

AULA 06,07: DIAGRAMA DE BLOCOS E SISTEMAS DE PRIMEIRA ORDEM

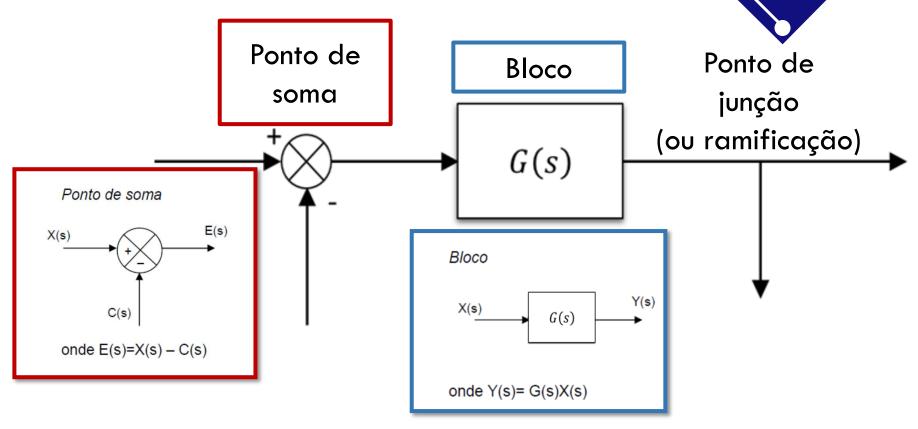
Larissa Driemeier Marcílio Alves

NOSSA AGENDA

#	Data	Tópico
1	21/02	Introdução ao modelamento e uso do software
2	06/03	Introdução à programação em MatLab
3	20/03	Resolução de Equações Diferenciais - Sistemas Lineares e Não Lineares
4	03/04	Transformada de Laplace e Funções de Transferência
5	24/04	Projeto
6	15/05	Diagrama de Blocos
7	29/05	Análise de Sistemas de Primeira Ordem
8	19/06	Análise de Sistemas de Segunda Ordem

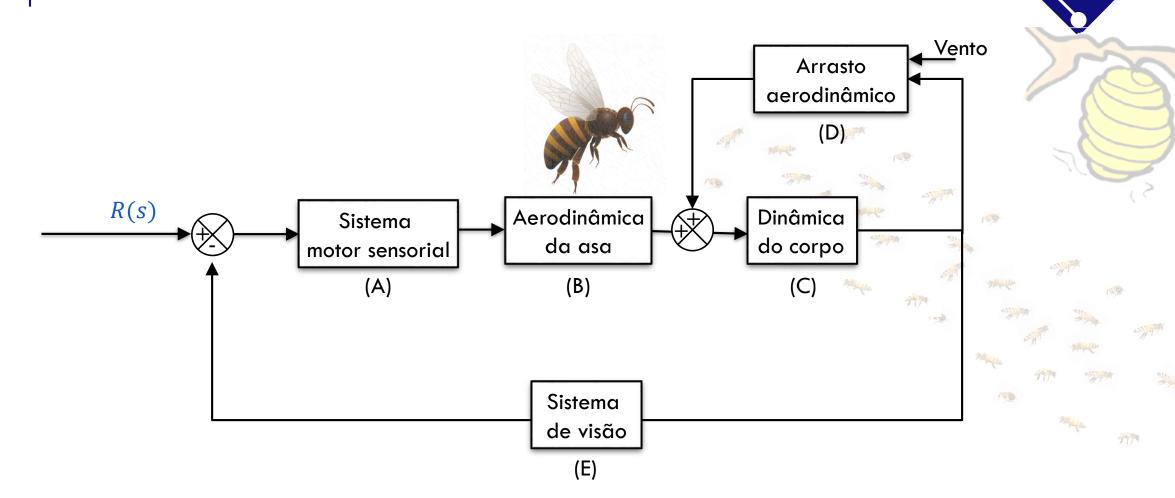
PARTE I: DIAGRAMA DE BLOCOS

•É uma representação gráfica das funções desempenhadas por cada componente e o fluxo de sinais entre eles. Descreve o interrelacionamento que existe entre os vários componentes.

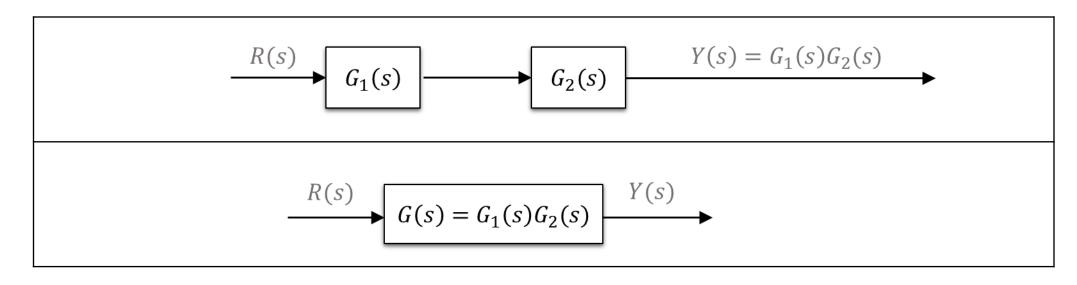


Um diagrama de blocos contem informações relativas ao **comportamento dinâmico**, mas não inclui nenhuma informação sobre a construção física do sistema.

DIAGRAMA DE BLOCOS

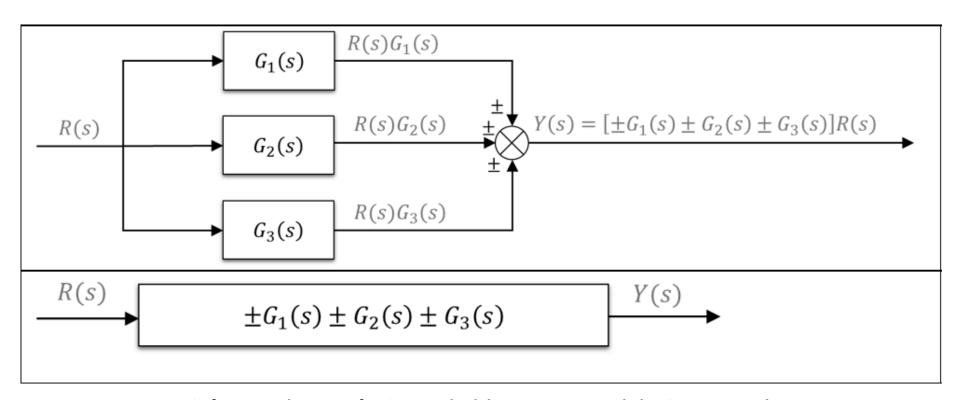


BLOCOS EM SÉRIE...



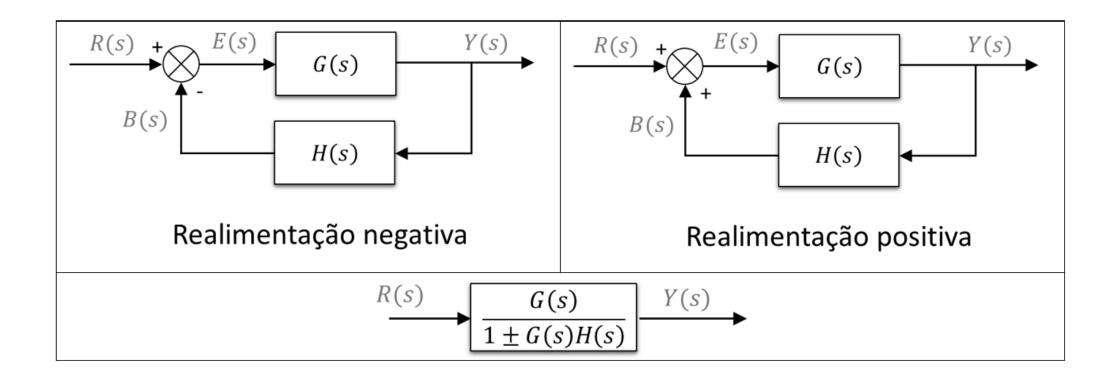
A função de transferência de uma série é o produto da função de transferência dos elementos da série

BLOCOS EM PARALELO...



A função de transferência de blocos em paralelo é a soma da função de transferência desses blocos

SISTEMA REALIMENTADO

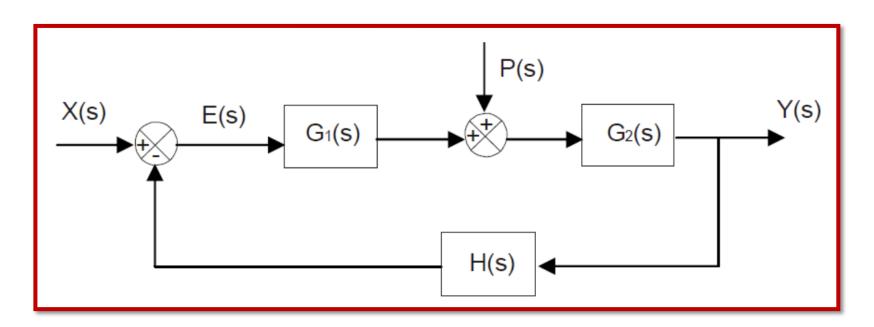


FEEDBACK

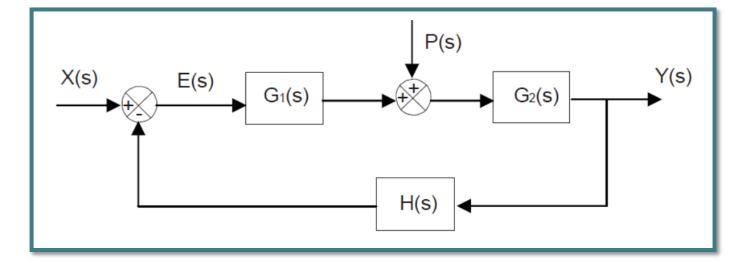
•https://www.mathworks.com/videos/understanding-control-systems-part-2-feedback-control-systems-123501.html

5/28/2020 PMR 3302 — LABORATÓRIO DE SISTEMAS DINÂMICOS I

SISTEMA REALIMENTADO COM PERTURBAÇÃO

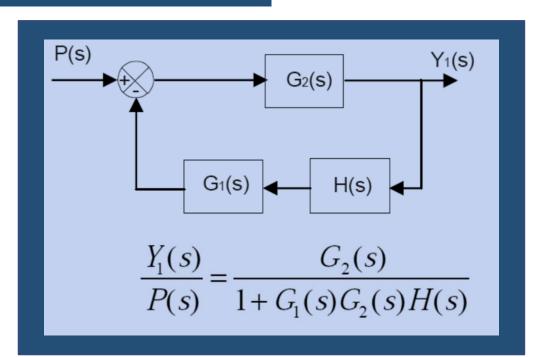


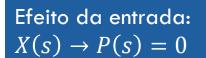
Considerando que o sistema com duas entradas X(s) e P(s) é linear, aplica-se o princípio da superposição: "A saída de um sinal formado pela combinação linear de diferentes sinais, é igual à combinação dos sinais de saída gerados por cada sinal separadamente"

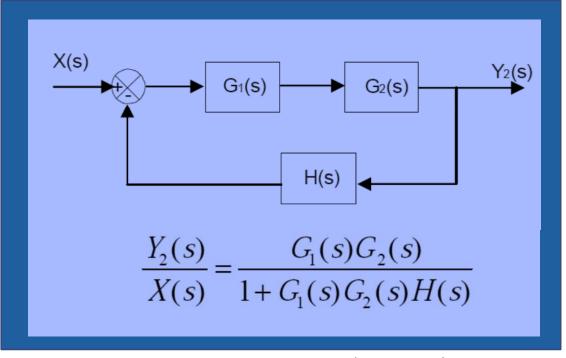


Efeito da perturbação:

$$P(s) \rightarrow X(s) = 0$$







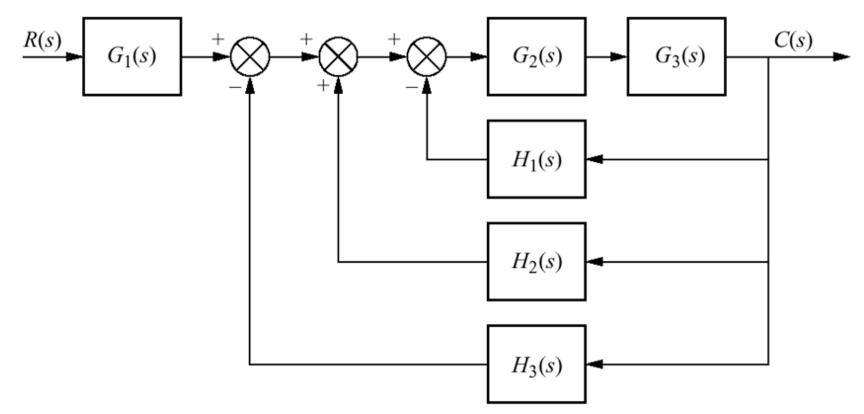
Resposta devido à aplicação simultânea das duas entradas

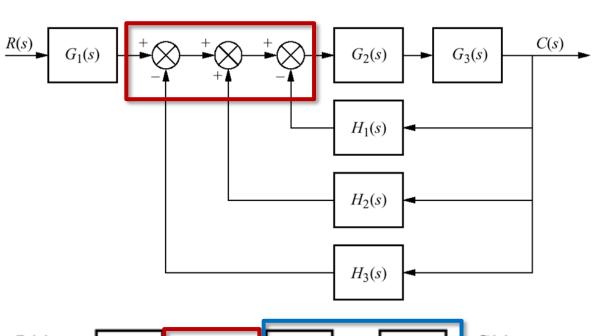
$$Y(s) = Y_1(s) + Y_2(s) = \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)} P(s) + \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)} X(s)$$

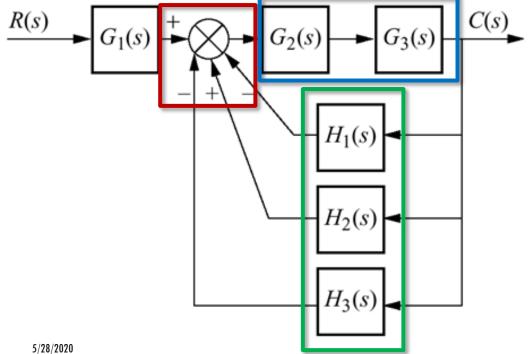
$$Y(s) = \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)} [G_1(s)X(s) + P(s)]$$

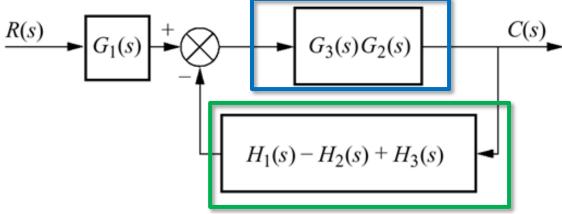
SIMPLIFICAÇÃO DE DIAGRAMA DE BLOCOS

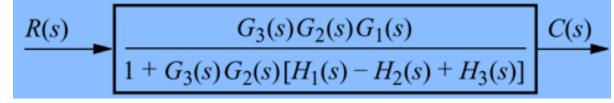
1. Reduzir o seguinte diagrama de blocos para um único bloco





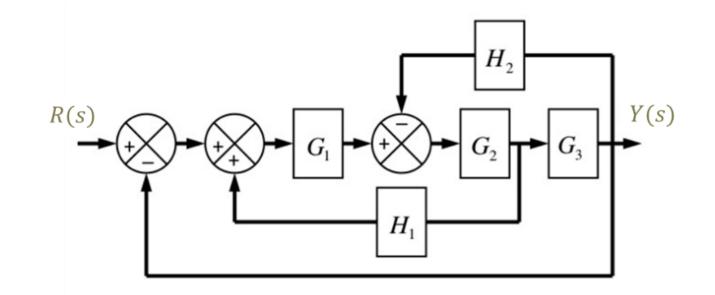




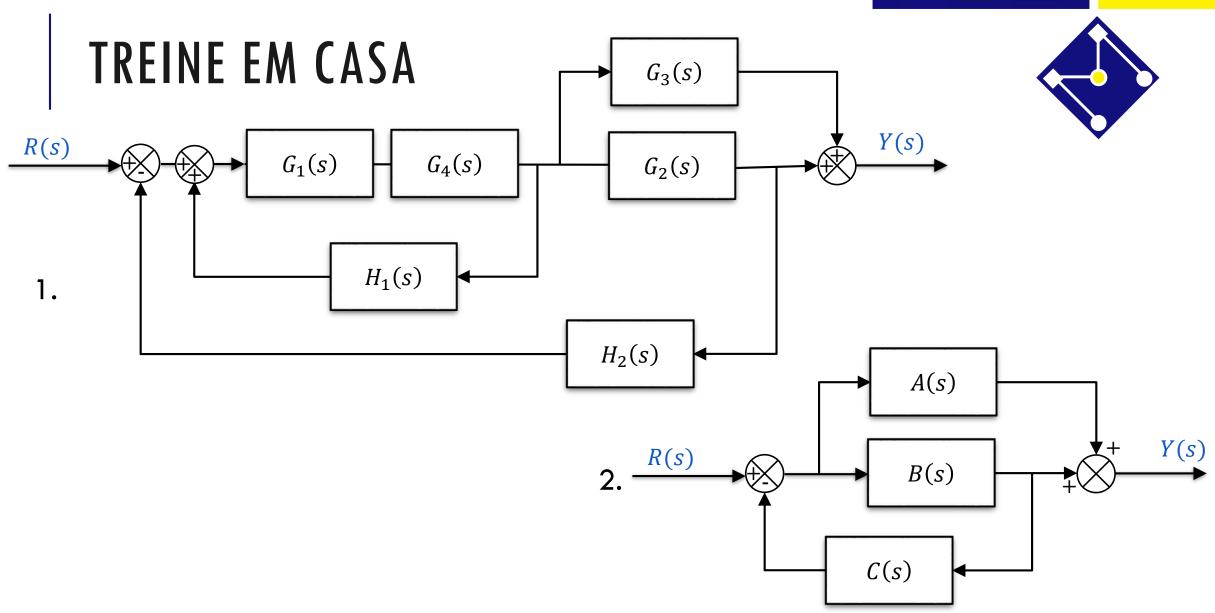


CONT...

2. Reduzir o seguinte diagrama de blocos para um único bloco

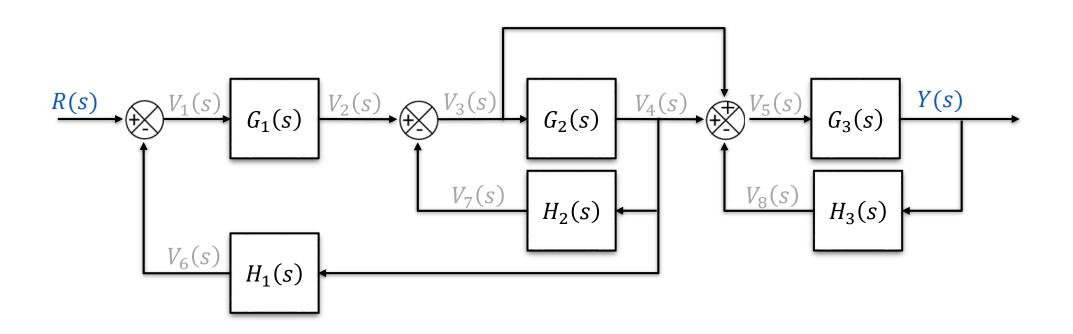


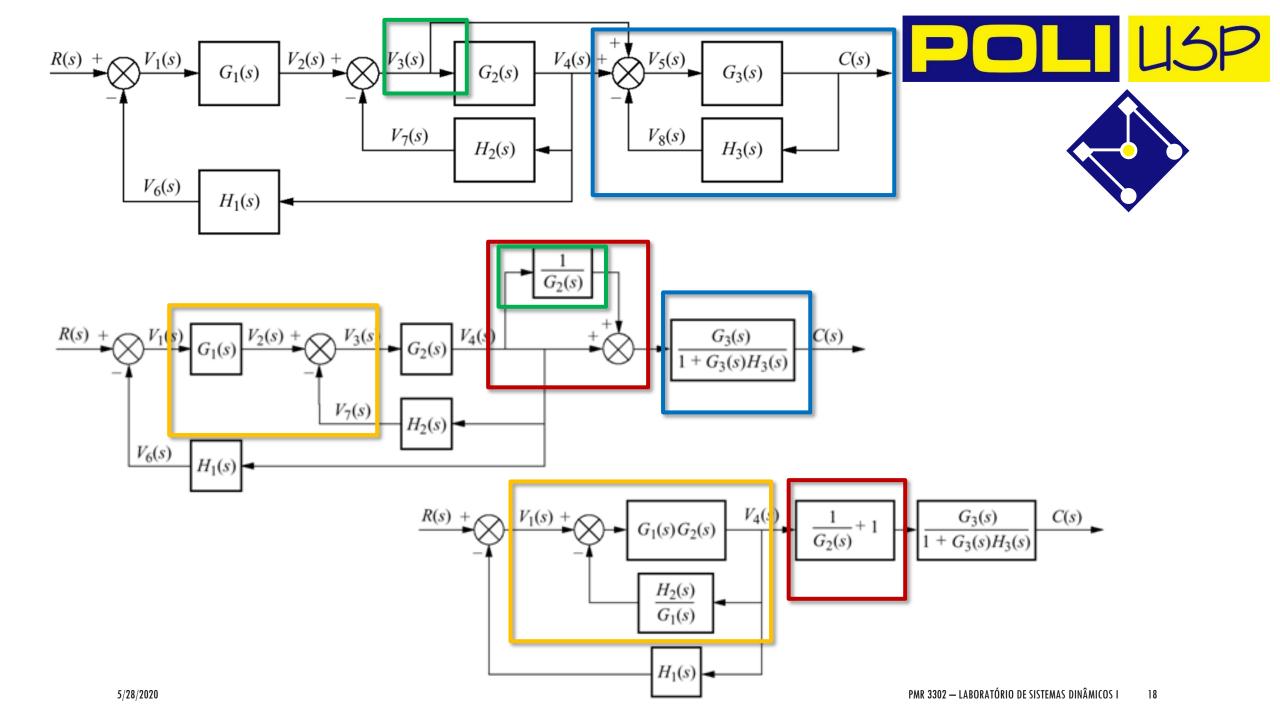


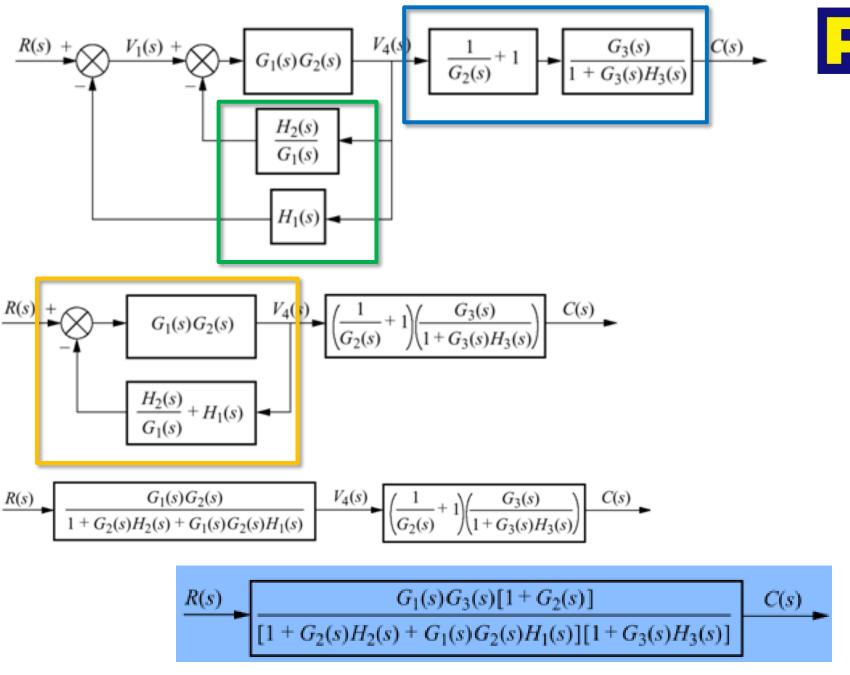


CONT...

3. Reduzir o seguinte diagrama de blocos para um único bloco

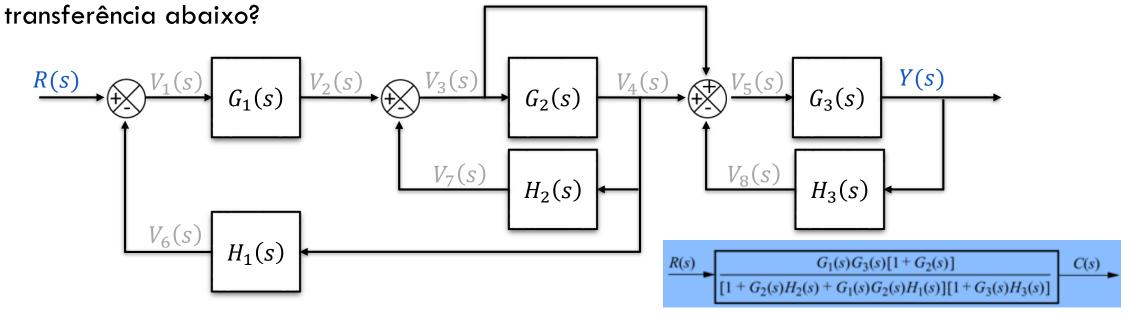






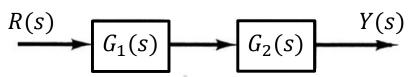
E AGORA...

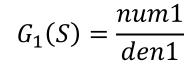
E qual a resposta do sistema anterior a uma função impulso, para as funções de



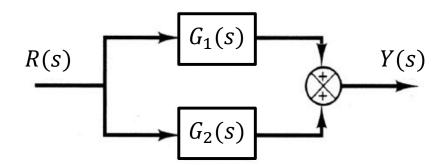
$$G_1(s) = \frac{1}{s+1}$$
 $G_2(s) = \frac{1}{s+2}$ $G_3(s) = \frac{1}{s+3}$ $H_1(s) = 4$ $H_2(s) = 8$ $H_3(s) = 12$

CASCATA, PARALELO E COM REALIMENTAÇÃO USANDO MATLAB/OCTAVE





$$G_2(S) = \frac{num2}{den2}$$

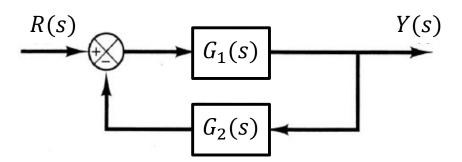


Matlab ou Octave

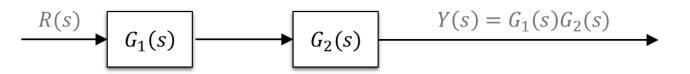
[num, den] = series(num1, den1, num2, den2)

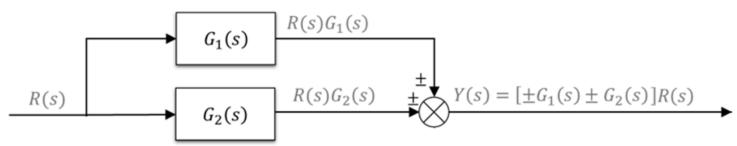
[num, den] = parallel(num1,den1,num2,den2)

[num, den] = feedback(num1,den1,num2,den2)



MALHA ABERTA — SISTEMAS EM SÉRIE E PARALELO





%% Malha aberta
num1=[10]; den1= [1 2 10];
num2=[5]; den2=[1 5];
sys1=tf(num1,den1); sys2=tf(num2,den2);
%malha aberta - sistemas em serie
G1G2serie=series(sys1,sys2)
%malha aberta - sistemas em paralelo
G1G2parallel=parallel(sys1,sys2)

As funções de transferência são,

$$G_1(s) = \frac{10}{s^2 + 2s + 10} = \frac{num1}{den1}$$

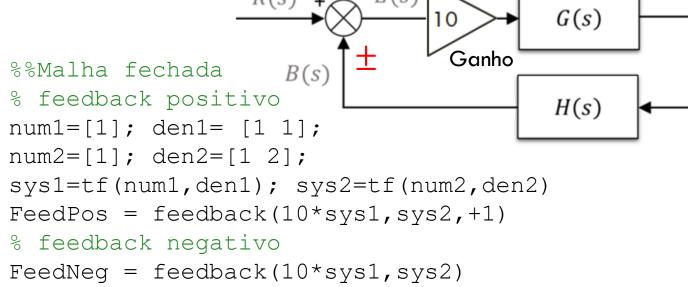
$$G_2(s) = \frac{5}{s+5} = \frac{num2}{den2}$$

SISTEMA COM FEEDBACK

para feedback negativo para feedback positivo

$$G(s) = \frac{1}{s+1} = \frac{num1}{den1} = sys1$$

$$H(s) = \frac{1}{s+2} = \frac{num2}{den2} = sys2$$
 %%Malha fechada



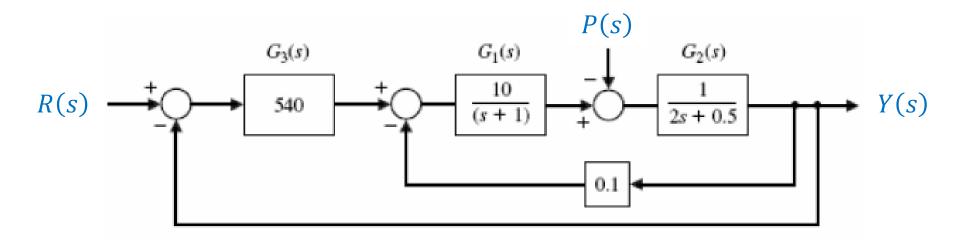
Y(s)

ESTUDO DE CASO I

5/28/2020 PMR 3302 — LABORATÓRIO DE SISTEMAS DINÂMICOS I

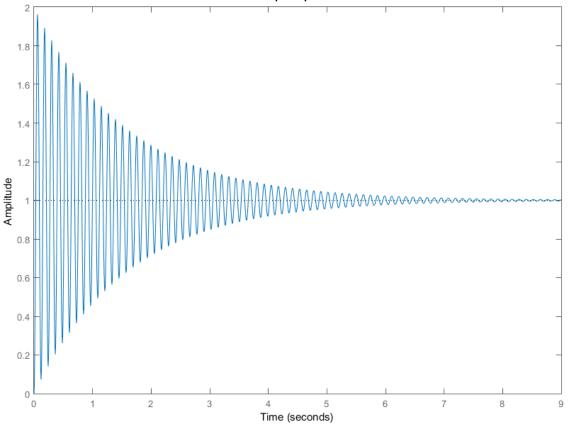
APLICAÇÃO

•Com ajuda do Octave, ache a saída Y(s) do sistema abaixo. Analise a resposta para uma entrada degrau, com perturbação nula.




```
close all; clear all; clc
num1=[10]; den1= [1 1];
num2=[1]; den2=[2 0.5];
sys1=tf(num1,den1); sys2=tf(num2,den2);
sys3=tf(540,1); sys4=tf(0.1,1);
G_1=feedback(series(sys3,feedback(series(sys1,sys2),sys4)),1)
```

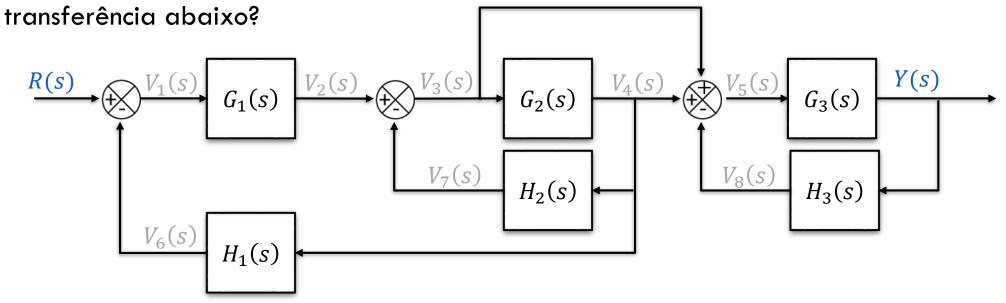
```
syms s
g1=10/(s+1); g2=1/(2*s+0.5); g3=540; g4=0.1;
G_2=g1*g2*g3/(1+g1*g2*g3+0.1*g1*g2);
simplify(G_2)
step(G_1)
```



Step Response

VOLTE AO NOSSO EXEMPLO E RESPONDA...

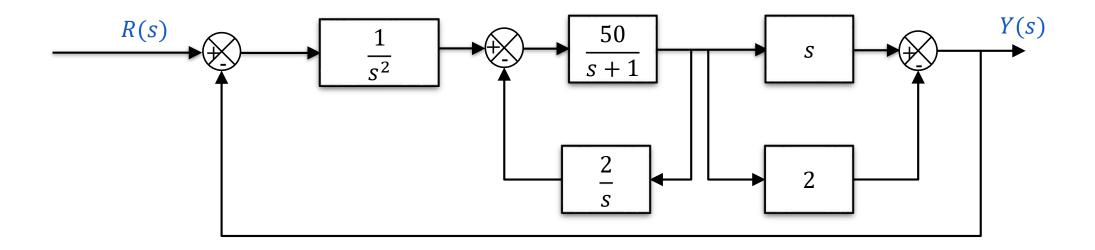
E qual a resposta do sistema anterior a uma função impulso, para as funções de



$$G_1(s) = \frac{1}{s+1}$$
 $G_2(s) = \frac{1}{s+2}$ $G_3(s) = \frac{1}{s+3}$ $H_1(s) = 4$ $H_2(s) = 8$ $H_3(s) = 12$

TAREFA

Com ajuda do Octave, ache a função de transferência Y(s)/X(s) do sistema abaixo. Qual a resposta a uma função degrau?



RESPOSTA NO TEMPO

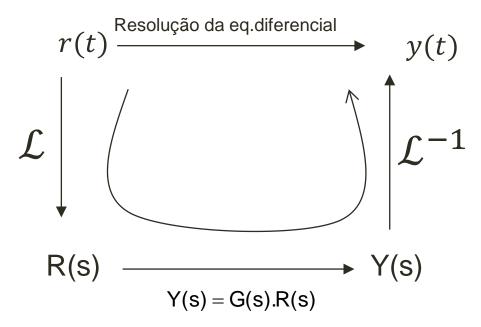
Dados

- a equação diferencial que representa um modelo do SLIT
- lacksquare a entrada r(t)
- as condições iniciais

Pretende-se:

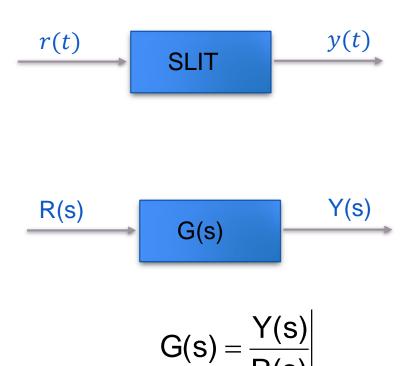
Conhecer a evolução temporal da saída, y(t)

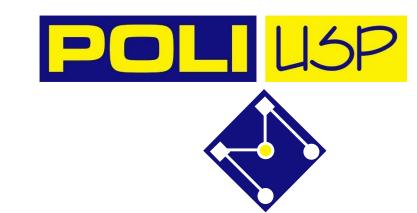
FUNÇÃO DE TRANSFERÊNCIA E A RESPOSTA NO



Se as condições iniciais forem nulas

TEMPO



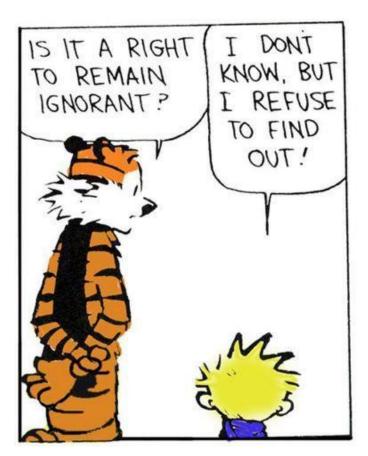


ORDEM DE UM SISTEMA DINÂMICO

Sistemas de ordem 1 e 2

Engineering is the art of molding materials we don't wholly understand, into shapes we can't fully analyze, so as to withstand forces we can't really assess, in such a way that the community at large has no reason to suspect the extent of our ignorance.

James E. Amrhein, 2009 Masonry Institute of America (Retired)



ORDEM DE UM SISTEMA

Sistemas podem ser convenientemente classificados pela ordem da equação diferencial que os modela

$$a_n \frac{d^n y(t)}{dt^n} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_0 y(t) = u(t)$$

y(t) saída

u(t) função estímulo

n ordem do sistema

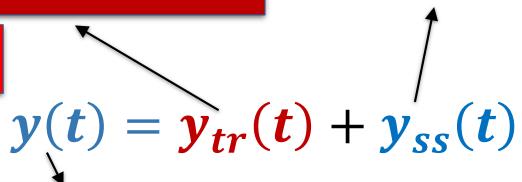
t tempo

 a_i característica do sistema

RESPOSTA TRANSITÓRIA E RESPOSTA ESTACIONÁRIA

Resposta Transitória: ocorre logo após a aplicação de uma nova entrada ao sistema, gerando grandes varições na saída do processo. É o tempo que o sistema se acomoda ou reage à nova entrada.

Também chamada de Solução Homogênea Resposta Estacionária: Comportamento da saída do sistema à medida que t tende ao infinito, i.é, um longo tempo após a aplicação de um dado sinal de entrada.



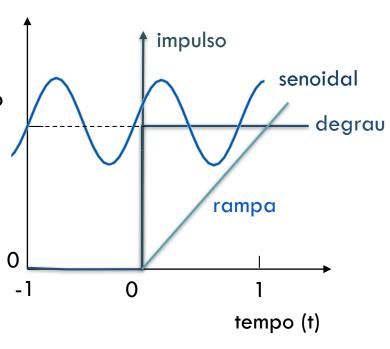
Também chamada de Resposta Forçada ou Solução Particular

Resposta do Sistema

POLIUSP White the second seco

RESPOSTAS DOS SISTEMAS

- •As respostas dos sistemas podem ser divididas em:
 - Resposta natural ou homogênea
 - Resposta forçada, de estado estacionário ou solução particular.
- •As características dinâmicas são mostradas através da resposta dos sistemas a quatro tipos de perturbações diferentes, bastante comuns no estudo experimental e teórico do controle de processos:
 - Função degrau;
 - Função impulso;
 - Função rampa;
 - Função senoidal.
- Técnica de análise de resposta: a que oferecer solução mais rápida dentre:
 - Solução da equação diferencial;
 - Transformada de Laplace;
 - Pólos e zeros.

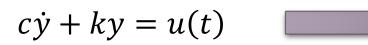


SISTEMA DE PRIMEIRA ORDEM

A constante de tempo.

A variação de um parâmetro no sistema de primeira ordem simplesmente altera a velocidade da resposta.

SISTEMAS DE 1^A ORDEM



Aplica-se a Transformada de Laplace em ambos os lados da equação

 τ é a constante de tempo

uma excitação

$$\tau = \frac{c}{k} \text{ e } K = \frac{1}{k}$$

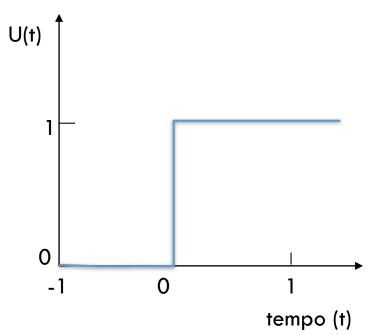
$$G(s) = \frac{Y(s)}{U(s)} = \frac{K}{\tau s + 1}$$

Diagrama de blocos

$$\frac{U(s)}{\tau s + 1} \boxed{\frac{Y(s)}{\tau s + 1}}$$

RESPOSTA DE UM SISTEMA DE 1^A ORDEM A UMA FUNÇÃO DEGRAU UNITÁRIA

Combinando a função de transferência de um sistema de 1ª ordem e a Transformada de Laplace da função degrau com amplitude A,



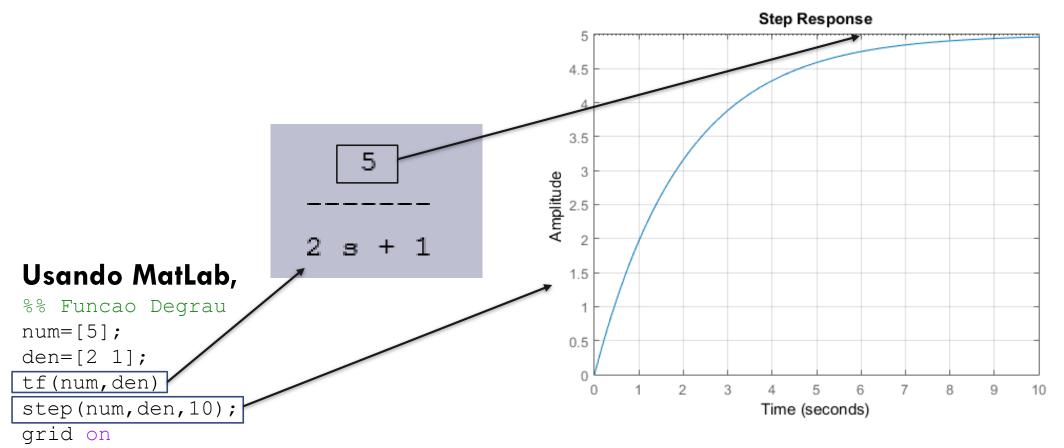
$$Y(s) = \frac{K}{\tau s + 1} \frac{1}{s}$$

$$U(s) = \frac{1}{s}$$
Transformada de Laplace da função degrau com amplitude 1 sistema de 1° ordem

y(t): resposta do sistema, inversa de Y(s),

$$y(t) = K(1 - e^{-t/\tau})$$
 transiente

EXEMPLOS



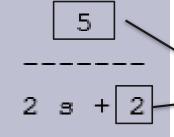
%% Funcao Degrau num=[5];

 $den=[2 \ 2];$

tf(num,den)

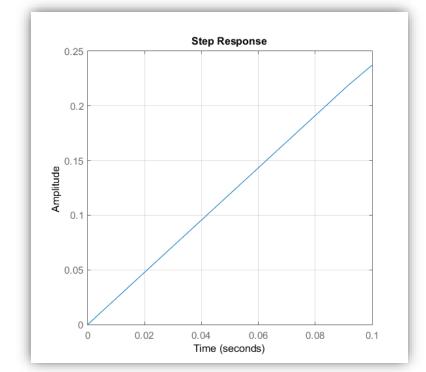
step(num,den,10);

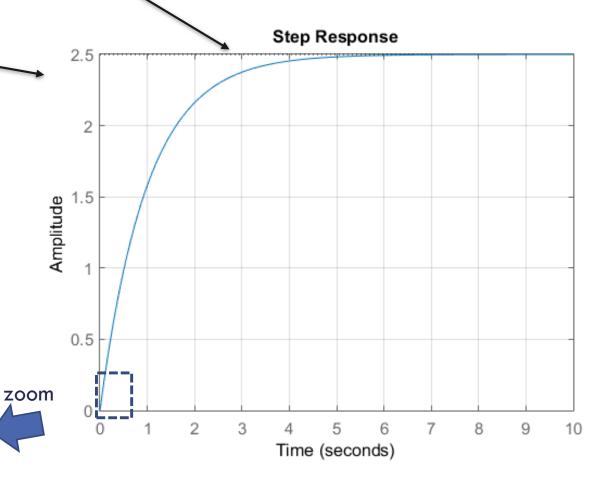
grid on

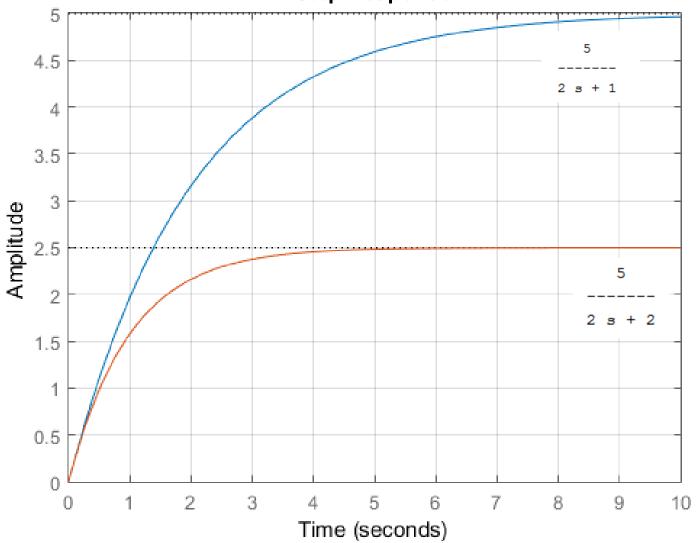


A derivada na origem (Teorema do Valor Inicial):

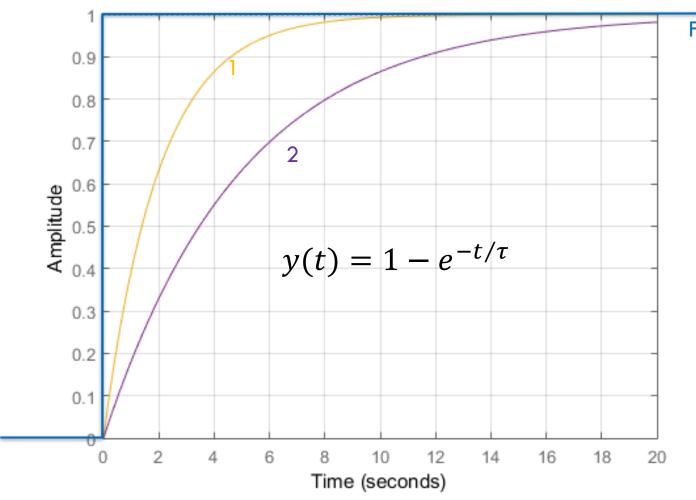
$$\lim_{t\to 0+} \dot{y}(t) = \lim_{s\to \infty} s^2 Y(s) = \lim_{s\to \infty} \frac{K}{\tau s + 1} s = \frac{K}{\tau}$$







Qual dos dois sistemas tem valor maior de τ ?



Função degrau

```
num=[1];
den=[2 1];

tf(num,den)
step(num,den,20);
grid on
hold on
num=[1];
den=[5 1];

tf(num,den)
```

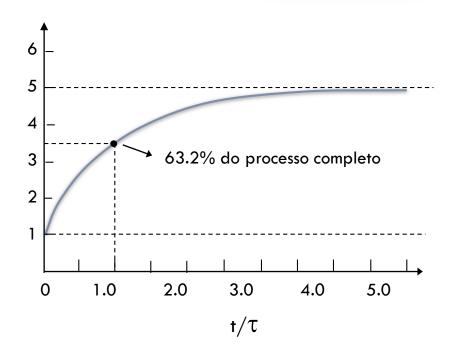
step(num, den, 20);

Um ponto importante é quando a variável independente t atin**gé** a constante de tempo τ do modelo. Para K=1,

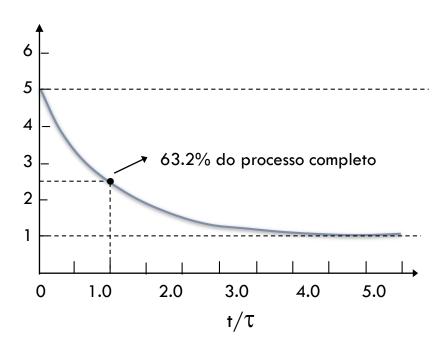
$$y = 1 - e^{-t/\tau}$$

$$y(\tau) = 0,632$$

Neste ponto a saída atinge 63,2% do valor em estado estacionário.

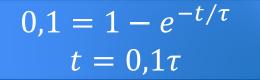


relação entre tempo e constante de tempo



relação entre tempo e constante de tempo

Tempo de subida (t_r) - é o tempo para que o sinal vá de 0,1 a 0,9 do seu valor final. $t_r = 2,2\tau$.



$$0,9 = 1 - e^{-t/\tau}$$
$$t = 2,3\tau$$

Tempo de regime (t_S) - é o tempo para que a resposta alcance uma faixa de valores de $\approx 2\%$ em torno do valor final e aí permaneça: $t_S=4\tau$

Exatamente 2% equivale a $t_{\rm s}=3.912 au$

$$0.982 = 1 - e^{-t/\tau}$$

 $t = 4.01\tau \cong 4\tau$

Um outro ponto importante é quando a saída atinge ≈99% do valor em estado estacionário

A resposta é essencialmente completa ${\tt ap\'os~3(\approx 95\%)~a~5~constantes~de~tempo}$

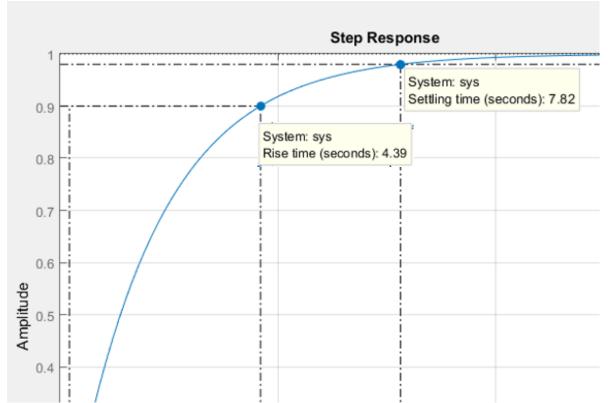
$$0,993 = 1 - e^{-t/\tau}$$

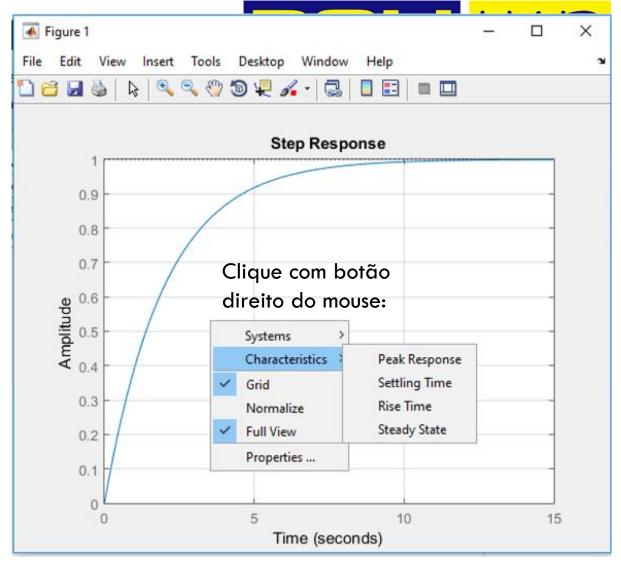
 $t = 4,96\tau \cong 5\tau$

```
%% Funcao Degrau
num=[1];
den=[2 1];
tf(num,den)
step(num,den,15);
grid on
```

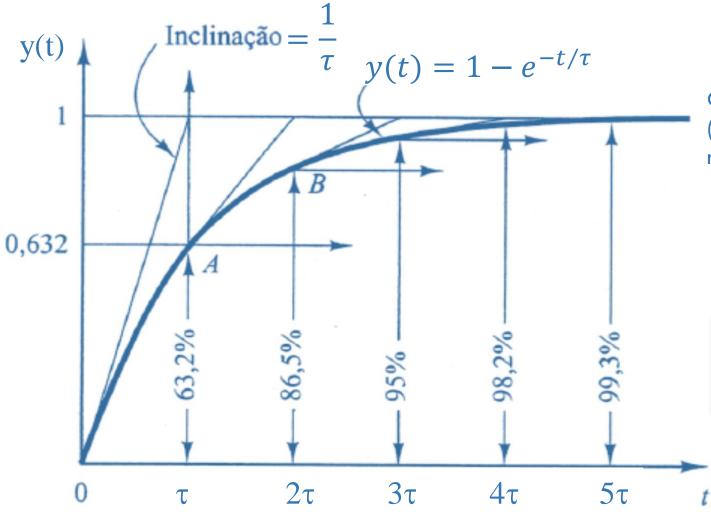
$$t_r = 2.2\tau = 4.4s$$

 $t_s = 4\tau = 8s$





RESPOSTA GRÁFICA PARA K=1

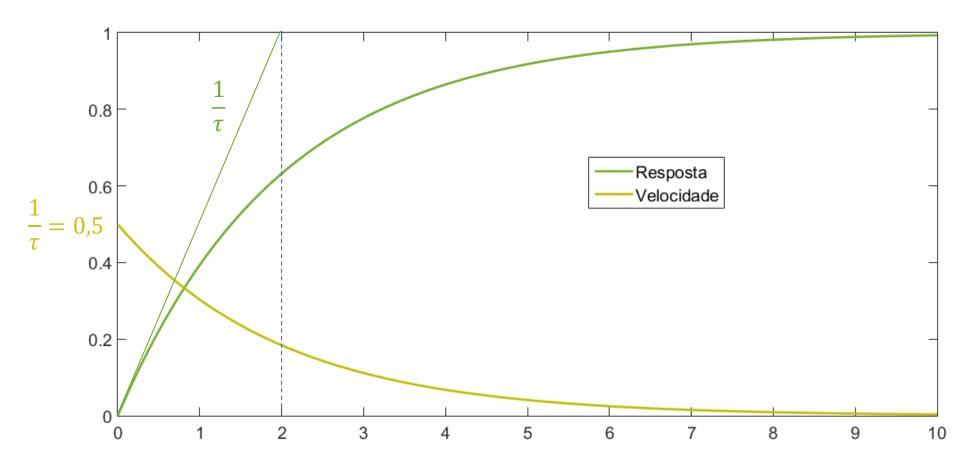


O tempo de subida (0-100%) é, naturalmente, infinito

Quanto menor for a constante de tempo, mais rápida será a resposta do sistema.

Figura Ogata, Engenharia de controle moderno, 5^{α} ed.

POLI USP



$$y(t) = 1 - e^{-t/\tau}$$
$$\dot{y}(t) = \frac{1}{\tau} e^{-t/\tau}$$

POLI USP

RESPOSTA DE SISTEMAS DE 1^A ORDEM A UMA FUNÇÃO IMPULSO

 $u(t) = \delta(t),$ t = 0

Combinando a função de transferência de um sistema de 1^a ordem e a Transformada de Laplace da função Impulso com amplitude A,

$$Y(s) = \frac{K}{\tau s + 1} \mathbf{1}$$

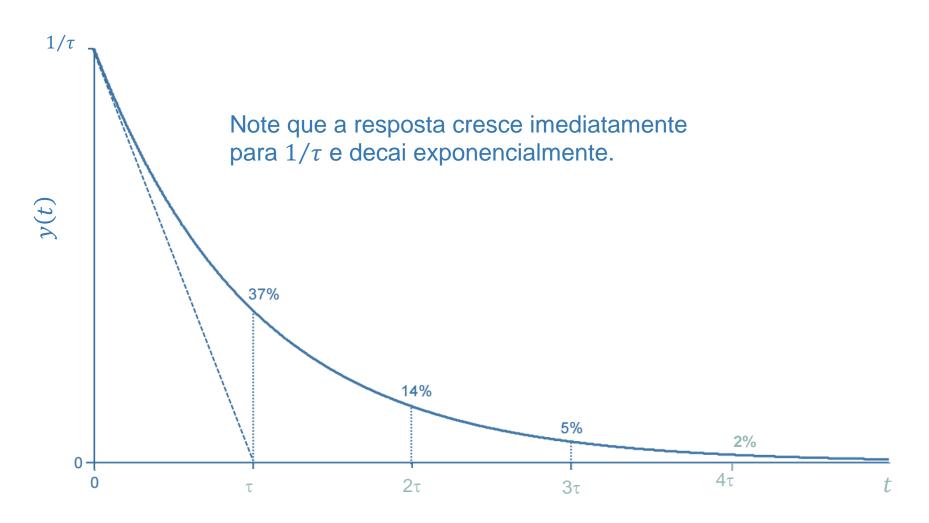
$$U(s) = 1$$
Transformada de Laplace da função Impulso transferência de um sistema de $1a$ ordem

y(t): resposta do sistema, inversa de Y(s),

$$y = \frac{K}{\tau}e^{-\frac{t}{\tau}}$$

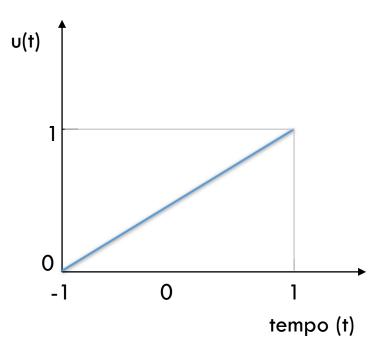
tempo (t)

RESPOSTA GRÁFICA



RESPOSTA DE UM SISTEMA DE 1^A ORDEM A UM FUNÇÃO RAMPA UNITÁRIA

Combinando a função de transferência de um sistema de 1ª ordem e a Transformada de Laplace da função rampa u(t)=t,

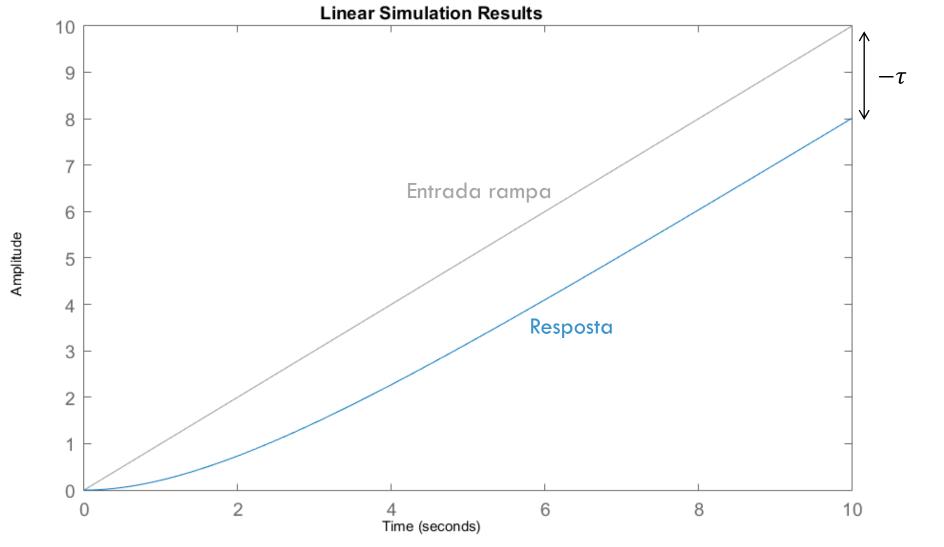


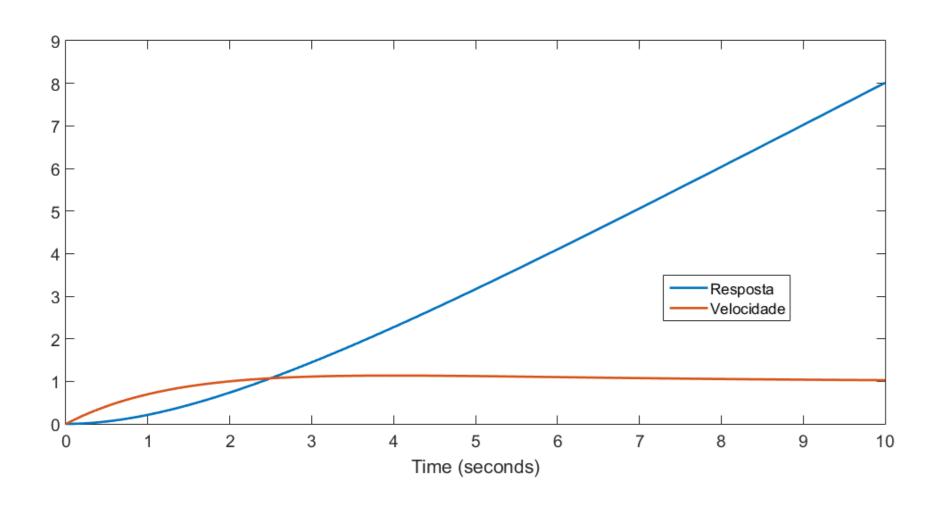
$$Y(s) = \frac{K}{\tau s + 1}$$
Função de transferência de um sistema de 1° ordem

$$U(s) = \frac{1}{s^2}$$
 Transformada de Laplace da função rampa com declividade 1

y(t): resposta do sistema, inversa de Y(s),

$$y(t) = K(t - \tau + \tau e^{-t/\tau})$$





SISTEMAS SLIT

Entrada unitária	$y(t)$ para $t \geq 0$
Rampa	$y(t) = t - \tau + \tau e^{-t/\tau}$
Degrau	$y(t) = 1 - e^{-t/\tau}$
Impulso	$y = \frac{1}{\tau}e^{-\frac{t}{\tau}}$

A resposta à derivada de um sinal de entrada pode ser obtida diferenciando-se a resposta do sistema para o sinal original.

A resposta à integral de um sinal de entrada pode ser obtida integrando-se a resposta do sistema para o sinal original e pela determinação da constante de integração a partir da condição inicial de resposta nula.

- •Como os zeros e polos afetam a resposta de um sistema de primeira ordem??!!??
- •Vamos ver como através do exemplo:

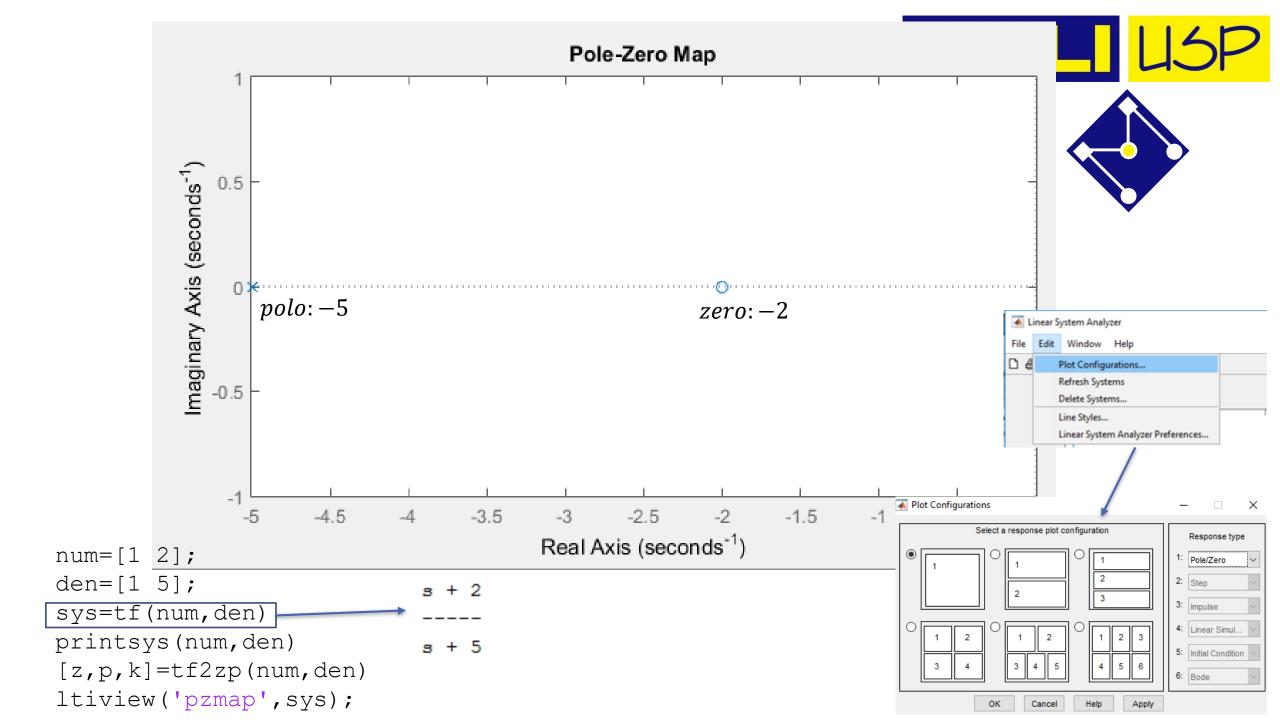
$$G(s) = \frac{s+2}{s+5}$$

Polo:

-5

Zero:

-2



PROPRIEDADES

Para mostrar as propriedades dos polos e zero, vamos analisar a resposta do sistema a um degrau unitário. Ou seja,

$$U(s) = \frac{1}{s}$$

Assim,

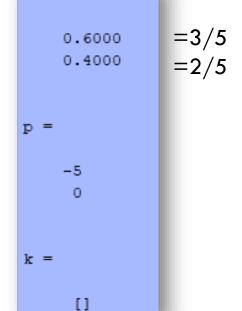
$$Y(s) = G(s)U(s) = \frac{s+21}{s+5s}$$

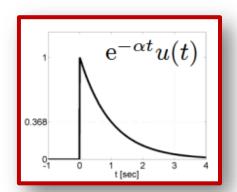
$$Y(s) = \frac{A}{s} + \frac{B}{s+5} = \frac{2/5}{s} + \frac{3/5}{s+5}$$

$$y(t) = \frac{2}{5} + \frac{3}{5}e^{-5t}$$

```
close all; clear all; clc
syms s
sys1=partfrac((s+2)/(s^2 +5*s));
pretty(sys1)

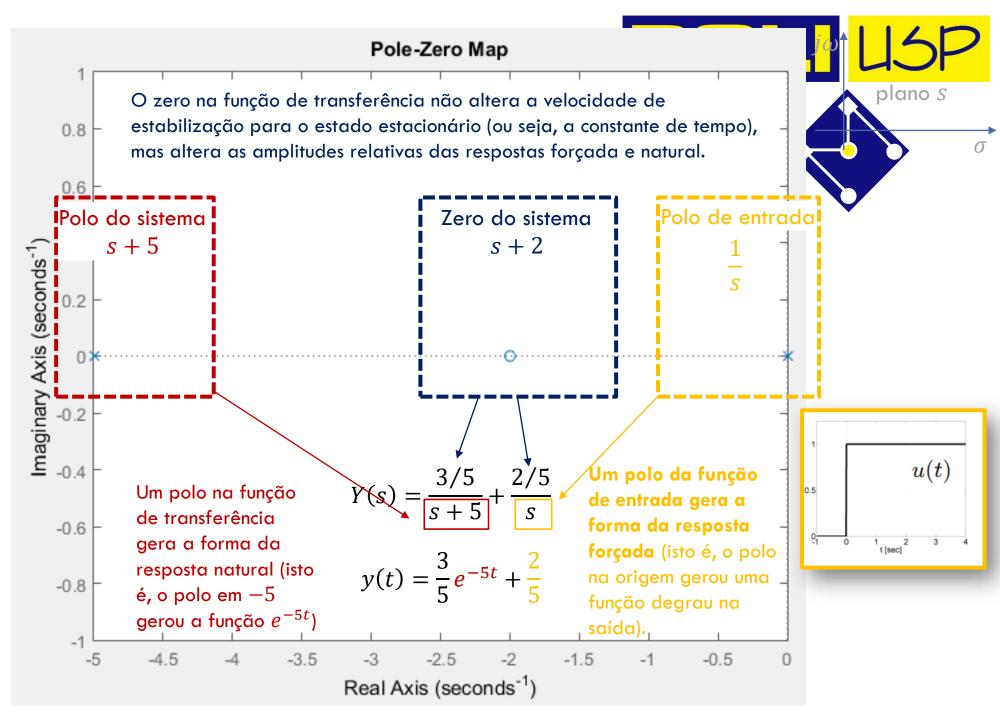
3     2
% OU
5 (s + 5) 5 s
```

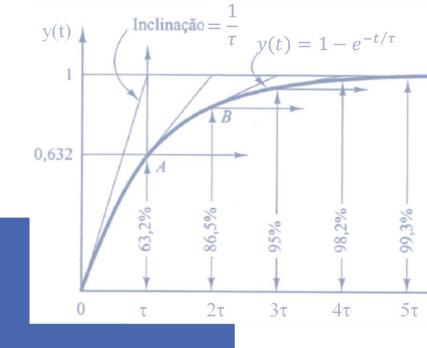




Pólo na função de transferência gera resposta natural

Um polo sobre o eixo real gera uma resposta exponencial da forma $e^{-\alpha t}$, onde $-\alpha$, é a localização do polo sobre o eixo real. Assim quanto mais à esquerda no eixo real negativo, estiver um polo, mais rápido o decaimento da resposta transiente exponencial para zero.





$$Y(s) = \frac{K}{\tau s + 1}$$

Constante de tempo $ au$	$y(\tau) = 0.632$ K
Tempo de subida: é o tempo para que o sinal vá de 0,1 a 0,9 do seu valor final	$t_r = 2,2\tau$
Tempo de regime: é o tempo para que a resposta alcance uma faixa de valores de 2% em torno do valor final e aí permaneça	
Quando a saída atinge 99% do valor em estado estacionário	$t \cong 5\tau$

ESTUDO DE CASO

08 e 15 de junho de 2018 PMR 3302 — LABORATÓRIO DE SISTEMAS DINÂMICOS I

EXERCÍCIO 01

•Usando o MatLab, prove que a resposta de um sistema de primeira ordem a uma entrada senoidal $A\sin\omega t$ é a seguinte,

$$y(t) = \frac{KA\omega\tau}{1 + (\omega\tau)^2} e^{-\frac{t}{\tau}} + \frac{KA}{\sqrt{1 + (\omega\tau)^2}} \sin(\omega t + \varphi(\omega))$$

Onde

$$\varphi(\omega) = -\tan^{-1}\omega\tau$$

É o atraso da resposta em relação à entrada.

$$y(t) = \frac{KA}{\sqrt{1 + (\omega \tau)^2}} \sin(\omega t + \varphi(\omega))$$

 $A \sin \omega t + B \cos \omega t = C \sin(\omega t + \varphi)$ onde,

$$C = \sqrt{A^2 + B^2} \quad \varphi = -\tan^{-1}\frac{B}{A}$$


```
close all; clear all; clc
%Laplace de \sin(wt) = w/(s^2+w^2)
%Asin(wt)+Bcos(wt)=Csin(wt-phi), onde:
C=sqrt(A^2+B^2), phi=atan(-B/A)
syms s t w tau K A
%omega=10;
y=A*K*w/(tau*s^3+s^2+tau*w^2*s+w^2);
simplify(y)
pretty(y)
Y=ilaplace(y)
```


PMR 3302 — LABORATÓRIO DE SISTEMAS DINÂMICOS I 08 e 15 de junho de 2018

POLI USP

EXERCÍCIO 02

Um termômetro de mercúrio com constante de tempo de 0,1 min e amplificação 1 é colocado em uma temperatura $T=100^{\circ}\text{C}$ até atingir o equilíbrio com o líquido. No instante t=0, a temperatura do líquido começa a variar de forma senoidal, em torno de 100°C , com amplitude de 2°C . Se a frequência de oscilação é $10/\pi$ e $100/\pi$ ciclos/min, plote a resposta do termômetro com o tempo.

- 1. Qual a máxima temperatura medida pelo termômetro em cada frequência?
- 2. Qual o atraso da resposta em cada frequência?
- 3. Sabe-se que a razão entre as amplitudes da resposta (solução estacionária) e da entrada é a chamada razão de amplitude, $M_P(\omega)$, e representa o efeito da dinâmica do processo, au, sobre a resposta senoidal. Dessa forma, explique a diferença entre as saídas para as diferentes frequências.

$$M_P(\omega) = \frac{1}{\sqrt{1 + (\omega \tau)^2}}$$

4. Um sistema de primeira ordem pode ser usado como filtro? Que tipo de filtro? Justifique.

POL

EXERCÍCIO 03

•Considere a função de transferência

$$G(s) = \frac{100}{s+20}$$

Calcule,

- A. O valor do polo;
- B. A constante de tempo;
- C. O valor final da saída através do Teorema do Valor Final
- D. O valor final da saída através da resposta no tempo y(t)
- E. O valor da saída para uma constante de tempo $(t = \tau)$.

$$\tau = \frac{1}{20} = 0.05 \text{ s}$$

Teorema do Valor Final:
$$\lim_{t\to\infty} y(t) = \lim_{s\to 0} sY(s)$$

Permite determinar o valor de estado estacionário da resposta do sistema, sem encontrar a transformação inversa. Procedimento,

- i. Encontre a função de transferência Y(s)
- ii. Multiplique Y(s) por s
- iii. Tome o limite de SY(S) quando S vai para zero
- iv. Resultado é valor de y(t) quando t vai para infinito

Portanto,

$$y(\infty) = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = s \frac{100}{s + 20} \frac{1}{s} = 5$$

syms s
$$sys1=partfrac((100)/(s^2 +20*s)); \\ pretty(sys1)$$
 i. é, para $t \to \infty$, $y(t) \to 5$ ilaplace(sys1)

$$y(t) = 5 - 5e^{-20t}$$
, quando $t = \tau = 0.05$ tem-se que $y(0.05) = 3.1606$.

WILLIAM JEFFERSON CLINTON

PROLOGUE BY
TOM PETERS, In Search of Excellence

FIM DO SEXTO E SÉTIMO MÓDULOS

John C. Bogle says: Learn every day, but especially from the experiences of others. It's cheaper!

