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This therefore determines the odd part of f . Moreover, the initial value

of ẏ is

ẏ(x, 0) = cf ′(x) − cf ′(−x) = ch′(x). (10.41)

(Remember that [f(−x)]′ = −f ′(−x).) Thus the initial value of ẏ deter-

mines the even part of f (up to an irrelevant additive constant, which

cancels in (10.37)).

10.7 Summary

The position of every part of a system may be fixed by specifying the values

of a set of generalized co-ordinates. If these co-ordinates can all vary inde-

pendently, the system is holonomic. This is the case in all the examples we

have considered. The system is natural if the functions specifying the posi-

tions of particles in terms of the generalized co-ordinates do not involve the

time explicitly. In that case, the kinetic energy is a homogeneous quadratic

function of the q̇α. For a forced system, on the other hand, T may contain

linear and constant terms. In either case, the equations of motion are given

by Lagrange’s equations. If the forces are conservative (and sometimes in

other cases too), all we need is the Lagrangian function L = T − V . In

general, for dissipative forces, the generalized forces Fα corresponding to

the generalized co-ordinates qα must be found by evaluating the work done

in a small displacement.

Problems

1. Masses m and 2m are joined by a light inextensible string which runs

without slipping over a uniform circular pulley of mass 2m and radius

a. Using the angular position of the pulley as generalized co-ordinate,

write down the Lagrangian function, and Lagrange’s equation. Find

the acceleration of the masses.

2. A uniform cylindrical drum of mass M and radius a is free to rotate

about its axis, which is horizontal. A cable of negligible mass and length

l is wound on the drum, and carries on its free end a mass m. Write

down the Lagrangian function in terms of an appropriate generalized

co-ordinate, assuming no slipping or stretching of the cable. If the cable
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is initially fully wound up, and the system is released from rest, find

the angular velocity of the drum when it is fully unwound.

3. Treat the system of Problem 2 as one with two generalized co-ordinates,

the angular position of the drum and the free length of cable, with an

appropriate constraint. Hence find the tension in the cable. (Show that

it is equal to the Lagrange multiplier.)

4. *Find the Lagrangian function for the system of Problem 2 if the cable

is elastic, with elastic potential energy 1
2kx

2, where x is the extension of

the cable. Show that the motion of the massm is a uniform acceleration

at the same rate as before, with a superimposed oscillation of angular

frequency given by ω2 = k(M + 2m)/Mm. Find the amplitude of this

oscillation if the system is released from rest with the cable unextended.

5. Write down the kinetic energy of a particle in cylindrical polar co-

ordinates in a frame rotating with angular velocity ω about the z-axis.

Show that the terms proportional to ω and ω2 reproduce the Coriolis

force and centrifugal force respectively.

6. A light inextensible string passes over a light smooth pulley, and carries

a mass 4m on one end. The other end supports a second pulley with

a string over it carrying masses 3m and m on the two ends. Using

a suitable pair of generalized co-ordinates, write down the Lagrangian

function for the system, and Lagrange’s equations. Find the downward

accelerations of the three masses.

7. Find the tensions in the strings in Problem 6. Explain why the first

pulley turns, although the total mass on each side is the same.

8. Evaluate accurately the two possible precessional angular velocities of

the top described in Chapter 9, Problem 13, if the axis makes an angle of

30◦ with the vertical. Compare the slower value with the approximate

result found earlier. Find also the minimum angular velocity ω3 for

which steady precession at this angle is possible.

9. A simple pendulum of mass m and length l hangs from a trolley of

mass M running on smooth horizontal rails. The pendulum swings in

a plane parallel to the rails. Using the position x of the trolley and the

angle of inclination θ of the pendulum as generalized co-ordinates, write

down the Lagrangian function, and Lagrange’s equations. Obtain an

equation of motion for θ alone. If the system is released from rest with

the pendulum inclined at 30◦ to the vertical, use energy conservation

to find its angular velocity when it reaches the vertical, given that

M = 2kg, m = 1kg, and l = 2m.
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10. *Show that the kinetic energy of the gyroscope described in Chapter 9,

Problem 21, is

T = 1
2I1(Ω sinλ cosϕ)2 + 1

2I1(ϕ̇+ Ω cosλ)2 + 1
2I3(ψ̇ + Ω sinλ sinϕ)2.

From Lagrange’s equations, show that the angular velocity ω3 about

the axis is constant, and obtain the equation for ϕ without neglecting

Ω2. Show that motion with the axis pointing north becomes unstable

for very small values of ω3, and find the smallest value for which it

is stable. What are the stable positions when ω3 = 0? Interpret this

result in terms of a non-rotating frame.

11. *Find the Lagrangian function for a symmetric top whose pivot is free

to slide on a smooth horizontal table, in terms of the generalized co-

ordinates X,Y, ϕ, θ, ψ, and the principal moments I∗1 , I
∗
1 , I

∗
3 about the

centre of mass. (Note that Z is related to θ.) Show that the horizontal

motion of the centre of mass may be completely separated from the

rotational motion. What difference is there in the equation (10.15) for

steady precession? Are the precessional angular velocities greater or

less than in the case of a fixed pivot? Show that steady precession at

a given value of θ can occur for a smaller value of ω3 than in the case

of a fixed pivot.

12. *A uniform plank of length 2a is placed with one end on a smooth

horizontal floor and the other against a smooth vertical wall. Write

down the Lagrangian function, using two generalized co-ordinates, the

distance x of the foot of the plank from the wall, and its angle θ of

inclination to the horizontal, with a suitable constraint between the

two. Given that the plank is initially at rest at an inclination of 60◦,
find the angle at which it loses contact with the wall. (Hint : First write

the co-ordinates of the centre of mass in terms of x and θ. Note that

the reaction at the wall is related to the Lagrange multiplier.)

13. Use Hamilton’s principle to show that if F is any function of the general-

ized co-ordinates, then the Lagrangian functions L and L+dF/dt must

yield the same equations of motion. Hence show that the equations of

motion of a charged particle in an electromagnetic field are unaffected

by the ‘gauge transformation’ (A.42). (Hint : Take F = −qΛ.)

14. The stretched string of §10.6 is released from rest with its mid-point

displaced a distance a, and each half of the string straight. Find the

function f(x). Describe the shape of the string after (a) a short time,

(b) a time l/2c, and (c) a time l/c.
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15. *Two bodies of masses M1 and M2 are moving in circular orbits of

radii a1 and a2 about their centre of mass. The restricted three-body

problem concerns the motion of a third small body of mass m (� M1

or M2) in their gravitational field (e.g., a spacecraft in the vicinity of

the Earth–Moon system). Assuming that the third body is moving in

the plane of the first two, write down the Lagrangian function of the

system, using a rotating frame in which M1 and M2 are fixed. Find

the equations of motion. (Hint : The identities GM1 = ω2a2a2 and

GM2 = ω2a2a1 may be useful, with a = a1 + a2 and ω2 = GM/a3.)

16. *For the system of Problem 15, find the equations that must be satisfied

for ‘equilibrium’ in the rotating frame (i.e., circular motion with the

same angular velocity as M1 and M2). Consider ‘equilibrium’ positions

on the line of centres of M1 and M2. By roughly sketching the effec-

tive potential energy curve, show that there are three such positions,

but that all three are unstable. (Note: The positions are actually the

solutions of a quintic equation.) Show also that there are two ‘equi-

librium’ positions off the line of centres, in each of which the three

bodies form an equilateral triangle. (The stability of these so-called

Lagrangian points is the subject of Problem 12, Chapter 12. There is

further consideration of this important problem in §14.4.)


