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11.7 Summary

Near a position of equilibrium of any natural, conservative system, the ki-

netic energy may be taken to be a homogeneous quadratic function of the

q̇α, with constant coefficients, and the potential energy to be a homoge-

neous quadratic function of the qα. We can always find a set of orthogonal

co-ordinates, in terms of which T is reduced to a sum of squares. Lagrange’s

equations then take on a simple form. To find the normal modes of oscilla-

tion, we substitute solutions of the form qα = Aαeiωt, and obtain a set of

simultaneous linear equations for the coefficients. The condition for con-

sistency of these equations is the characteristic equation, which determines

the frequencies of the normal modes. The stability condition is that all the

roots of this equation for ω2 should be positive.

The problem of finding the normal modes is equivalent to that of find-

ing normal co-ordinates, which reduce not only T but also V to a sum of

squares. In terms of normal co-ordinates, the system is reduced to a set

of uncoupled harmonic oscillators, whose frequencies are the characteristic

frequencies of the system. The general solution to the equations of motion

is a superposition of all the normal modes. In it, each normal co-ordinate is

oscillating at its own frequency, and with amplitude and phase determined

by the initial conditions.

The linearized analysis of small amplitude oscillations near to a position

of stable equilibrium in the form of normal modes is a technique which is

applicable generally. For some systems, which are special but important,

the idea of a normal mode may be generalized. Such systems may then

be analyzed as a combination of ‘nonlinear’ normal modes, where no small

amplitude approximation needs to be made — see §14.1.

Problems

1. A double pendulum, consisting of a pair, each of mass m and length

l, is released from rest with the pendulums displaced but in a straight

line. Find the displacements of the pendulums as functions of time.

2. Find the normal modes of a pair of coupled pendulums (like those of

Fig. 11.2) if the two are of different masses M and m, but still the same

length l. Given that the pendulum of massM is started oscillating with

amplitude a, find the maximum amplitude of the other pendulum in
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the subsequent motion. Does the amplitude of the first pendulum ever

fall to zero?

3. A spring of negligible mass, and spring constant (force/extension) k,

supports a mass m, and beneath it a second, identical spring, carry-

ing a second, identical mass. Using the vertical displacements x and

y of the masses from their positions with the springs unextended as

generalized co-ordinates, write down the Lagrangian function. Find

the position of equilibrium, and the normal modes and frequencies of

vertical oscillations.

4. Three identical pendulums are coupled, as in Fig. 11.2, with springs

between the first and second and between the second and third. Find

the frequencies of the normal modes, and the ratios of the amplitudes.

5. The first of the three pendulums of Problem 4 is initially displaced a

distance a, while the other two are vertical. The system is released from

rest. Find the maximum amplitudes of the second and third pendulums

in the subsequent motion.

6. Three identical springs, of negligible mass, spring constant k, and nat-

ural length a are attached end-to-end, and a pair of particles, each

of mass m, are fixed to the points where they meet. The system is

stretched between fixed points a distance 3l apart (l > a). Find the

frequencies of normal modes of (a) longitudinal, and (b) transverse

oscillations.

7. *A bead of mass m slides on a smooth circular hoop of mass M and

radius a, which is pivoted at a point on its rim so that it can swing

freely in its plane. Write down the Lagrangian in terms of the angle of

inclination θ of the diameter through the pivot and the angular position

ϕ of the bead relative to a fixed point on the hoop. Find the frequencies

of the normal modes, and sketch the configuration of hoop and bead at

the extreme point of each.

8. *The system of Problem 7 is released from rest with the centre of the

hoop vertically below the pivot and the bead displaced by a small angle

ϕ0. Given that M = 8m and that 2a is the length of a simple pendulum

of period 1 s, find the angular displacement θ of the hoop as a function

of time. Determine the maximum value of θ in the subsequent motion,

and the time at which it first occurs.

9. A simple pendulum of mass m, whose period when suspended from a

rigid support is 1 s, hangs from a supporting block of mass 2m which

can move along a horizontal line (in the plane of the pendulum), and

is restricted by a harmonic-oscillator restoring force. The period of the
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oscillator (with the pendulum removed) is 0.1 s. Find the periods of the

two normal modes. When the pendulum bob is swinging in the slower

mode with amplitude 100mm, what is the amplitude of the motion of

the supporting block?

10. *The system of Problem 9 is initially at rest, and the pendulum bob is

given an impulsive blow which starts it moving with velocity 0.5m s−1.

Find the position of the support as a function of time in the subsequent

motion.

11. *A particle of charge q and mass m is free to slide on a smooth hor-

izontal table. Two fixed charges q are placed at ±aj, and two fixed

charges 12q at ±2ai. Find the electrostatic potential near the origin

(see §6.2). Show that this is a position of stable equilibrium, and find

the frequencies of the normal modes of oscillation near it.

12. *A rigid rod of length 2a is suspended by two light, inextensible strings

of length l joining its ends to supports also a distance 2a apart and

level with each other. Using the longitudinal displacement x of the

centre of the rod, and the transverse displacements y1, y2 of its ends,

as generalized co-ordinates, find the Lagrangian function (for small

x, y1, y2). Determine the normal modes and frequencies. (Hint : First

find the height by which each end is raised, the co-ordinates of the

centre of mass and the angle through which the rod is turned.)

13. *Each of the pendulums in Fig 11.2 is subjected to a damping force, of

magnitude αẋ and αẏ respectively, while there is a damping force β(ẋ−
ẏ) in the spring. Show that the equations for the normal co-ordinates q1
and q2 are still uncoupled. Find the amplitudes of the forced oscillations

obtained by applying a periodic force to one pendulum. Given that the

forcing frequency is that of the uncoupled pendulums, and that β is

negligible, find the range of values of α for which the amplitude of the

second pendulum is less than half that of the first.

14. *Show that a stretched string is equivalent mathematically to an infinite

number of uncoupled oscillators, described by the co-ordinates

qn(t) =

√

2

l

∫ l

0

y(x, t) sin
nπx

l
dx.

Determine the amplitudes of the various normal modes in the motion

described in Chapter 10, Problem 14. Why, physically, are the modes

for even values of n not excited?

15. Show that a typical equation of the set (11.33) may be satisfied by

setting Aα = sinαk (α = 1, 2, . . . , n), provided that ω = 2ω0 sin 1
2k.
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Hence show by considering the required condition when α = n + 1

that the frequencies of the normal modes are ωr = 2ω0 sin[rπ/2(n+1)],

with r = 1, 2, . . . , n. Why may we ignore values of r greater than n+1?

Show that, in the limit of large n, the frequency of the rth normal mode

tends to the corresponding frequency of the continuous string with the

same total length and mass.

16. A particle moves under a conservative force with potential energy V (r).

The point r = 0 is a position of equilibrium, and the axes are so chosen

that x, y, z are normal co-ordinates. Show that, if V satisfies Laplace’s

equation, ∇2V = 0 (see §6.7), then the equilibrium is necessarily unsta-

ble, and hence that stable equilibrium under purely gravitational and

electrostatic forces is impossible. (Of course, dynamic equilibrium —

stable periodic motion — can occur. Note also that the two-dimensional

stable equilibrium of Problem 11 does not contradict this result because

there is another force imposed, confining the charge to the horizontal

plane.)



Hamiltonian Mechanics 301

of some particular co-ordinate qα, then the corresponding generalized mo-

mentum pα is conserved. In such a case, the number of degrees of freedom

is effectively reduced by one.

More generally, we have seen that any symmetry property of the system

leads to a corresponding conservation law. This can be of great importance

in practice, since the amount of labour involved in solving a complicated

problem can be greatly reduced by making full use of all the available

symmetries. If there is a sufficient number of symmetries, then the system

is ‘integrable’ (in the sense of Liouville) and the conservation laws may then

be exploited to produce (in principle) the complete solution to the problem.

The Hamiltonian function is also of great importance in quantum me-

chanics, and many of the features of our discussion carry over to that case.

We have seen that the variables appear in pairs. To each co-ordinate qα
there corresponds a momentum pα. Such pairs are called canonically con-

jugate. This relationship between pairs of variables is of central importance

in quantum mechanics, where there is an ‘uncertainty principle’ according

to which it is impossible to measure both members of such a pair simulta-

neously with arbitrary accuracy.

The relationship between symmetries and conservation laws also applies

to quantum mechanics. In relativity, the transformations we consider are

slightly different (Lorentz transformations rather than Galilean), but the

same principles apply, and lead to very similar conservation laws.

The relationship between the relativity principle and the familiar con-

servation laws (including the ‘conservation law’ P = M Ṙ) is of the greatest

importance for the whole of physics. It is the basic reason for the univer-

sal character of these laws, which were originally derived as rather special

consequences of Newton’s laws, but can now be seen as having a far more

fundamental role.

Problems

1. A particle of mass m slides on the inside of a smooth cone of semi-

vertical angle α, whose axis points vertically upwards. Obtain the

Hamiltonian function, using the distance r from the vertex, and the

azimuth angle ϕ as generalized co-ordinates. Show that stable circular

motion is possible for any value of r, and determine the correspond-

ing angular velocity, ω. Find the angle α if the frequency of small

oscillations about this circular motion is also ω.
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2. Find the Hamiltonian function for the forced pendulum considered in

§10.4, and verify that it is equal to T ′+V ′. Determine the frequency of

small oscillations about the stable ‘equilibrium’ position when ω2 > g/l.

3. A light, inextensible string passes over a small pulley and carries a

mass 2m on one end. On the other end is a mass m, and beneath

it, supported by a spring with spring constant k, a second mass m.

Find the Hamiltonian function, using the distance x of the first mass

beneath the pulley, and the extension y in the spring, as generalized co-

ordinates. Show that x is ignorable. To what symmetry property does

this correspond? (In other words, what operation can be performed on

the system without changing its energy?) If the system is released from

rest with the spring unextended, find the positions of the particles at

any later time.

4. A particle of mass m moves in three dimensions under the action of

a central, conservative force with potential energy V (r). Find the

Hamiltonian function in terms of spherical polar co-ordinates, and

show that ϕ, but not θ, is ignorable. Express the quantity J2 =

m2r4(θ̇2 + sin2 θ ϕ̇2) in terms of the generalized momenta, and show

that it is a second constant of the motion.

5. *Find the Hamiltonian for the pendulum hanging from a trolley de-

scribed in Chapter 10, Problem 9. Show that x is ignorable. To what

symmetry does this correspond?

6. *Obtain the Hamiltonian function for the top with freely sliding pivot

described in Chapter 10, Problem 11. Find whether the minimum

angular velocity required for stable vertical rotation is greater or less

than in the case of a fixed pivot. Can you explain this result physically?

7. *To prove that the effective potential energy function U(θ) of the sym-

metric top (see §12.4) has only a single minimum, show that the equa-

tion U(θ) = E can be written as a cubic equation in the variable

z = cos θ, with three roots in general. Show, however, that f(z) has the

same sign at both z = ±1, and hence that there are either two roots or

none between these points: for every E there are at most two values of

θ for which U(θ) = E.

8. Find the Hamiltonian for a charged particle in electric and mag-

netic fields in cylindrical polars, starting from the Lagrangian function

(10.29). Show that in the case of an axially symmetric, static mag-

netic field, described by the single component Aϕ(ρ, z) of the vector
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potential, it takes the form

H =
1

2m

(

p2
z + p2

ρ +
(pϕ − qρAϕ)2

ρ2

)

.

(Note: Remember that the subscripts ϕ on the generalized momentum

pϕ and on the component Aϕ mean different things.)

9. A particle of mass m and charge q is moving around a fixed point

charge −q′ (qq′ > 0), and in a uniform magnetic field B. The motion

is confined to the plane perpendicular to B. Write down the Lagrangian

function in polar co-ordinates rotating with the Larmor angular velocity

ωL = −qB/2m (see §5.5). Hence find the Hamiltonian function. Show

that ϕ is ignorable, and interpret the conservation law. (Note that Jz
is not a constant of the motion.)

10. Consider a system like that of Problem 9, but with a charge +q′ at

the origin. By examining the effective radial potential energy function,

find the radius of a stable circular orbit with angular velocity ωL, and

determine the angular frequency of small oscillations about it.

11. *A particle of mass m and charge q is moving in the equatorial plane

z = 0 of a magnetic dipole of moment µ, described (see Appendix A,

Problem 12) by a vector potential with the single non-zero component

Aϕ = µ0µ sin θ/4πr2. Show that it will continue to move in this plane.

Initially, it is approaching from a great distance with velocity v and

impact parameter b, whose sign is defined to be that of pϕ. Show that

v and pϕ are constants of the motion, and that the distance of closest

approach to the dipole is 1
2 (
√
b2 ∓ a2 ± b), according as b > a or b < a,

where a2 = µ0qµ/πmv. (Here qµ is assumed positive.) Find also the

range of values of b for which the velocity can become purely radial, and

the distances at which it does so. Describe qualitatively the appearance

of the orbits for different values of b. (Hint : It may be useful to sketch

the effective radial potential energy function.)

12. *Find the Hamiltonian for the restricted three-body problem described

in Chapter 10, Problems 15 and 16. Investigate the stability of one of

the Lagrangian ‘equilibrium’ positions off the line of centres by assum-

ing a solution where x − x0, y − y0, px +mωy0 and py −mωx0 are all

small quantities proportional to ept, with p constant. Show that the

possible values for p are given by

p4 + ω2p2 +
27M1M2ω

4

4(M1 +M2)2
= 0,
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and hence that the points are stable provided that the masses M1 and

M2 are sufficiently different. Specifically, given that M1 > M2 show

that the minimum possible ratio for stability is slightly less than 25.

13. The stability condition of Problem 12 is well satisfied for the case of

the Sun and Jupiter, for which M1/M2 = 1047. Indeed, in that case

these positions are occupied by the so-called Trojan asteroids, whose

orbital periods are the same as Jupiter’s, 11.86 years. Find for this case

the periods of small oscillations about the ‘equilibrium’ points (in the

plane of the orbit).

14. *The magnetic field in a particle accelerator is axially symmetric (as in

Problem 8), and in the plane z = 0 has only a z component. Defining

J = pϕ − qρAϕ, show, using (A.40) and (A.55), that ∂J/∂ρ = −qρBz,
and ∂J/∂z = qρBρ. What is the relation between ϕ̇ and J? Treat the

third term of the Hamiltonian in Problem 8 as an effective potential

energy function U(ρ, z) = J2/2mρ2, compute its derivatives, and write

down the ‘equilibrium’ conditions ∂U/∂ρ = ∂U/∂z = 0. Hence show

that a particle of mass m and charge q can move in a circle of any given

radius a in the plane z = 0 with angular velocity equal to the cyclotron

frequency for the field at that radius (see §5.2).

15. *To investigate the stability of the motion described in the preceding

question, evaluate the second derivatives of U at ρ = a, z = 0, and

show that they may be written

∂2U

∂ρ2
=
q2

m

[

Bz

(

Bz + ρ
∂Bz
∂ρ

)]

ρ=a,z=0

,

∂2U

∂ρ ∂z
= 0,

∂2U

∂z2
= −q

2

m

[

Bzρ
∂Bz
∂ρ

]

ρ=a,z=0

.

(Hint : You will need to use the ϕ component of the equation ∇∧B = 0,

and the fact that, since Bρ = 0 for all ρ, ∂Bρ/∂ρ = 0 also.) Given that

the dependence of Bz on ρ near the equilibrium orbit is described by

Bz ∝ (a/ρ)n, show that the orbit is stable if 0 < n < 1.

16. Show that the Poisson brackets of the components of angular momen-

tum are

[Jx, Jy] = Jz

(together with two other relations obtained by cyclic permutation of

x, y, z). Interpret this result in terms of the transformation of one

component generated by another.
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17. *Show that the condition that Hamilton’s equations remain unchanged

under the transformation generated by G is dG/dt = 0 even in the

case when G has an explicit time-dependence, in addition to its depen-

dence via q(t) and p(t). Proceed as follows. The first set of Hamilton’s

equations, (12.6), will be unchanged provided that

d

dt
(δqα) = δ

(

∂H

∂pα

)

.

Write both sides of this equation in terms of G and use (12.33) applied

both to ∂G/∂pα and to G itself to show that it is equivalent to the

condition

∂

∂pα

(

dG

dt

)

= 0.

Thus dG/dt is independent of each pα. Similarly, by using the other

set of Hamilton’s equations, (12.7), show that it is independent of each

qα. Thus dG/dt must be a function of t alone. But since we can always

add to G any function of t alone without affecting the transformation

it generates, this means we can choose it so that dG/dt = 0.


