
which corresponds to the number of genuinely independent rows in a 
matrix. For an n x n square matrix A, when r - n, it can be proven 
that (1) A has an inverse and (2) this inverse is unique. 

Example 2 

For the matrices given in Example 1, the determinants are calculated to 
be det(A) = -2 and det(B) -- 2, which indicates that these are nonsin- 
gular matrices that should have an inverse. These are calculated as 
follows: 

Az, )-1 A_ 1 __ A1 1 A1,2 

,1 A2,2 

B_ 1 __ [ B1,1 B1,2 

B2,1 B2,2 

0~149 
-1 

Such 2 x 2 systems are rather easy to handle on paper; however, for 
matrices with larger dimensions, software packages such as MATLAB, 
MATHCAD, or MATHEMATICA should be employed to facilitate these 
operations. 
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where E~ is the so-called pseudo-inverse (or the Moore-Penrose inverse) of 
the matrix given by 

E # (ETEc) -1T = c E~ (4.15) 

Equation (4.14) is essentially the least squares estimate of the nonmeasured 
rates contained in the vector r~, where all balances have been employed for 
their determination. It can be shown that if E~ has full rank (i.e., there are at 
least as many linearly independent balances as the number of nonmeasured 
rates), then E TE~ also has full rank and the pseudo-inverse therefore can be 
found. 

In the case of an overdetermined system, after the nonmeasured rates (r~) 
have been determined by eq. (4.14), one may still be left with unused 
balances that can be employed to check the overall consistency of measured 
and calculated rates. To accomplish this, eq. (4.14) is inserted into eq. (4.11) 
to yield 

Rr m -- 0 (4.16) 

with R being the so-called redundancy matrix (van der Heijden et al., 
1994a,b) given by 

R = E m - E c ( E ~ E c ) - I E r E m c  (4.17) 

The rank of the redundancy matrix specifies the number of independent 
equations that must be satisfied by the measured and calculated [per 
eq. (4.14)] rates, and therefore it contains / -  rank(R) dependent rows. If the 
dependent rows are removed, we obtain rank(R) independent equations 
relating the measured variables, i.e. 

Rrr m = 0 (4.18) 

where R r is the reduced redundancy matrix containing only the independent 
rows of R. Equation (4.16) is the basis for our further analysis of gross error 
identification, but before we proceed, we first illustrate the preceding con- 
cepts and the method of determining R r. 

EXAMPLE 4.6 

Analysis of Aerobic Yeast Cultivation without Ethanol Formation 

We return to the case of aerobic yeast cultivation, which was also 
discussed in Examples 4.1-4.3, but now we consider the situation where 
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there is no ethanol formation. In this case Yxe is zero, and therefore we will 
not include ethanol in the black box model. Thus, we have i x ,  r~ ,  r w ,  r S, r o,  

and r N as the rates in the black box model. With measurements of the 
specific glucose uptake rate, specific oxygen uptake rate, specific carbon 
dioxide production rate, and specific growth rate (equal to the dilution rate 
in a steady state chemostat), the elemental matrix is partitioned as follows: 

Em 

Glc 0 2 CO 2 biomass NH 3 H20 

1 0 1 1 
__ 2 0 0 1.83 

1 2 2 0.56 
0 0 0 0.17 

; E c =  

0 0 
3 2 
0 1 
1 0 

(1) 

Note that the four columns of matrix E m correspond to the four rates of 
glucose, oxygen, carbon dioxide, and biomass, respectively, whereas the two 
columns of the E c matrix correspond to ammonia and water rates, respec- 
tively. The rows of these above matrices represent, of course, the four 
elemental balances. With a total of six compounds and four elemental 
balances there are F = 2 degrees of freedom. Because four rates are mea- 
sured, the system is overdetermined. By using eq. (4.17) the redundancy 
matrix is found to be 

R .._ 

1 0 1 1 
0 - 0 . 2 8 6  - 0 . 2 8 6  0.014 
0 0.572 0.572 - 0 . 0 2 8  
0 0.858 0.858 - 0 . 0 4 2  

(2) 

with rank(R)=  2. It is easily seen that the last two rows of R are propor- 
tional to the second row (the third row is equal to the second row, multiplied 
by -2, and the fourth row is equal to the second row multiplied by -3). We 
therefore delete these two rows and thereby obtain the reduced redundancy 
matrix: 

1 0 1 1 ) (3) 
R , .=  0 - 0 . 2 8 6  - 0 . 2 8 6  0.014 

Equation 3, along with the four measured specific rates, yields the following 
redundant equations according to eq. (4.18): 

R y r m  --- 
- G  + r~ + IX ) = (0  

0.286r o - 0.286r~ + 0.014IX 0 
(4) 
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Obviously the first row is recognized as a carbon balance, but the second row 
is not that easily identified even though it contains all the information from 
the constraints of the three other elemental balances. 

Normally, experimental data are overlaid with noise, and in some cases 
there may even be systematic errors. As a consequence of such errors, 
eq. (4.16) is not, in general, exact. There will be some residuals different 
from zero when the measured rates (or yields) are multiplied into the 
reduced redundancy matrix. This is better expressed by recognizing that the 
measured  rate vector rm equals the sum of the actual  rate vector r m and its 
corrupting general measurement error 8: 

r~ = r~ + 8 (4.19) 

Combination eq. (4.19) into eq. (4.18) yields the following equation for the 
vector of the residual e: 

e = Rrr  m = Rr( r  m + a)  = Rrt~ (4.20) 

If the model is correct and if there are no systematic or random errors, i.e., 

6 = 0, all equations [eq. (4.18)] are satisfied exactly and yield zero values for 
the residuals. In all data sets, however, there is some noise present in the 
measurements that makes the residuals vector different from zero. The best 
rate estimates are those that minimize the magnitude of the residual, and 
they are determined as follows. 

By assuming that the error vector is distributed normally with a mean 
value of zero and a variance-covariance matrix F, 

E(a) =o  

F - E [ ( ~ - r ~ ) ( ~ - r m )  r] = E ( 8 8  r )  

(4.21) 

(4.22) 

where E is the expected value operator, it can be shown that the residuals 
also will be distributed normally with a mean of zero 

E ( e )  = R ~ E ( 3 )  = 0  (4.23) 

and a variance-covariance matrix given by 

P = E (~e  r )  = R~E(88T)R~ = R<FR~ (4.24) 
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The minimum variance estimate of the error vector ~ is obtained by 
minimizing the sum of squared errors scaled according to their variance: 

min ( 8 ~ F-I~ ) (4.25) 
8 

The solution is given by 

= FR T p-loo = Fa  T p-1R~rm (4.26) 

where the circumflex specifies that the value of ~ is an estimate. Because ~ is 
distributed normally, the function to be minimized in eq. (4.25) is the same 
for the least squares minimization problem and for the maximum likelihood 
minimization problem. If the error vector is not distributed normally, the 
estimate in eq. (4.26) remains valid for the least squares minimization 
problem but it no longer is the maximum likelihood estimate (Wang and 
Stephanopoulos, 1983). By using eq. (4.26), the best estimates for the 
measured rates are obtained as 

rm = r--~- ~ = (I-FR~p-1Rr)~m (4.27) 

where I is a identity matrix. It can be shown that the estimates of the 
measured rates given by eq. (4.27) have a smaller standard deviation than the 
raw measurements (Wang and Stephanopoulos, 1983), and the estimate 
therefore is likely to be more reliable than the measured data. By using the 
best estimates for the measured rates, the nonmeasured rates of the black box 
model can be calculated using eq. (4.14). 

EXAMPLE 4.7 

Analysis of Aerobic Yeast Cultivation without Ethanol Formation 
(Continued) 

We now continue our analysis of aerobic yeast cultivation that was 
initiated in Example 4.6, where we derived the reduced redundancy matrix. 
At a dilution rate of 0.15 h -I, the measured specific rates for glucose, oxygen, 
carbon dioxide, and biomass are given by 

E 

r m  - -  

m F s  

m F o  _ _  

tz 
F c 

- 0 . 2 5 0  
- 0 . 1 1 3  

0.113 
0.141 

(1) 
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with all rates in C-moles (C-mole biomass hour) -i. We now want to calculate 
better estimates for the measured rates when it is assumed that there is a 5% 
error in the biomass and glucose measurements and a 10% error in the gas 
measurements, i.e., the oxygen and carbon dioxide measurements. With 
these errors the variance-covariance matrix is given by 

F = 10 -3 

0.1563 0 0 0 
0 0.1277 0 0 
0 0 0.0319 0 
0 0 0 0.1988 

(2) 

and by using eq. (4 .24)we find 

p =  10-3(  0.3870 - 0 . 0 5 6 3 )  
- 0 . 0 5 6 3  0.0267 (3) 

(the reduced redundancy matrix is taken from Example 4.6). The error 
vector for the measured fluxes is then found from eq. (4.26): 

^ 
3 =  

- 0 . 0 0 5 5  
0.0115 

- 0 . 0 0 1 3  
0.0108 

(4) 

and this leads to better estimates for the measured fluxes: 

rm 

- 0 . 2 4 4 5  
- 0 . 1 2 4 5  

0.1143 
0.1302 

Thus, there are only small corrections to the measurements, and the original 
measurements therefore seem to be good. However, the corrected measure- 
ments conform better with the elemental balances, and therefore they are 
better estimates than the raw measurements. 

Normally, the variance-covariance matrix is assumed to be diagonal, 
meaning that the measurements are uncorrelated. However, specific rates, 
yield coefficients, and even volumetric rates are seldom measured directly 
but instead are derived from measurements of the so-called prime variables, 
which may influence more than one measured rate. An example is the 
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measurement of the oxygen uptake rate and the carbon dioxide production 
rate, which are both based on the measurement of the gas flow rate through 
the bioreactor, in conjunction with measurements of the partial pressure 
of the two gasses in the head space. If there is an error in the measurement 
of the gas flow rate, this influences both rates, and, therefore, errors in the 
measured rates are indirectly correlated. The same objection holds for the 
measurement of other rates as well that are normally obtained by combina- 
tion of concentration and flow rate measurements. In all such cases with 
indirect error correlations, it is difficult to specify the true variance-covari- 
ance matrix F. Madron et al. (1977) describe a simple algorithm by which 
the true variance-covariance matrix can be found when the properties of the 
noise of the prime variables are known (see Box 4.3). In many cases, 
however, we have inadequate information about the noise of even the prime 
variables, and the true variance-covariance matrix cannot be derived. In these 
cases, one may decide to neglect covariances and use a diagonal variance- 
covariance matrix, where reasonable values for the errors are used. Alterna- 
tively, one may use the least squares estimate given by 

-1 
rm = ( I -  R~(R~R~) R~)rm (4.28) 

which is based on the assumption of the same absolute error in all the 
measured rates. Because absolute values for the errors are used, it is only 
reasonable to apply eq. (4.28) when the variables are of the same magnitude. 

If any constraint residuals are significantly different from zero, either a 
systematic error is present in at least one of the measurements or the model 
employed is incorrect. To quantify the statement "significantly different from 
zero," we introduce the test function h given by the sum of weighted squares 
of the residuals: 

h = e~-v-Xe (4.29) 

When the raw measurements are uncorrelated, the test function h is X 2 
distributed (Wang and Stephanopoulos, 1983), and this was shown to be the 
case for correlated raw data as well (van der Heijden et al., 1994b). The 
degrees of freedom of the X 2 distribution are equal to the rank(P) - rank(R), 
i.e., the number of independent constraints. By comparing the calculated 
value of the test function h with the values of the X 2 distribution at the 
degrees of freedom [rank(R)], it is possible to detect the presence of a 
systematic error in the data at a certain confidence level. Thus, if at a high 
enough confidence level one obtains a test function value that is greater than 
the value of the X 2 distribution, then there is something wrong with the data 
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BOX 4.3 

Calculation of the Variance-Covariance Matrix from Errors in Prime 
Variables 

Normally the measured rates are determined from measurements of 
the so-called prime variables, e.g., the volumetric glucose uptake rate 
in a steady state chemostat is determined as the difference between the 
glucose concentration in the feed and that in the bioreactor multiplied 
by the dilution rate. Specification of the variance-covariance matrix 
therefore is not straightforward. Madron et al. (1977) describe a simple 
approach to find F from the measurement noise of the prime variables. 
First, the measured rates are specified as functions of the prime 
variables. When the latter are collected in the vector y, we have for the 
i th rate: 

rm, , = f i ( y )  (1) 

Generally the functions fi are nonlinear, but in order to obtain an 
approximate estimate of the variances and covariances, these functions 
are linearized. The error of the measured i'th rate, 6j, is expressed as a 
linear combination of the errors 6j* of the prime variables: 

j=l ~Yj 

k 

j = l  

where K is the number of prime variables and gij are the sensitivities. 
If the sensitivities are collected in the matrix G, the variance-covariance 
matrix F can be calculated from 

F = GF*G r (3) 

where F* is a diagonal matrix with the variances of the prime vari- 
ables. The preceding method is very simple to compute the covari- 
ances, but obviously the calculated values are limited by the accuracy 
of the linear approximation in eq. (2). 
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TABLE 4.4 Values of the X 2 Distribution 

Confidence level 

Degrees of freedom 0.500 0.750 0.900 0.950 0.975 0.990 
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1 0.46 1.32 2.71 3.84 5.02 6.63 
2 1.39 2.77 4.61 5.99 7.38 9.21 
3 2.37 4.11 6.25 7.81 9.35 11.30 
4 3.36 5.39 7.78 9.49 11.10 13.30 
5 4.35 6.63 9.24 11.10 12.80 15.10 

or the model. Table 4.4 gives values of the X 2 distribution at different 
confidence levels and different degrees of freedom. 

EXAMPLE 4.8 

Analysis of Aerobic Yeast Cultivation without  Ethanol Formation 
(Continued) 

We now continue our analysis of aerobic yeast cultivation that was 
initiated in Example 4.6 and analyzed further in Example 4.7. From the 
matrices derived in Example 4.7, we calculate the residuals using eq. (4.20): 

0.0040 ) 
= - 0 . 0 0 6 4  (1) 

and then the test function can be calculated using eq. (4.29): 

h -- eT p-le = 1.87 (2) 

Because there are two independent rows in the reduced redundancy matrix, 
its rank is 2, i.e., the test function has to be compared with the X 2 
distribution with two degrees of freedom. From Table 4.4 it is seen that the 
test function is lower than the ,1( 2 distribution even at a confidence level of 
0.75. Thus, it is only at a very low confidence level that it can be concluded 
that the data contain gross errors; hence, the data quality is satisfactory. 

The finding of a large value for the test function, h > X 2, at a given 
confidence level does not allow one to conclude whether the unsatisfactorily 
large errors are due to systematic errors in the data or due to large random 
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errors. One approach that can be applied to this end is to eliminate one 
measurement at a time from the given set of data and use one of the 
constraints to calculate such a measurement. The remaining constraints are 
then used for consistency analysis to recalculate the test function h and 
compare it again with the X 2 statistic for one fewer degree of freedom. If a 
significantly lower value is obtained for the test function upon elimination of 
a certain measurement, this is strong evidence for the presence of gross 
(systematic) errors in the measurement that was eliminated. The same can be 
applied to constraints other than the elemental balances, such as those 
arising from application of the steady state hypothesis to intracellular 
metabolites. This approach of error diagnosis requires that the system be 
overdetermined by at least two measurements, i.e., rank(R) >__ 2. This overde- 
termination allows for one constraint to be used for the calculation of the 
eliminated measurement while the other is used for the recalculation of the 
test function. The procedure of measurement elimination is very simple, as 
illustrated in Example 4.9, and it allows for the rapid determination of the 
probable source of a systematic error. 

EXAMPLE 4.9 

Error Diagnosis in Yeast Cultivation Measurements 

For aerobic growth of S. cerevisiae with glucose as the carbon source and 
ammonia as the nitrogen source, the specific rates of glucose uptake, oxygen 
uptake, biomass growth, and carbon dioxide formation are measured to be 

- r s  - 2 . 1  

- r o  3.8 
r = = 0.008 

/z 1 

r c 1.4 

(1) 

at a specific growth rate of 0.008 h -1 [all rates in C-moles (C-mole biomass 
hour) -1]. The elemental composition of the biomass is assumed to be the 
same as in Examples 4.6-4.8. The measurement errors are 6%, 11.7%, 5%, 
and 11.1% for glucose, oxygen, biomass, and carbon dioxide, respectively. 
There are no covariances. We now want to examine whether there are any 
experimental errors. Because the stoichiometry is the same and the same 
rates are measured as in Examples 4.6-4.8, we can use the reduced redun- 
dancy matrix derived in Example 4.6. Furthermore, with the given errors the 
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variance-covariance matrix is found to be 

0.0102 0 0 0 

F = 10 -4 0 0.1265 0 0 
0 0 0.0016 0 
0 0 0 0.0155 

(2) 

When the test function is calculated as illustrated in Example 4.8, it is found 
to be 

h = 35.06 (3) 

which shows that even at a confidence level of 0.99 there is a measurement 
error. From inspection of the measured rates it seems likely that this error is 
in either the oxygen or the carbon dioxide measurement, as the respiratory 
quotient (RQ = rc/r o) is less than the 1, the normal value for an aerobic 
culture of S. cerevisiae growing at low specific growth rates. To identify the 
measurement error, we do, however, eliminate each of the four reactions - 
one at a time - and then calculate the test function. The result of this gives 

C o m p o u n d  e l imina ted  h 

Glucose 27.06 
Oxygen 2.12 
Biomass 26.43 
Carbon dioxide 34.96 

Clearly, if any of the three measurements glucose, biomass, or carbon 
dioxide is eliminated, there is still a measurement error. Only when the 
oxygen measurement is eliminated does the value of the test function drop to 
a low value, and by comparing it with the X 2 distribution with one degree of 
freedom it is seen that at a confidence greater than 90% it cannot be 
concluded that there are gross measurement errors. Thus, it is very likely 
that the oxygen measurement is erroneous. 

If the oxygen measurement is left out, it is possible to calculate both 
better estimates for the three measured rates and best estimates for the three 
nonmeasured rates (including oxygen). First, by using eq. (4.27), we find for 
the measured rates 

^ 

r m 

m F s  

tx 
F c 

= 0.008 
- 2 . 2 1  ) 

0.98 
1.23 

(4) 

and thereafter we find the nonmeasured rates (ammonia uptake, water 
formation, and oxygen uptake) using eq. (4.14) [with eq. (4) inserted for the 
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measured rates]: /rN/ (_o.17) 
rc = rw - 0 . 0 0 8  1 . 5 6  

- r  o 1 . 1 8  

(5) 

Thus, we see that the oxygen uptake rate is corrected drastically. Further- 
more, with the estimated rates the RQ is found to be 1.04, which is a much 
more realistic value. 
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