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Abstract 

Fuzzy Rule-Based Systems have been succesfully applied to pattern classification 
problems. In this type of classification systems, the classical Fuzzy Reasoning Method 
(FRM) classifies a new example with the consequent of the rule with the greatest degree 
of association. By using this reasoning method, we lose the information provided by the 
other rules with different linguistic labels which also represent this value in the pattern 
attribute, although probably to a lesser degree. The aim of this paper is to present new 
FRMs which allow us to improve the system performance, maintaining its interpret- 
ability. The common aspect of the proposals is the participation, in the classification of 
the new pattern, of the rules that have been fired by such pattern. We formally describe 
the behaviour of a general reasoning method, analyze six proposals for this general 
model, and present a method to learn the parameters of these FRMs by means of 
Genetic Algorithms, adapting the inference mechanism to the set of rules. Finally, to 
show the increase of the system generalization capability provided by the proposed 
FRMs, we point out some results obtained by their integration in a fuzzy rule gener- 
ation process. 0 1999 Elsevier Science Inc. All rights reserved. 
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1. Introduction 

Fuzzy Rule-Based Systems (FRBSs) have been succesfully applied to pattern 
classification problems ([4,5,7]). The interest in using FRBSs arises from the 
fact that they provide a good platform to deal with noisy, imprecise or in- 
complete information which is often handled in any human-cognition system. 
They are an effort to reconcile the empiric precision of traditional engineering 
techniques and the interpretability of Artificial Intelligence. 

In classification problems, the fundamental role of fuzzy rules is to make the 
opaque classification schemes, as usually used by a human, transparent in a 
formal and computer-realizable framework ([30]). Therefore, Fuzzy Rule- 
Based Classification Systems (FRBCSs) may be assigned two classes of Clas- 
sification Systems: those which are supposed to work autonomously, and those 
which are intended to be tools in the hands of the user to help him to take 
decisions. In the former case, the performance level may be the answer, but in 
the latter, other dimensions such as comprenhensibility, robustness, versatility, 
modificability and coherence with previous knowledge may be fundamental in 
order to allow the system to be accepted for use. The second kind of properties 
are associated to the fuzzy rule structure. The first one, the performance level, 
also depends on the Fuzzy Reasoning Method (FRM) employed. The FRM 
has an important role in FRBCSs in order to find the highest performance 
level. 

As is well known in FRBCSs, the classical FRM, maximum matching, 
classifies a new example with the consequent of the rule with the greatest as- 
sociation degree ([1,7,15,19,21,22,25,26]). Using this inference method, we lose 
the information provided by the other fuzzy rules with different linguistic labels 
which also represent the value in the pattern attribute, although probably to a 
lesser degree. On the other hand, in fuzzy control it is well-known that the best 
performance is obtained when we use defuzzification methods that operate on 
the fuzzy subsets obtained by the fuzzy rules fired ([9]). As regards FRBCSs, in 
Refs. [4,6,7,20] the information provided for all rules belonging to the set of 
rules is used for a classification problem. 

The aim of this paper is to present new FRMs which allow us to improve the 
system performance, maintaining its interpretability. The common aspect of 
the proposals is that all rules fired by a pattern participate in the classification 
of such pattern. We describe formally the behaviour of a general reasoning 
method, analyzing six specific proposals for this general model. We present a 
method to learn the parameters of these FRMs by means of Genetic Algo- 
rithms, adapting the inference mechanism to the set of rules, so improving the 
performace of the FRBCSs. Finally, we point out some results obtained by the 
integration of the FRMs in a fuzzy rule generation process. 

This paper is organized as follows. Section 2 briefly reviews FRBCSs, and 
describes the different structures for the fuzzy rules. Section 3 presents the 
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classical reasoning method, a general model of fuzzy reasoning, the alternative 
proposals for FRMs, and some experiments carried out, showing the good 
behavior of the latter reasoning methods. Section 4 describes a genetic learning 
algorithm for inference parameters, shows some experiments with this pro- 
posal, and introduces some results obtained by the integration of the proposed 
FRMs in a fuzzy rule generation process. Finally, some concluding remarks are 
presented in Section 5. 

2. Fuzzy rule-based classification systems 

Pattern classification problems involve assigning a class C’ from a prede- 
fined class set C = { C1, . . . , C,} to an object, described as a point in a certain 
feature space x E SN. 

The problem of designing a classifier is to find a mapping 

D: SN--,C 

optimal in the sense of a certain criterion 6(D) that determines the classifier 
performance. Usually, the final goal is to design a classifier that assigns class 
labels with the smallest possible error across the whole feature space. The 
classifier may be a set of fuzzy rules, a neural network, a decision tree, etc. 
When the classifier is a set of fuzzy rules, the resulting system is called a Fuzzy 
Rule-Based Classification System (that we have denoted by FRBCS). 

An FRBCS is composed of a Knowledge Base (KB) and an FRM. The KB 
is made up by the Rule Base (RB) and the Data Base (DB) that describes the 
semantic of the Fuzzy subsets associated to the linguistic labels in the if-part of 
the rules. The FRM uses the information from the KB to determine a label 
class for all admisible patterns. This structure is shown in Fig. 1. 

r---: --Gil 
Fig. 1. Fuzzy rule-based classification system. 
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To build an FRBCS we begin with a set of preclassified examples, from 
which we must determine: 
l the method to find or learn a set of fuzzy rules for the specific classification 

problem, and 
l the fuzzy reasoning method used to classify a new pattern. 

Many researches have proposed various methods for generating fuzzy rules 
from numerical data pairs ([ 1,6-8,13,15,18,19,22,24,26]). In this paper, we will 
use an FRBCS constituted by an RB generated by the technique that extends 
the Wang and Mendel algorithm ([27]) to fuzzy classification rules ([6,7]). In 
Appendix A, we briefly review this learning method. 

For the description of the FRMs, we explain the three types of fuzzy rules 
that may be used to build the RB in Section 2.1. 

2.1. Types oj’fuzzy rules 

We can generate RBs with one of the following three types of rules: 
(a) Fuzzy rules with a class in the consequent [ 1,151. This kind of rules has the 

following structure: 

Rk: If x1 is A: and . . and xN is Ai then Y is Cj, 

where x1, . ,x,,, are the outstanding selected features for the classification 
problem, A!, . , A$ are linguistic labels used to discretize the continuous do- 
main of the variables, and Y is the class C, to which the pattern belongs. 

(b) Fuzzy rules with a class and a certaintla degree in the consequent [18]. 

Rk: If XI is A: and . . and XN is Ak, then Y is Cj with #, 

where # is the certainty degree of the classification in the class Cj for a pattern 
belonging to the fuzzy subspace delimited by the antecedent. This certainty 
degree can be determined by the ratio 

s: 
Sk ’ 

where, considering the matching degree as the compatibility degree between the 
rule antecedent and the pattern feature values, 
l S: is the sum of the matching degrees for the class C, patterns belonging to 

the fuzzy region delimited by the antecedent, and 
l Sk the sum of the matching degrees for all the patterns belonging to this Fuz- 

zy subspace, regardless its associated class. 
(c) Fuzzy rules with certainty degree for all classes in the consequent [22,24]. 

Rk: If xl is A; and . and xN is A;. then (6,. . . , I”,), 

where e is the soundness degree for the rule k to predict the class Ci for a 
pattern belonging to the fuzzy region represented by the antecedent of the rule. 
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This degree of certainty can be determined by the same ratio as the type (b) 
rules. 

The last type of rule extends type (a) and type (b) using different values for 
(6 . . . , &). Considering 

4=1, <=O, jfh, j=l,..., M, 

we have the first case, and with 

t-f=@, $=O, j#,h, j=l,..., M 

we have the second one. 
From this point, to develop the theoretical model of the reasoning method in 

an FRBCS, we will work wit.h type (c) rules. As regards the experiments, we 
will consider the three types of rules. 

3. Fuzzy reasoning methods 

As was mentioned earlier, an FRM is an inference procedure that derives 
conclusions from a set of fuzzy if-then rules and a pattern. The power of fuzzy 
reasoning is that we can achieve a result even when we do not have an exact 
match (with degree 1) between a system observation and the antecedents of the 
rules. 

The use of a reasoning method that combines the information of the rules 
fired with the pattern to be classified can improve the generalization capability 
of the classification system. We will analyze this idea in this section according 
to the following structure. First, we describe the classical FRM. After that, we 
present a general model of reasoning that involves different possibilities as 
reasoning methods, and we propose six alternative FRMs as some particular 
new proposals inside the general reasoning model. Finally, in the last section 
we present the experiments carried out, showing the good behaviour of the 
alternative reasoning methods. 

3.1. Classical fuzzy reasoning method: maximum matching 

Suppose that the RB is K = {Ri, . . . ,RL} and there are Lj rules in R that 
produce class Cj. Clearly in an RB type c), Lj = L b’j = 1, . . . , M. 

For a pattern El = (efi, . . , , eh), the classical fuzzy reasoning method con- 
siders the rule with the highest combination between the matching degree of the 
pattern with the if-part and the certainty degree for the classes. It classifies E 
with the class that obtains the highest value. This procedure is described in the 
following steps. 
l Let Rk(E’) denote the strength of activation of the if-part of the rule k (match- 

ing degree). Usually Rk(E) is obtained by applying a t-norm to the degree of 
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satisfaction of the clauses (xi is A;) 

RkPr) = T(~~,:(el),...,CIA”,(ejy)). 

In the literature, there are some proposals for this conjunction operator; 
some of them are the following: Ishibuchi et al., uses the t-norm product and 
minimum ([IS]), Gonzalez et al., uses the minimum ([15]), and Mandal et al. 
([22]) and Uebele et al. ([26]) calculate the matching degree by means of the 
arithmetic mean (which is not a t-norm). 

l Let h(Rk(E’),$) d enote the degree of association of the pattern w,ith class Cj 
according to the rule k. This degree is obtained by applying a combination 
operator between R”(E) and r$. For this operator, in Ref. [4] are used the 
minimum and product ones, in Ref. [18] the product and in Ref. [22] the ar- 
ithmetic mean. 

l For each class C/, the degree oj’association of the pattern with the class, Y,, is 
calculated 

I$ = ngx h(l?(E’),$). 
J 

This degree of association is a soundness degree of the classification of the 
pattern E in class Ci. 
l The classification for the pattern E’ is the class C, such 

yh = jzyf.xMr;. 
> > 

Graphically, this method could be seen as shown in Fig. 2. 
This reasoning method uses only one rule -the winner rule- in the inference 

process and wastes the information associated to all those rules whose asso- 
ciation degree with the input pattern is lower than the association degree of the 
selected rule. If we only consider the rule with the highest association degree, 
we would only be considering one fuzzy subset for each value of the attributes, 
and we would not take into account the information of other rules with other 

. . .._ .:’ .*.. R1 ..... : R2 ‘:,, 

4; ..l * 
Pattcm : Rk ; 

: : : 

*. .* RL ..j* 
. . . . . . ..*. 

I ClMS 

Fig. 2. Fuzzy reasoning method that uses only the winner rule 

Rafael
Destacar
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fuzzy subsets which also have the value of the attribute on its support but to a 
lesser degree. Working in this way, we would be considering an interval dis- 
cretization in a masked way. 

3.2. General Model of Fuzzy Reasoning 

In this section, we present a common and general model of fuzzy reasoning 
to combine information provided by different rules. This model is an extension 
of the fuzzy classifier definition presented by Kuncheva in Ref. [21]. 

Considering a new pattern E’ = (e:, . . . , eh), the steps of the general rea- 
soning model are the following: 
1. Matching degree. To calculate the strength of activation of the if-part for all 

rules in the RB with the pattern B, using a t-norm ([2,11]). 

@(Et) = T(p,+(e:), . . . ,pA;(eh)), k = 1,. . . ,L. 

2. Association degree. To calculate the association degree of the pattern I? with 
the M classes according to each rule in the RB. 

bjk=h(Rk(E’),rj), j=-l,..., M, k=l,..., L. 

3. Weighting function. To weight the obtained values, through a function g. A 
possibility is to increase the higher values of the association degree and pe- 
nalize the lower ones. 

B; =g(b;), j= l,..., M, k= l,..., L. 

4. Pattern classtjication soundness degree for all classes, We use an aggregation 
function ([2,11]) that combines -for each class- the positive degrees of asso- 
ciation calculated in the previous step and produces a system soundness de- 
gree for the classification of the pattern in this class. 

I;=f(Bjk, k= l,... ,L and B; >O), j= l,..., M. 

with f being an aggregation operator verifying min <f < max. It is clear 
that if we select f as the maximum operator, we have the classical FRM. 

5. Classtjication. We apply a decision function F over the soundness degree of 
the system for the pattern classification for all classes. This function will de- 
termine the class label I corresponding to the maximum value. 

CC = F(Y,, . . . , YM) such as Y, = jza”,q. 
, .., 

The general fuzzy reasoning model is represented graphically in Fig. 3. 
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Fig. 3. General fuzzy reasoning model. 

3.3. Alternative fuzzy reasoning methods 

According to the formulation that we have stated above, there are four steps 
that we must define to determine a fuzzy reasoning method in an FRBCS. In 
the following, we present the proposal for the alternative FRMs. 

The first two components of the proposals are used classically. 
(1) Pattern matching degree with the if-part qf o rule k. It will be calculated by 
the min I-norm. 

P(P) = min &(e:), 
i=l.....N 

(2) Association degree. To obtain a global response from the rule between the 
pattern and one class, we define function 11 such as 

h(Rk(E’)> <) = Rk(E’)+ 

The following two steps establish the new fuzzy reasoning proposals ac- 
cording to the general reasoning model. 
(3) Weighting function. We consider two weighting functions, 

g,(x) =x, vx E [O, l]! 

that leaves the degrees of association without weighting, and 

g?(x) = 
{ 

X2 if x < 0.5, 

fi if x 2 0.5, 

that favours the degrees of association greater than 0.5 and penalizes the 
ones under than this value. 
(4) Aggregation jimction. Let (al, ( Q,~) be the positive weighted degrees of 
association for the pattern El and the class C,, according to the rules in the 
RB, that is 

(al ,..., a,)=(B~>O,k=l,..., L), 
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where s is the number of positive elements for that class. 
As we mentioned above, if the aggregation function is the maximum, the 

FRM is the classical one. We use some alternative aggregation functions that 
produce an aggregated value between the minimum and the maximum. The 
functions considered are: 

(a) Normalized addition. 

X:=1 ai 
fi(al,...,a,) =--- 

.flw ' 

where f,,,, = mm,=1 . . . . . M Cz, ai, and (al, . . . , as,,) are positive weighted degrees 
of association for pattern E’ and class Ch, according to the rules in the RB. 

This function accumulates the association degree of the pattern with the 
class Cj for the rules in the RB. Finally this sum is divided by the maximum 
sum for all classes, to obtain a normalized value. Bardossy et al., studied this 
FRM as a method for combining fuzzy rule responses, called additive combi- 
nation ([4]). This operator was also presented by Chi et al., in Ref. [7] like a 
defuzzification method to produce a classification result for an FRBCSs, called 
maximum accumulated matching. Ishibuchi et al., used it in Ref. [20] as well, 
where the inference result is given by the voting of the fuzzy if-then rules that 
are compatible with the pattern to be classified and it was calledfuzzy reasoning 
method based on the maximum vote. 

(b) Arithmetic mean. 

Cf=, ai 
h(al,. . . ,a,) = ---. 

s 

The arithmetic mean is an operator with a compensation degree between the 
minimum and the maximum, used to synthesize judgement in multicriteria 
decision processes. The use of this operator is suitable for combining the in- 
formation given by each local classifier and to obtain an average degree that 
considers the quality of the rules in the inference process. 

(c) Quasiarithmetic mean. The quasiarithmetic mean operator is a strictly 
monotonous and continuous function defined as 

h(al,... , a,) = H-’ HUH . 
[ I r=l 

We will use H(x) = xp, p E R and so, this operator looks like the generalized 
mean function with equal weight for the unit to all the values to aggregate, and 
with a compensation degree between the minimum and the maximum, in- 
cluding the arithmetic and geometric means. Exactly, 

If P ---) -cm, f3 -+ min, 

Ifp--,+oo, f3 -+ max. 
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In Ref. [12] a detailed study may be found about the properties and behaviour 
of this operator. 

(d) Sowu And-Like. The Sowa And-Like operator has the following ex- 
pression: 

where c1 E [0, l] and amin = min{ai, . . . , a,}. 
This operator presents a behaviour between the arithmetic mean and the 

minimum. 

If c( = 0, f4 is the arithmetic mean. 

If CI = 1, f4 is the minimum. 

(e) Sowa Or-Like. The Sowa Or-Like operator is defined as 

with CI E [O? l] and amax = max{ai, . . . ,a,}. 

In this case, and according to the value of a, this operator will give back a 
value between the following extremes: 

If c( = 0, fs is the arithmetic mean. 

If c( = 1, j-5 is the maximum. 

(f, Budd. The Badd operator expression is: 

pi R. 

This aggregation function gives us an aggregation value between the minimum 
and maximum according to the value of p. 

Ifp--,+q .h + ma% 

If p = 0, f6 is the arithmetic mean, 

If p--‘--m, f6 + min. 

Again, as we are interested in an aggregation between the arithmetic mean and 
the maximum, we will consider p E R+ in our experiments. 

In Ref. [29] information about properties and behaviour is to be found for 
the last three aggregation functions. 

(5) Class$cation. As regards the classification step, we work according to 
the expression presented in Section 3.2. 
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3.4. Experiments 

We have generated three RBs (one for each type of rules) for three well 
known sets of samples: IRIS, WINE and PIMA. 

The IRIS base of examples is a set of 150 examples of iris flowers with three 
classes and four attributes. WINE is a data base of wines with thirteen im- 
portant characteristics, 178 examples, and three classes. PIMA is a set of 768 
solved cases of diagnostics of diabetes where eight variables are taken into 
account and there are two possible classes (having or not having the illness). 

Taking into account the characteristics of the example sets, we have con- 
sidered it interesting to use, as the initial DB, a fuzzy partition constituted by 
three triangular fuzzy sets in the case of WINE, and five in the case of IRIS and 
PIMA. 

As we mentioned, we have generated the RB by means of the learning 
method proposed in Ref. [6,7] (extension of Wang and Mendel’s algorithm 
([27]) to fuzzy classification rules). 

The values that have been used for the parameters are: 

fs: Quasiarithmetic mean p E {2,5,10,20,50}, 
f4: Sowa And Like GI E (0.3, OS}, 
fs: Sowa Or Like ci E {0.1,0.3,0.5,0.7,0.9}, 
f6: Badd p E {2,5,10,20,50}. 

To calculate an error estimation of an FRBCS, we use random resampling 
([28]) with five random partitions of the sample base in training and test sets 
(70% and 30%, respectively). 

The outcomes, that are shown in Appendix B, are means of correct classi- 
fication percentages for training and test sets. In the tables, the row noted by f0 
corresponds to the FRM based on the winner rule, i.e., the classical FRM; fi 
represents the FRM based on aggregation function fr (normalized addition), 
and so on. The column indicated by gl corresponds to the FRM with the 
weighting function gi (without weighting), and the column indicated by g2 
corresponds to the FRM with weighting function g2. 

The best test classification percentages are shown in Tables l-3. 
If we analyze the results of the experiments according to the kind of RB, we 

observe that: 
l In the three example sets, when using type (a) rules, the FRM presenting the 

best results is the one based on the addition function (fr). This function is the 
best way to aggregate the information given by the fired rules when they do 
not provide a degree of accuracy associated to the classification in a class. 

l For type (b) and (c) rules, the FRMs based on Badd operator (f6), Sowa Or- 
Like v;), and Quasi-Arithmetic Mean V;) improve the results from the clas- 
sical FRM. 
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Table 1 
Test classification percentages for IRIS 
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Type (a) rules 

f p TE TE 

gl g2 

/i 88.25 
fl 92.88 94.38 

90.83 92.27 
90.83 91.78 

Type (b) rules Type (c) rules 

f P TE TE f P TE TE 

gl g2 k-1 g2 

2 10 94.32 94.32 94.32 ./ii fi 10 94.32 94.32 94. 32 

.h 0.5 94.32 94.32 .fi 0.7 94.32 94. 32 
h 5 94.32 94.32 ji 10 94.32 94. 32 

Table 2 
Test classification percentages for WINE 

Type (a) rules Type (b) rules Type (c) rules 

f p TE TE f p TE TE f p TE TE 

.&Tl g2 g1 gz g1 g2 

fo 88.36 fo 91.94 fo 91.9 

; 50 92.81 81.86 91.29 83.99 :g 20 92.05 91.96 91.94 91.50 f, fq 5 92.73 92.76 92.29 91.94 

f6 10 82.32 84.42 .fi 0.9 92.29 91.94 fs 0.5 92.91 91.97 

Table 3 
Test classification percentages for PIMA 

Type (a) rules Type (b) rules Type (c) rules 

f P TE TE .f p TE TE f p TE TE 

gl gz gl g2 RI g2 

h 64.88 fo 73.23 74.16 

2 0.1 72.11 59.63 70.97 64.56 fs fi 50 5 13.33 73.33 73.53 73.44 fc 10 0.3 73.95 74.47 74.47 74.58 
fb 50 61.42 67.38 fs 10 13.53 73.43 fs 20 74.68 74.27 

As regards the aggregation function we should point out that: 
l The Arithmetic Mean V;) presents too much compensation between high 

and small degrees of association of the pattern with a class. 
l The FRM based on Sowa And-Like (f4) is worse than the others due to the 

fact that its behaviour is to be found between the arithmetic mean and the 
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minimum. 
l The FRMs based on Quasiarithmetic Mean cfj), Sowa Or-Like (fs) and 

Badd (f6) operators, overcome the classical FRM and the FRM based on ad- 
dition function (f,), but there is no an FRM that has the best behaviour for 
all example sets and types of rules. 
The weighting function g2 improves, in the most cases, the FRBCS pre- 

diction, but it does not have an uniform behaviour. This is due to: 
1. The characteristics of the example set considered. For problems with broad 

variable domains, regardless of the generation process used, the RB built 
will not cover some regions in the search space. The test patterns belonging 
to these areas can have a very small association degree with the rules that, 
when weighted up, may be cancelled, and there is no classification for the 
pattern. In these situations the system behaves worse with the weighting 
function proposed (g2). 

2. The characteristics of the RB generation process. Depending on the genera- 
tion method used, this deficiency can be accentuated. For the generating 
method used in this paper, the RB is too fitted to the training examples, 
and the negative effects of the weighting function are shown in WINE and 
PIMA example bases. This problem may be solved by a search algorithm 
that determines the best parameter values of the weighting function for a 
specific problem and RB. A proposal based on this idea is presented in 
the next section. 

3. The characteristics of the aggregation function. The parameters of the weight- 
ing function also depend on the aggregation function in the FRM. Aggrega- 
tion functions such as quasiarithmetic mean vi) or Badd operator (f6), 
implicitly have a weight associated in their definition. A parameter learning 
method can also adapt the weighting function for the aggregation function. 

As the final comments based on these results, we may point out that: 
l The alternative reasoning methods show better behaviour than the classical 

method in the c1assificatio.n of new patterns in all example sets and for the 
three types of fuzzy rules considered. We may say that the new reasoning 
methods improve the performance of the FRBCSs. 

l Furthermore, as is well known, a Classification System may be characterized 
by two properties: Abstraction, that is, the extraction of the information pro- 
vided by the training samples to build a suitable structure for the system, 
and generalization, that using the information taken out, makes the classifi- 
cation of new patterns possible. In this Section, we have analyzed the behav- 
iour of an FRBCS made up by an FRM and an RB generated regardless of 
the FRM. The results show that the FRMs improve the system generalization 
property without taking part in the abstraction process. 

l The results obtained, even with the FRM based on Sowa And-Like (f4), 
demonstrate that the aggregation of the information provided by the$red rules 
is important to dejine an FRM. 
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l There is no set of parameter values for the aggregation functions with the best 
class$cation percentage for all example sets considered. 

4. Extending the fuzzy reasoning methods 

In the last subsection, the results of the experiments show that there is no 
FRM with aggregation and weighting function parameters with the best be- 
haviour. These results support the idea of using a search algorithm to deter- 
mine the best values for the FRM parameters. 

We also observed in Section 3 that the FRMs improve the system general- 
ization property without taking part in the abstraction process. The integration 
of the FRMs in a generation process would allow us to obtain a set of coop- 
erative rules for the classification system that improves the behaviour of the 
system. 

In this Section, we present a Genetic Algorithm (GA) to learn the FRM 
parameters, obtaining an FRM fitting the specific problem. Then, we describe 
some results obtained by the integration of the FRMs in an RB generation 
process. 

4. I. Learning parameters 

The parameter learning process is an optimization process that we face with 
GAS. These kinds of algorithms are general search processes that use elements 
inspired by natural genetics to evolve solutions to problems. It has been proven 
theoretic and practically, that they are a robust search mechanism in complex 
spaces ([14,23]). 

We will consider two parameter genetic learning processes: 
l A genetic process to learn the parameters of the weighting function for the 

FRMs with the best values in the aggregation function parameters. 
l A genetic process to search for the best values for all parameters for the 

weighting function and aggregation function of the FRM. 
The main components of the GAS used are: 

1. Genetic representation of the problem solutions. The parameters are real 
valued and for that we use a Real-Coded Genetic Algorithm ([17]). 

2. The Evaluation function that gives the fitness of each chromosome is the clas- 
sification rate for training example sets, 

3. The Selection mechanism is stochastic universal sampling ([3]) and the elistist 
selection model ([14]). 

4. The Genetic operators applied are mechanisms for inducing a suitable exploi- 
tation/exploration balance and so avoid premature convergence: Nonuni- 
form mutation ([23]), and Dubois-Dynamic Crossover ([ 161). 
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The experiments carried out are the following. They have been divided into 
two parts: 

Part I. Learning parameters of the weighting function for the FRM based on: 
l normalized sum (fi), 
l arithmetic mean cfi), 
l quasiarithmetic mean v;), with p E {20,50}, 
l Sowa Or-like V;), with M: E: {0.5,0.7,0.9}, and 
l Badd VJ with p E {20,50). 
Part II. Learning parameters of the weighting function and the FRM based on 
the aggregation functions: 
l quasiarithmetic mean cf& 
l Sowa Or-like (fs), and 
l Badd @). 

The experiments carried out are shown in Tables 46. The row called fo 
presents the results of classical FRM; the row noted by br shows the best 
classification percentages obtained in the previous experiments carried out in 
Section 3, and the rows referred by I and II show the results from the exper- 
iments in Part I and Part II, respectively. 

About the results, we may point out that: 
l The experiments carried out show an improvement in the test classification 

results over the classical reasoning method, although not in comparison with 
the best results obtained in the previous section. 

Table 4 
Learning parameters for IRIS 

f P Type (4 RB Type @I RB Type (4 RB 
- 

TR TE TR TE TR TE 

fo 90.97 88.25 97.31 94.32 96.96 94.32 
br 98.56 94.38 97.31 94.32 96.96 94.32 

I fl 99.28 94.87 98.57 94.38 98.02 94.81 
f2 91.90 90.34 97.65 93.73 98.21 94.32 
f3 20 91.90 90.34 97.31 94.32 96.96 94.32 
A 50 91.90 90.34 97.31 93.89 96.96 93.89 
f5 0.5 92.80 90.18 97.49 93.83 97.85 93.89 
f5 0.7 93.18 90.66 97.31 94.32 97.83 94.32 
f5 0.9 93.18 91.25 97.31 94.32 97.31 93.83 
f6 20 91.74 88.74 97.31 94.32 96.96 94.32 
f6 50 90.97 87.82 97.31 93.89 96.96 93.89 

II f3 92.08 90.34 97.65 93.73 98.22 94.81 
fs 92.62 89.12 97.84 94.22 98.21 95.23 
f6 92.50 91.20 97.33 93.43 97.86 95.78 
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Table 5 
Learning parameters for WINE 

0. Cord& et al. I Internat. J. Approx. Reason. 20 (1999) 21-45 

f P Type (a) RB Type (b) RB Type Cc) RB 

TR TE TR TE TR TE 

hr 
hl 

I fl 

A 

.h 20 
h 50 

f 
.f-: 

0.5 0.7 

0.9 

h 20 

f6 50 

II A 97.64 67.75 99.37 89.88 98.71 90.92 

“6 98.59 82.99 99.37 92.29 98.87 92.35 

.fi 99.53 70.84 99.52 90.51 99.03 89.53 

99.53 88.36 98.88 91.94 98.54 91.94 

97.55 92.81 98.88 92.29 98.38 92.97 

100.00 90.10 98.88 92.70 98.71 92.29 

97.64 82.05 98.84 92.47 98.39 92.29 

97.64 83.26 99.37 90.53 98.54 91.21 

97.64 83.26 99.37 90.86 98.54 91.21 

97.80 82.73 99.37 91.96 98.87 92.35 

98.11 84.07 99.54 90.97 98.70 91.94 

98.44 83.42 99.20 91.61 98.70 91.94 

99.53 87.60 98.88 91.21 98.54 91.21 

99.53 87.00 99.05 90.88 98.71 91.21 

Table 6 

Learning parameters for PIMA 

br 

f P Type (a) RB Type (b) RB Type (c) RB 

TR TE TR TE TR TE 

./II 89.51 64.88 85.81 73.23 81.94 74.16 
83.97 72.11 85.88 73.53 81.91 74.68 

I fl 

2 20 

h 50 

2 0.5 0.7 

; 0.9 

; :: 

91.67 70.47 86.02 72.91 82.08 74.16 

85.15 58.23 86.40 72.19 82.01 74.16 

84.94 57.91 86.12 71.04 82.08 74.06 

84.84 51.39 86.37 72.49 82.05 72.11 
87.45 63.34 86.40 72.91 82.08 74.37 
87.90 63.25 86.51 73.12 82.26 74.37 
89.09 62.95 86.51 73.12 82.43 74.16 

91.46 68.31 86.51 72.81 82.61 74.47 

91.43 65.52 86.61 72.22 82.75 72.22 

II h 84.91 54.00 86.26 71.38 82.08 70.16 
f5 90.59 65.48 86.54 72.91 82.47 74.26 
hi 91.46 60.75 86.79 73.22 82.78 74.16 
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l Since we learn the FRM parameters using only the training data, this strat- 
egy does not necessarily lead to the improvement of the generalization abil- 
ity and sometimes an overlearning phenomenon is presented. 

l Nevertheless, with the learning algorithm described, we have obtained the 
best test classification percentages with this generation method for the IRIS 
example set for all types of rules, and for WINE and type (b) rules. In both 
cases, we have used the aggregation function f6 and fi respectively, with a 
weighting function. 
The results of the experiments show that a significant improvement of the test 

cla&cation percentages has been obtained with respect to classical FRM. 

4.2. Integration of the FRMs in an RB generation process 

The integration of the FRMs in an RB learning method might allow us to 
obtain a set of cooperative rules for the classification system that improves its 
behaviour. In this section, we briefly show some experients carried out in this 
line in a previous work. 

In Ref. [lo], we present a two-stage genetic fuzzy rule learning process that 
integrates the first two proposals (FRM based on function fi, and FRM based 
on functionfl, both without weighting) in the design of the final RB. In the first 
stage, an iterative generation process generates rules regardless of the reasoning 
method, and in the second stage, a genetic selection process obtains a coop- 
erative RB integrating the ERM. 

In Table 7 we present the best results obtained with the FRMs based on 
functions fi and f2, without weighting, and type (a) RB, generated by the 
method described in Appendix A. In Table 8, we describe the outcomes ob- 
tained with the integration of the same FRMs with the generating process 
explained in Ref. [lo]. 

These results are obtained by an FRBCS made up by: 
l An RB with the rule structure with the worst behaviour (RB type (a)) and, 
l an FRM based on functions fi and fi that, as we analyzed in previous sec- 

tions, is not the FRM with the best behaviour. 

Table I 
Classification results for an FRBCS with an RB derived from the method in Appendix A 

IRIS 

f TEST 

WINE 

f TEST 

PIMA 

f TEST 

Al 88.25 Al 88.36 f0 64.88 
fl 92.88 fl 92.81 fi 72.11 
f2 88.31 f2 70.01 f2 57.47 
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Table 8 
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Classification results for an FRBCS with an RB obtained integrating the FRMs 

IRIS 

f TEST 

WINE 

f TEST 

PIMA 

f TEST 

92.85 .h 89.97 .h 70.43 
95.63 92.02 Ji 71.96 

A 94.54 93.08 f2 75.30 

Nevertheless, the outcomes show the improvement of the prediction capa- 
bility of the system. 

These results may suggest that an FRBCS with a type (b) or (c) RB, built by 
a learning process integrating the FRMs based on functionsf3, fs or f6, could 
obtain very good classification results. 

Table 9 

IRIS (1) 

f P Type (a) rules Type (b) rules 

TR TE TR TE TR TE TR TE 

gl &?2 gl g2 

fo 
fi 

2 2 

:: 1;: 
2 20 50 
f4 0.3 
f4 0.5 
f5 0.1 

f5 0.3 
f5 0.5 
f5 0.7 
f5 0.9 
f6 2 
h 5 
f6 10 
f6 20 
fs 50 

90.97 88.25 
97.29 92.88 
90.80 88.31 
91.35 88.80 

91.53 90.83 
91.18 90.34 
91.18 90.34 
89.90 90.34 
88.26 87.82 
86.82 86.26 
90.98 88.31 

92.08 90.34 
92.08 90.83 
92.08 90.83 
92.08 90.83 
89.90 90.34 
86.45 85.80 
85.37 85.80 
85.19 85.63 

85.91 86.12 

98.56 94.38 
89.72 89.71 

89.73 91.78 
89.56 91.78 
89.56 91.78 
89.20 91.78 
88.81 91.19 
89.18 89.22 
88.09 88.25 
90.64 91.25 

90.64 92.27 
90.64 92.27 
90.64 92.27 
90.64 92.27 
86.45 86.65 
86.45 86.65 
86.63 87.13 
87.00 86.65 

90.97 88.25 

97.31 94.32 
96.43 93.20 

96.04 92.39 

96.23 93.89 
96.41 93.89 
96.77 94.32 
97.31 94.32 
97.31 94.32 

95.11 91.09 

93.83 89.57 
96.39 92.39 

96.77 93.89 
96.77 94.32 
97.13 94.32 

97.31 94.32 
96.23 93.89 
97.12 94.32 
97.31 94.32 
97.31 94.32 

97.31 94.32 

97.13 92.92 

96.23 93.89 
96.41 93.89 
96.77 94.32 
97.31 94.32 
97.31 94.32 
97.31 94.32 

96.04 92.88 
95.86 92.88 

96.59 93.89 
96.77 94.32 
96.77 94.32 
97.3 1 94.32 

97.31 94.32 
96.94 94.32 
97.31 94.32 
97.31 94.32 
97.31 94.32 
97.31 94.32 
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Table 10 
IRIS (2) 

f P Type (c) rules 

TR TE TR TE 

f0 

fl 

f2 

f3 

f3 

f3 

f3 

A 

f4 

k 

fs 
h 
f5 

h 
fs 
f6 
h 
f6 
k 
h 

2 
5 

10 
20 
50 

0.3 
0.5 
0.1 
0.3 

0.5 
0.7 
0.9 
2 
5 

10 
20 
50 

96.96 94.32 
96.25 93.20 
96.25 92.72 
96.95 93.50 
96.96 94.32 

96.96 94.32 
96.96 94.32 
96.96 94.32 
95.35 92.23 
94.41 92.29 
96.93 92.88 

96.71 93.40 
96.17 92.92 
97.14 94.32 
96.96 94.32 
96.05 93.89 
96.17 94.32 
96.96 94.32 
96.96 94.32 
96.96 94.32 

96.95 93.40 
96.95 93.40 
96.77 94.32 
96.96 94.32 

96.96 94.32 
96.96 94.32 
96.96 94.32 
97.13 93.40 
97.13 93.40 
96.77 92.92 

96.96 93.89 
96.96 94.32 
96.96 94.32 
96.96 94.32 
96.41 94.32 
96.96 94.32 

96.96 94.32 
96.96 94.32 
96.96 94.32 

5. Concluding remarks 

In this work, a general reasoning model has been presented. While the 
classical FRM uses a single rule, this proposal works with the information 
provided for all rules fired with the pattern to be classified. 

This general process includes a weightingfunction applied to the association 
degrees of the pattern with the different classes, and an aggregation function for 
the information provided by the different rules in the RB. We have analyzed six 
proposals for the latter and two for the weighting function in terms of the 
inferred results. 

It has been shown that the FRM that considers only the winner rule wastes 
the information provided by the places of overlapping fuzzy subsets, and the 
FRM proposals improve the generalization capability of the FRBCS. 

Furthermore, we have presented a genetic learning process to obtain the best 
values for the FRM parameters, and in this way, we have adapted the FRM to 
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Table 1 I 
WINE (1) 
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f P Type (a) rules Type (b) rules 

TR TE TR TE TR TE TR TE 

ET1 g2 b-1 g2 

fo 
fl 
f2 
h 2 
f3 5 

; ::: 
A 
f‘j 5i.3 

0.5 
fs 0.1 
f5 0.3 
fs 0.5 
fs 0.7 

f3 0.9 
f6 2 
f6 5 
f6 10 
f6 20 

f6 50 

99.53 88.36 
97.55 92.81 
85.29 70.01 
89.66 76.22 
93.77 79.40 
95.24 80.21 
96.70 81.61 
97.02 81.96 
76.38 62.49 
67.12 59.11 
89.68 74.94 
94.54 78.36 
96.32 80.97 
97.48 81.29 
97.64 81.56 
94.43 79.07 
96.70 81.28 
97.48 82.32 
97.48 84.42 
98.11 84.42 

99.68 91.29 

94.24 77.19 
97.64 81.26 
97.64 82.38 

97.64 82.61 
97.64 82.96 
97.64 83.99 

92.65 70.16 
87.95 66.20 
97.33 79.52 
97.64 83.13 
97.64 83.13 

97.64 83.05 

97.64 83.67 
97.64 81.70 
97.95 82.64 

98.11 84.42 

98.27 84.42 
99.53 88.00 

98.88 91.94 
97.89 92.05 

95.10 87.42 
96.26 88.28 
98.57 90.91 
98.72 91.29 
98.87 91.96 
98.88 91.94 

92.98 82.98 
87.49 75.50 
96.58 88.07 
98.23 89.53 
98.72 91.78 
98.72 91.29 

98.88 92.29 
98.57 90.83 
98.72 91.53 
98.88 91.94 

98.88 91.94 

98.88 91.94 

98.23 91.50 
96.26 88.28 
98.57 90.15 

98.72 91.29 
98.87 91.96 
98.88 91.94 
98.88 91.94 
95.93 87.31 

95.27 85.09 
98.10 89.10 
98.55 91.35 
98.87 91.29 
98.72 91.61 

98.88 91.94 

98.72 91.53 
98.88 91.94 
98.88 91.94 
98.88 91.94 

98.88 91.94 

the problem and RB considered. The outcomes suggest that this process can 
improve the behaviour of the system. 

Apart from showing the improvement of the FRBCS generalization prop- 
erty regardless of the abstraction step, we have pointed out the improvement 
provided by the integration of the proposed FRMs in a learning process for 
obtaining a cooperative RB. 

With respect to a proposal or suggestion on using these FRMs, the results 
have shown that it is suitable and necessary to make a prior study for the 
aggregation operator to use in a specific classification problem. The two ag- 
gregation functions fs and f~ have shown good results. Both are in the range 
between the arithmetic mean and the maximum. We find different behaviours 
with different parameters, and it would be interesting to study their parameters 
in any application. Adapting the parameters of the FRMs proposed, we can 
obtain an FRBCS with a better test classification percentage than the FRBCS 
based on classical FRM, although it is also necessary to study the parameters 
to be learnt for every application, 
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Table 12 
WINE (2) 

f P 

Type (c) rules 

TR 

t?l 

TE TR TE 

g2 

fo 
fl 
f2 

A 

f3 

f3 

f3 

A 

f4 
f4 
fs 
fs 
fs 
fs 
f5 

f6 

f6 

f6 
f6 

f6 

2 
5 

10 
20 

50 
0.3 
0.5 
0.1 
0.3 
0.5 
0.7 

0.9 
2 
5 

10 
20 
50 

98.54 91.94 
97.91 92.73 

97.58 92.05 
97.74 91.94 
!)8.07 92.76 
98.23 92.29 
98.39 92.29 
!)8.54 91.94 

!)6.76 90.97 
95.77 92.49 
97.74 92.05 
‘98.22 92.43 
98.38 92.97 
98.53 92.30 

98.54 91.94 
‘98.39 92.24 
98.23 91.53 

98.39 91.94 
98.23 91.94 
98.54 91.94 

98.23 
97.74 
98.08 
98.23 
98.39 
98.54 

98.54 
97.74 
97.74 
97.74 
98.22 
98.53 

98.54 
98.54 
98.23 
98.39 

98.23 
98.54 
98.54 

91.94 

91.94 
92.02 
92.29 
92.29 
91.94 
91.94 

91.94 
91.94 
91.94 
92.70 
91.97 

92.29 
91.94 
91.53 
91.94 

91.94 
91.94 
91.94 

Our future work will be centered on the design of an FRM to select the 
information to be aggregated. Besides that, we will study the integration of the 
generating process with the FRM in depth to obtain an appropriate set of 
cooperative rules according to the FRM selected for the FRBCS. 

Appendix A. Generating method 

We begin with a set of input-output data pairs (the training data set) with 
the following structure: 

E’ = (et,. . . ,eb,o’), 

E* = (e:, . . . , e;, o*), 

EP= (4 ,..., e&d’), 
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Table 13 
PIMA (1) 

s P Type (a) rules Type (b) rules 

TR TE TR TE TR TE TR TE 

gl gz &?I g2 

fo 
fl 
f2 

2 2 5 

; 1: 

h 50 
f4 0.3 
f4 0.5 
f5 0.1 
f5 0.3 
f5 0.5 
f5 0.7 

; 0.9 2 
f6 5 
.ti 10 
f6 20 

f6 50 

89.51 
83.97 

72.81 
76.99 
81.63 
82.99 
84.38 
84.59 

69.91 
68.21 
78.66 
83.37 

85.67 
86.97 
87.55 
81.04 
83.48 
84.80 
84.52 

85.39 

64.88 
72.11 

57.47 
57.16 
56.87 
57.71 
57.60 
58.85 

55.20 
54.69 
59.63 
62.01 

62.73 
63.46 

64.48 
56.46 
57.91 
59.35 
59.66 

61.42 

85.81 73.23 
90.83 70.97 81.94 72.21 

83.65 59.12 82.57 71.36 

84.49 58.73 84.77 72.8 1 

84.52 58.33 85.71 72.50 

84.52 58.02 85.81 72.81 
84.52 58.54 85.78 73.43 
84.56 59.95 85.78 73.33 

82.95 57.69 81.45 70.44 

81.80 56.34 80.30 70.03 

85.78 64.56 84.03 71.46 
85.81 60.88 85.60 72.08 
85.81 60.98 85.74 72.80 

85.81 61.19 85.88 72.80 

85.81 61.80 85.81 73.22 

84.63 57.09 85.64 72.30 

84.73 59.46 85.92 73.33 
84.56 59.87 85.85 73.53 
85.60 61.73 85.81 73.43 

91.32 67.38 85.81 73.33 

83.93 
84.77 
85.84 
85.81 

85.78 
85.85 
85.78 
84.14 
83.58 
85.53 

85.60 
85.78 
85.92 
85.85 
85.92 

85.88 
85.81 
85.81 
85.81 

72.60 
72.71 
72.29 
72.81 

73.43 
73.23 
73.44 
72.19 
71.37 
72.39 

72.60 
72.70 
73.01 
73.22 
73.23 

73.53 
73.43 
73.33 

73.23 

where ok is the class label for the pattern Ek. 
The task here is to generate a set of fuzzy rules from the training data set 

that describes the relationship between the system variables and determines a 
mapping D between the feature space SN and the class set C = {Cl, . . , CM}. 

The method consists of the following steps: 
l Fuzzzfying the feature space. Finding the domain intervals of the attributes 

and partitioning each domain into Xi regions (i = 1,. . . ,N). A membership 
function is adopted for each fuzzy region. In our experiments we use mem- 
bership functions with triangular shapes. 

l Generating fuzzy rules from given data pairs. For each training data 
Ek = (et, . . . , ei, ok), we have 
To determine the membership degrees of 4 in different input fuzzy subsets. 
To assign the input e:, . . , e; to the region with the maximum membership 
degree. 
To produce a fuzzy rule from Ek, with the if-part that represents the selected 
fuzzy region and the consequent with the class determined by ok. (It does not 
repeat the fuzzy rules.) 
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PIMA (2) 
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Type (c) rules 

43 

f P TR TE TR TE 

t3 g2 

fo 
fl 
f2 

A 

A 
f3 

f3 

A 

f4 

f4 

f5 

fs 

f5 

f5 

f5 

f6 
R 
f6 
f6 
f6 

2 
5 

10 
20 
50 
0.3 
0.5 
0.1 
0.3 
0.5 
0.7 
0.9 
2 
5 

10 
20 
50 

81.94 74.16 
79.22 72.14 
79.22 73.24 
80.20 73.13 
81.45 73.74 
81.70 74.06 
81.94 74.26 
81.!)4 74.27 
79.02 73.24 
78.67 72.83 
80.48 73.14 
81.21 73.95 
81.‘70 73.95 
81.80 74.16 
82.01 74.06 
81.66 73.54 
81.91 74.16 
81.94 74.47 
81.91 74.68 
81.98 74.27 

80.24 72.92 
80.20 73.13 
81.25 73.74 
81.70 74.06 
81.94 74.26 
81.94 74.27 
81.94 74.16 
80.24 73.14 
80.13 73.3s 
81.28 73.64 
81.73 74.47 
81.70 74.16 
82.01 74.16 
82.01 74.15 
82.05 74.06 
81.94 74.47 
81.91 74.58 
81.98 74.27 
81.98 74.16 

Appendix B. Classification results 

Appendix B gives the Classification results for IRIS (l), IRIS (2), WINE (l), 
WINE (2) and PIMA (l), PIMA (2). (For details see Tables 9-14). 
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