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We define the width, divergence, and curvature radius for non-Gaussian and nonspherical light

beams. A complex beam parameter is also defined as a function of the three previous ones. We then

prove that the ABCD law remains valid for transforming the new complex beam parameter when a

non-Gaussian and nonspherical, orthogonal, or cylindrical symmetric laser beam passes through a real
ABCD optical system. The product of the minimum width multiplied by the divergence of the beam is
invariant underABCD transformations. Some examples are given.
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1. Introduction
The propagation and transformation of Gaussian,
Hermite-Gaussian (HG), and Laguerre-Gaussian
(LG) light beams through paraxial systems are gov-
erned by the ABCD law.'- 3 However, most of the
laser beams are non-Gaussian (non-HG and non-LG).
The beams delivered by high-power lasers are often
multimodal beams.4 The transverse modes in unsta-
ble resonators are not HG or LG beams. Sometimes
non-Gaussian profiles are used for specific applica-
tions. For example, super-Gaussian profiles are used
for fusion lasers.5 Other profiles are also used for
improving the filling factor inside the laser medium.
Most of the time, Gaussian beams are at least weakly
distorted in amplitude or phase.6 7 In addition, a
Gaussian beam becomes a lower-quality non-Gaussian
and nonspherical beam when it passes through an
aperture.89 In such cases the conventional ABCD
law (valid only for Gaussian, HG, and LG beams) is no
longer applicable.

In this paper we introduce non-Gaussian and non-
spherical beams into the ABCD formalism by using
an extension of the concept of the complex beam
parameter. In Section 2 we define the width, diver-
gence, and curvature radius for beams with a non-
Gaussian intensity profile and nonspherical wave
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front. Following the research of other authors,10-12

we will relate the width and divergence with the
mean-square deviations (MSD's) of the transversal
position and transversal spatial frequency, respec-
tively, for the electric field in the transversal plane.
The curvature radius of a nonspherical beam will be
defined as the radius of the spherical wave front that
best fits the actual wave front. In Section 3 we
deduce the transformation laws of the width, diver-
gence, and radius when the beam passes through a
purely realABCD system. In Section 4 we define the
complex beam parameter by means of a generaliza-
tion of the corresponding parameter for Gaussian
beams and prove that it changes according to the
ABCD law.

In Sections 2 through 4 we assume that (a) the
beam has two orthogonal transversal directions with
independent behaviors with regard to its intensity
profile and wave front (orthogonal astigmatic beams),
so its expression is separable in two functions that
only depend on one transversal coordinate; and (b)
the magnitudes defined in Section 2, related with
mean values of powers of the transversal position and
transversal spatial frequency, are well defined.

We raise restriction (a) by extending the results for
the orthogonal astigmatic case to beams with cylindri-
cal symmetry (Section 5). We do not deal with
general astigmatic beams, even though they could be
included if the scalar width, divergence, and radius
are generalized to tensor magnitudes.13

Restriction (b) excludes an important type of beam:
truncated beams. In this case the mean value of the
squared transversal frequency is not well defined.
Nevertheless, we use one example in Section 6 to
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suggest how the method can be approximately applied
to truncated beams.

2. Width, Divergence, and Radius for Non-Gaussian
Beams
The complex beam parameter q of a Gaussian spheri-
cal beam at a transversal plane is defined as

1 1 X
q R 72 (1)

where R is the curvature radius of the spherical wave
front, o is the Gaussian width (the distance at which
the intensity is e 2 times that on the axis), and X is the
wavelength. More complicated laser beams have
neither spherical wave fronts nor points of intensity
decay related to the width. Therefore, there are no
complex beam parameters, in the usual sense, for
non-Gaussian (HG and LG) beams. In addition, the
complex beam parameter given by Eq. (1) does not
have a clear physical meaning for higher-order HG
and LG modes because is not their width. To
define the complex beam parameter for other types of
beams, we must first establish what we understand
about the width and the radius of a beam with a
non-Gaussian intensity profile and a nonspherical
wave front.

Because a laser beam is concentrated on a finite
region of the transversal plane, its width can always
be measured in some way. The most standard and
usual mathematical expression for this magnitude is
the MSD. We define the width of a laser beam at a
typical plane as the MSD of its intensity profile. In
the case of orthogonal astigmatic beams, the field is
separable in two orthogonal one-dimensional compo-
nents. If the amplitude distribution in one of these
transversal directions is denoted by (x), then the
width o(P) of the beam is given by

(oT) = 2
I0 t' *[x - x(T)]2dx 11/2

I(p)
FE PT*x2dx 11/2

= 2 L 1(P) -X 2() J , (2)

where

1(P) - JstP*dx (3)

is proportional to the total intensity in the transver-
sal plane and

x(P) = I~p) TT*xdx (4)

is the mean value of the transversal position of the
beam. The factor 2 in Eq. (2) is introduced to obtain
the Gaussian width w when the equation is applied to

a Gaussian beam. When x(T) is zero (not zero), we
will say that the beam is on axis (off axis).

The divergence of a beam is the spread angle if the
beam T(x) were permitted to evolve in free space up
to the Fraunhofer region. It is related to the width
of the Fourier transform of '. Then if (e) denotes
this Fourier transform, whose explicit expression is

= P(x)exp(-i2rrxt)dx (5)

where e is the transversal spatial frequency, we again
define the beam divergence 00(4) by means of the
MSD of *:

= 2X- {f (0]2d}1
00((+) = 2 I(0~ -

where I(O is defined as I(t) and

. 1/2

i2(o

e =0 I(= ) f Otde

(6)

(7)

is the mean value of the transversal spatial frequency.
Parseval's theorem says that I() = I(t). The angle
between the optical axis and the direction of the
propagation of the beam is given by a = - () (Ref.
14) within the paraxial approximation. Although
the divergence is a far-field property, its value is
implied in the field distribution at the transverse
plane under consideration. This implication is the
reason why we include the divergence, together with
the width, as a property at this plane.

It is well known that the product of the width
multiplied by the divergence cannot take arbitrary
values.15 The smallest permitted value for this prod-
uct is X/r. For Gaussian beams this limit is reached
at the plane of smallest width (o0 (the waist). Then,
if we know the width of the waist, the divergence is
given by 00 = X/rroo. Thus divergence and width are
dependent magnitudes for Gaussian beams. For
any other non-Gaussian beam the value X/r may not
be reached along the entire evolution. In particular,
at the transversal plane of smallest width o0 (T), the
product w0 (T)0 0(T) may be greater than X/r, and the
exact value for this product depends on the transver-
sal intensity profile and wave front. This depen-
dence means that we must consider width and diver-
gence as two independent magnitudes for non-
Gaussian beams. Therefore, the complex beam
parameter for non-Gaussian beams will provide com-
plete information if its definition takes into account
both the divergence and the width. In fact, the
imaginary part of the complex beam parameter for
Gaussian beams, Eq. (1), can be understood as the
quotient between the Gaussian divergence and the
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Gaussian width if the waist were located at this plane
(X/rrwl is not the divergence if w, is not the waist
width).

The next step is to define the curvature radius of a
beam. Because its wave front is not generally spher-
ical, we use the radius of the spherical wave front that
best fits the actual one.

It is known that a quadratic phase

k
-- ( - 2 + t 8- - (X - X0) ~~(8)2R

with k = 2rIX, represents a spherical wave front
within the paraxial approximation. Its radius is R
and the transversal position of its center is x0. We
must fit the phase of P, arg(T), to the phase of
expression (8). Actually, we are not interested in the
global phase t; therefore, we can differentiate expres-
sion (8) and arg(T) with respect to x to obtain the
linear fitting

k
[arg(T)]' - (x - xo). (9)

Now we apply the method of least squares. We are
only interested in the wave-front curvature where the
intensity distribution takes significant values, so the
fitting has to be weighted with the intensity distribu-
tion. Thus we must find R and x0 that minimize the
expression

P TP* [arg(T)i' + R-(x - xo)} dx. (10)

Differentiating with respect to R and x0 and equat-
ing to zero, we obtain the following equations:

1 0fpP* -
2i - TT*')(x - xo)dx

+ k I TT*(x - xo)2dx = 0, (11)

(?I - At*)dx
2i~ ~ ~ ~ ~ ~~~~~~~(2k G

+ ii I- XTT*(x - o)dx = O. (12)

where the following relations are used:

TT*[arg(P)]I' = tan a Re( )J

(Tpl* - TT*') (13)
2i

Subtracting Eq. (12) multiplied by [x(t) - xo] from
Eq. (11), we remove xo, and the value of the radius of
the spherical wave front that best fits the actual wave

front is obtained as

1 ix ( *
=~ ~ f - T'Sr*_ t*

R(T) rrI(T)P2(P) Jc0

x [x - x(T)]dx. (14)

The alternative expressions for the first moment of
An*,

2ri , = fl TPT*dx = -fE t iT d*',

(15)

allow us to rewrite Eq. (14) as

1 ix 00

R(T) rrl(T)W2(T) J ' ,xdx

_F4Xx(T)~(k)

+ (T (16)

Although the width is related with the mean values
of the powers of x and the divergence with the mean
values of the powers of i, we see from Eq. (14) or (16)
that the expression for the radius involves the crossed
products xt (as in quantum mechanics, the differenti-
ation of T is equivalent to multiplying + by t) and
x(T)W(O.

Knowing the radius, we can obtain the transversal
position of the center of the spherical wave front from
Eqs. (12) and (15) as

xo(T) = x(t) + XA()R(T) = x(t) - uR(). (17)

Equation (17) means that the mean position of
beam x(t) at the plane under study can be obtained
from a ray coming from the center of the spherical
wave front with slope a.

Formulas (2) for width, (6) for divergence, and (14)
for radius are generalizations for non-Gaussian and
nonspherical laser beams of the same magnitudes as
for Gaussian beams. It is easy to prove that Eqs. (2),
(6), and (14) give the usual Gaussian width, diver-
gence, and radius of curvature when they are applied
to a Gaussian beam. The generalized magnitudes
are global properties of the beam. They do not
exactly describe the shape of the beam, but they are
mean magnitudes on the entire intensity profile and
wave front. They are well defined when the mean
values ofxn~m, with n + m < 2, are finite.

Some examples may illustrate the variety of beam
profiles for which the definitions given above apply.
First we take the following beam with a finite lateral
extent: T(x) = 1 - Ix/b I for Ix I < b, and P(x) = 0 for
Ix 2 b (a triangular function). The width of this
academic beam is 21b, i.e., the transversal distance
at which the amplitude is 0.3675 times the amplitude
on the axis (for Gaussian beams the amplitude decay
at o is 0.3679). The divergence is J3X/(7rb), i.e., the
point of 0.3247 decay of the central lobe in the
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Fourier transform of 'I, b sinc2(bt). As T is real its
radius is infinite (the beam is plane). The product
width times the divergence is +_/5/rr, which is a
little larger than X/Tr. Now let us take a beam
represented by a superposition of N HG modes:

N-1
2(l) = -2 2I(x) ( (2n + 1)ICn 12

N-1

- 2 Re 1: [(n +
n=O

1)(n + 2)]/2 Cncn+2 *|)

N-1

'(X) = I CnPn(X; ()),
n=O

with Cn a set of N complex numbers, and
and the radius as

12 1/4 1 (r_ \ I
II - I ex - Ia1 (19)Tn (X; )=(- (2nnWT)/2 Hn ( Wt xp-2 '(9

where only purely real HG modes are used for
simplicity. Equation (18) can also represent the
field at a plane inside the cavity, being the mode
amplitudes c,, (possibly time dependent) given by the
laser-cavity equations in simple cases. The Fourier
transform of T(x), + is given by a similar superpo-
sition with coefficients n = (-i)nCn and TA(e; 1/7ro)
modes. A beam such as this usually has a few
irregular ripples and always decays exponentially
when Ixj increases. The same rule applies to its
Fourier transform. Therefore, all the magnitudes
defined in this section are well defined for this beam.
Although 03(T), 00(k), and R(T) can be determined
directly from the profile and wave front of T and from
the profile of A, it is interesting to express them in
terms of the mode amplitudes cn. Introducing T(x)
given by Eq. (18) and +k(x) into Eqs. (2)-(7) and (14)
and invoking the orthogonality, recurrence, and differ-
ential relations of the Pn modes,16 we find the mean
position and slope as

x(P) = It) Re 2 CnC+*n +, (20)

(4)) Im[ I cnCn+ i* Xn T , (21)

where

N-1

I(t) = 2 ICn 12.
n=O

1 X N-1

R(P) = 1 .~2( )I~p)Im t I B(n + 1)(n + 2)] 1/2

X (Cncn+ 2* -Cn+lCn-1 *) 
4x(P)t
0 2 (t) (25)

In these expressions Ck are taken equal to zero if
k < O or k > N - 1. Equations (23) and (24) are a
generalization of those in Ref. (9) for the width and
divergence of only one HG mode. Among other
things, these expressions say that the properties of
the multimodal beam cannot be inferred in a simple
way from the properties of the modes composing the
beam. They depend strongly on how the modes are
added up. For example, Eq. (25) shows how a super-
position of plane HG modes can produce a beam with
a net mean curvature; Eqs. (20) and (21) show how
the off axis and the slope of a multimode beam are
related to the presence of both even and odd transver-
sal modes. As a particular case, let the c, coefficients
be uncorrelated random variables, i.e., (x) is an
incoherent mixture of HG modes. In this case the
magnitudes of interest are the averages of I("I), x(T),

0(), 2(p), Oo2(), and R(T) given by Eqs. (20)-(25).
Assuming a uniform phase probability distribution
for the c,, (caused, e.g., by Langevin noise), we see that
the averages of any c, and therefore of any crossed
product CnCk*, with n • k, are zero. The intensity
pattern of this beam is the superposition of the
intensity patterns of the HG modes weighted with
(ICn 12), where ( ) denotes ensemble average. From
Eqs. (21) and (22) we see that the averaged mean
transversal position and spatial frequency are zero.
From Eq. (25) we see that the averaged radius is
infinite, and from Eqs. (23) and (24) we see that the
averaged width and divergence can be written as

We find the width and the divergence as

W )2
(O 2(p) =I~t)

N-1

(1 (2n + 1)Inc1 2

n=O

2N-1

1(= ) nz (2n + 1)(I n 12) = 2M

= 22 + ) 2N
Oo 7j 2(02I(() n= (2n + 1Cn 12 = 0MN-1

+ 2 Re [(n + 1)(n + 2)]1/2cnCn+ 2*J)
n=O (

- 4X 2 (t (2

(26)

(27)

The product width times the divergence is then M
23) times X/ir. This is a simple example of the so-called
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M times diffraction-limited beams. For instance,
when each , is a Gaussian random variable with
variance o and mean zero-the probability distribu-
tion is P(c,,) = [lIlr 2)]exp(- Icn 12/. 2 )-it is found
that (n12) = oy2 and M = N, i.e., the beam is N times
diffraction limited, where N is the number of modes.

These examples and the ones in Section 6 show how
the magnitudes defined in this section permit us to
express, in an analytical and useful way, properties of
great interest, such as the width, divergence, or mean
curvature of the wave front, for beams that do not
have very much to do with the Gaussian beam. Now
we will see how these magnitudes change when the
beam is transformed by a real ABCD optical system.

mean position, Eq. (4), for the output beam

X(P2 ) = BfI() f f& dxidxi P1(x1)1P*(x )

ir
x exp - BA (x1 - X112)

x f " d x x 2 e x 2i rJ
x r- dX2X2 eP BA (x - x)X2 . (30)

The integral in x2 provides a first derivative of the
Dirac function 8(1)[(x - x')IBX]. Then we can
carry the integral in xi to obtain

3. Transformation by a Real ABCD System
In a purely real ABCD system, the beam is repre-
sented by P1 (xl) at the input plane and by T2(x2) at
the output plane (see Fig. 1). The generalized Huy-
gens integral17 for one transversal direction of an
orthogonal system relates the output beam to the
input one and the ABCD elements

P2(X2 ) = ,IBX dx 1 Pl(xl)

x exp[-_B (Ax1 - 2x1x2 + Dx22) . (28)

An irrelevant phase factor depending on the length
of the ABCD system has been omitted. Because the
elements of the ABCD matrix are real numbers, the
integrated intensity is invariant, 1(T1) = I(P2).
Then, thanks to the Parseval's theorem, we can write
without distinction I(T1 ), I(P2 ), I(O1), or I(d)2 ).

As we may have expected, the mean values of the
position, x(T), and the slope of the beam, a = -E(@,
transform according to the geometrical optics rules
when the beam passes through the ABCD system:

X(T2) [A B ]x(T1)] (29
L-Ae(+)] LoD _ L-A0(1)J

To see this transformation, we introduce Eq. (28)
and its complex conjugate into the definition of the

2

0(@12

@(xl) 02(x2)

Fig. 1. Optical paraxial system illuminated by an arbitrary beam
Pi(x1). The ABCD matrix elements are real, t'2(x2) is the output
beam, and OoG( 1), 00002), o(''), and O('I' 2 ) are the divergences and
minimum widths of the input and output beams, respectively.

X(P2) = I(P) 0 dxx1Pi(x)P*(x)

BX
I(P1 )2ri J X dx1P'(x)Pi*(x).

(31)

The first integral can be recognized as the input
mean position, and the second is proportional to the
input mean transversal spatial frequency [see Eq.
(15)]. Then

x(P2 ) = Ax(Pl) - Bkt(41) = Ax(T) + Ba1, (32)

according to the geometrical transformation. The
transformation of the mean transversal frequency is
similar: We introduce the derivative of Eq. (28) with
respect to x2 and the complex conjugate of this
equation into the alternative definition of the mean
transversal spatial frequency given in Eq. (15).
Then, following a similar method, we obtain

at2 = -t( 2 ) = Cx(P 1 ) - DX(4q) = Cx(T1) + Do,

(33)

which completes the proof of Eq. (29).
For simplicity in the following calculations, .we will

assume that the beam is on axis and that its slope is
zero at the input plane. This assumption means
that x(T1) = 0 and t(4q) = 0, and therefore, from Eq.
(29), also x(P2 ) = 0 and (k2) = 0. It is not difficult
to verify that all the results in this section remain
valid in the general case of off-axis and tilted beams,
x(P 1) • 0 and e-) • 0.

To find the width of the beam at the output plane,
we introduce Eq. (28) and its complex conjugate into
the definition of the width [Eq. (2) with x(P2) = 0] to
obtain

4 c
2 BXI(P1 ) fi fX dxidxi t l1(x1)Pi*(xl )

x exP[--A(xi2 - x12

x dX2X2 2 exp[B (xi - Xl')X2 j (34)
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The integral in x2 gives a second derivative of the
Dirac 8, 8(2)[(xl - x 1')IBX]. Then the integral in x1
can be carried out:

4A2 B 2 X2

c2(2 = I(P ) Cdxx2,P(x),p*(X) I(P)Tr 2

r:O ~2iXAB
x dx11(x)r1P(x) + 2i(P)

x J dx[2P 1 *(x)xP1P(x) + 1P*(x)P(x),.

(35)

The first integral in this expression gives the width
of the input beam. The second one can be related to
the input divergence by means of the first of the
following identities,

-47r2 f 4*4) 2de = P*"P"dx

= P*"Tdx

(36)

and the third integral in Eq. (35) can be related to the
input radius with the aid of

21P1*xP + Pi*Pi

= P1',Pi*x - Pill*x + (ik1i*x)I. (37)

Then Eq. (35) becomes

e02(8 = A2(2(TI) + B2002((+) + 2AB ° 2(l)co (P2) = A 0 2 P)+ B20 2 4))+ 2AB -( 1 (38)

and by adding and subtracting B 2W 2 (P)/R(Pl) we
obtain

W3(P2) = (pl) A + R(P)J

+ B 2t 002((i) - R2 (1 j12 (39)

which gives the width of the output beam when we
know the width, divergence, and radius of the input
one. This formula is similar to the one obtainable
from the ABCD law for Gaussian beams. In fact,
when T is Gaussian, (P1) = , R(P1 ) = R1,

Oo(4)1) = 00 = - = 1[ + ( TRi2)1i

I002(41) _ 1 1/2
02 (Pl) R 2 (,p)

X
ATWi2

(40)

and B = z, with z being an axial coordinate), from Eq.
(39) we find that the evolution of the width is
hyperbolic as it is for Gaussian beams. The slope of
the asymptotes is Oo( 4)), as one may expect. Differen-
tiating Eq. (39) with respect to z and equating to it
zero, we find the position of the plane of the smallest
width as

°)2(pl)

Zo(P) = - 0 2 (I))R(P

and this minimum width as

= 132(P)[1 - 00 2(4)R2(pl)

(42)

(43)

The divergence of the beam at the output plane of
anABCD system, i.e., the far-field spread angle if the
output beam is permitted to evolve up to the Fraun-
hofer region, can be obtained by making use of Eq.
(36) to write the square of its definition [Eq. (6) with
g() = 0] in terms of the first derivatives of T2 and
T2*:

002(42) = ( 2) 4242

A2
x x

= 2I~l r 2 (X2)P2 *(X2)dX2. (44)

Introducing into Eq. (44) the derivatives with
respect to x2 of Eq. (28) and its complex conjugate, we
obtain

002(4)2) = I(,P) B3X

X f. f2 fJ. dxidx1tdx2T1(x)Pi*(x )
x (xlxl' - xix 2 D - X1'X 2D + DX 2

2
)

x exp -BA [A(x1
2

- x1'2 ) - 2(xl - xl')x2] 

(45)

After integrating in x2, we can rewrite Eq. (45) as

002()2) = I(P) B3X fl fl dxidxi Pi(x)i*(x,

x exp[- A(xi2 x112)]

x 1' (xx -Xi'|
(41)

Dxi x1x 1_ DX1 a(i) 1 X
2rri BX

Therefore Eq. (39) reduces to the Gaussian width
transformation.

In the case of free propagation (A = D = 1, C = 0,

Dx'8( 1) (xl - D (2D ) (i-Xi' -

2rri BX/4i6r2 BX

(46)
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The integral with a gives a term with the width of
the input beam, and the integral with a(2) is similar to
the one obtained in the width transformation. The
integrals with (l) are complexly conjugated. All of
these properties permit us to write

1 D 4 1
002(4)2) = W 2(P1 ) + 032 (P2 ) - I )B3XD

x I dxldx'Y1(x1)k*(xi )

x exp -iA(x, - i'2)

i -Xi' (7
x2'i BX C.C. (47)

where C.C. denotes the complex conjugate of the
integral. Making the integral in x1 or x1', we obtain

1 D2
002(2) = B2

0 3 (P 1 ) + B2 2(AN

2AD D2(ql) 2 w2(,P) (48)
-B

2 B R(P1 )-2

By using Eq. (38) and taking into account that
AD - BC = 1, we find that Eq. (48) becomes

00(4)2) = W(OPi) [C + R(1 )

[002(4)i 1 ii1/2
+ D 2 49 R 2 (P) (

which gives the output divergence (the far-field spread
in the further free evolution of the output beam) as a
function of the input beam parameters and the ABCD
elements. Equations (39) and (49) look similar; they
only differ in the elements of the ABCD matrix that
they include (A, B or C, D), depending on the param-
eter that we are calculating. For the free evolution
along z, we can see from Eq. (49) that the divergence
is invariant because the Fourier transform 4) is only
shifted in a phase factor along the free evolution.

Following the same method, we can derive the
expression for the radius transformation from Eqs.
(14) [with x(P) = 0] and Eq. (28) [here it is useful to
note that V* - * = 2i Im(P'P*)]:

1 032(P1) B D]
R(1) P W2(i,) [A + JLC +R(Pi)

[002 (Pi) -R
2 (1P)

which gives the mean curvature radius of the wave
front. In the case of free propagation, one finds
R(P2 ) equal to infinity and the beam is almost plane
when the plane of minimum width is the output
plane. Formula (50) also reduces to the usual for-

mula for Gaussian beams, deducible from the real
part of the ABCD law, when it is applied to a
Gaussian beam.

From the transformation of the mean values x(T)
and () found in Eq. (29) and from the general
definitions of the width, divergence, and radius found
in Eqs. (2), (6), and (16), it is easy to prove that the
three transformation formulas, Eqs. (39), (49), and
(50), are also valid when x(Tl) • 0 and #(4)) 0.
This validity means that in the paraxial approxima-
tion the behavior of the width, divergence, and radius
through ABCD systems is independent of the trans-
versal position and slope of the beam with respect to
the optical axis.

Take the case of an almost plane beam [R ( 1) = oo]
focused by a lens of focal length f. The transforma-
tion formulas let us obtain the characteristics of the
beam just behind the lens as W02(P2) = 032 (TP), R (T2 ) =
-f, and 002(42) = 0o2(4),) + 02 (P)/f2 . Substituting
these values into Eq. (42), we obtain the axial point
behind the lens with the smallest MSD and with the
most plane wave front, zo(T). It is convenient to
express it as

ZO(P) - f
f

1
1 + [(0(Pi)I00(()1)f]2 1 (51)

which is a generalization of the focal shift formula for
Gaussian beams. From Eq. (43) we can see that the
absolute value of Eq. (51) provides the quotient
between the smallest and the input widths, W032(P)/
W0

2
(P1 ).

Let us again consider a general beam P, including
off-axis and tilted beams. Now we are interested in
the meaning of the expression

[0o2(4)) 1 1/2

[0 2(P) - R2(P)
(52)

which appears in the three transformation formulas,
Eqs. (39), (49), and (50). For Gaussian beams Eq.
(52) should give [see Eq. (41)] the divergence 00
divided by the width w, if the waist width were wl.
If one collimates the beam at this plane, e.g., with a
lens, the waist width should be 03 i and expression (52)
should be the quotient of the divergence and the waist
width. This interpretation remains valid for non-
Gaussian laser beams. Let us consider the beam

Pp = P exp i 2R(P) x2 . (53)

This beam can be obtained by passing P through a
converging thin lens of focal length f = R(P). We
can determine the characteristics of Tp by means of
the transformation formulas for this lens. The mean
position and the width remain unchanged. The
radius of Tp is infinite, i.e., its average wave front is
plane where the intensity is significant because one
has collimated the beam by means of the phase factor
of Eq. (53) (see Fig. 2). The slope of the beam is also
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1012= 1P1 2 lens(0)
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Fig. 2. Divergence Oo(4) of the beam P(x) and divergence Oo(p)

of the collimated beam 'Pp (x). An on-axis and nontilted beam is
depicted for clarity.

changed, ac = a - x(T)/R(T), and finally the diver-
gence of Pp is given by

O(4) = 002() -- R2(q) (54)

Expression (52) then gives the divergence divided
by the width of the collimated beam.

We already have seen a conserved quantity in the
propagation of a light beam: The integrated inten-
sity I(P) does not change if the elements of the matrix
ABCD are real. Another invariant is the product of
00( 4)p) times the width 0(P). By combining transfor-
mation formulas (39), (49), and (50) and after some
calculation, we obtain the following relation:

0(P 1 ) [00 24( ) -R2(l)

= 0(P 2 ) 0e02042)
0W2

(P2 ) 1/2

R2 (P2 )
(55)

This product can be calculated at the input plane,
at the output plane, or at any plane after the ABCD
system because the free evolution also preserves this
quantity. If we do this at the real or virtual planes of
minimum width of the input and output beams
[R(P 1 ) = R(P2) = ], Eq. (55) means that the prod-
uct of the smallest width times the divergence is
invariant. As we have seen in Section 2, the con-
served quantity is X/1r for Gaussian beams. For
other beams it is greater than X/,rr but remains
unchanged after arbitrary ABCD transformations for
a given laser beam.

The knowledge of the value of the invariant prod-
uct of Eq. (55) for a given laser beam is useful. A
simple method for measuring this invariant is as
follows. First, collimate the beam at an arbitrary
plane, which is easy experimentally; second, measure
the width and the divergence of the collimated beam;
third, multiply them. Once the invariant product is
known, it permits us to obtain the curvature radius
R(T) at a given plane of interest only by measuring
the divergence and the width at this plane and by
using Eq. (55).

Now we will use this conserved product and the
transformation formulas to deduce the ABCD law for
non-Gaussian beams.

4. Complex Beam Parameter and ABCD Law for
Non-Gaussian Beams
Let us define the following complex magnitude:

1 1 [0o2(4) 1 11/2

q(P) R (P) - 2 - R2(P)

1R .P 0(P)I ' (56)

Its real part is the curvature radius and its imagi-
nary part is the divergence divided by the width of the
collimated beam. From the first equality in Eq. (56),
one may think that the imaginary part of 1q(T)
depends on the radius and therefore on the wave
front. However, the second equality means that it
only depends on the collimated beam. When the
fitting between the spherical and the real wave fronts
is fine, one may expect the divergences of Fp (plane in
average) and I 1 = vTiW (exactly plane) to be equal.
In this case, the imaginary part of 1/q(P) can be
computed by means of the square root of the intensity
profile and its Fourier transform.

Let us write

C + Dlq(Pl)
A + Blq(T)' (57)

where q(P1 ) is the magnitude defined in Eq. (56) for
the beam P1 (xl) inciding on an ABCD system.
Multiplying and dividing by the complex conjugate of
the denominator, we find the real part of expression
(57) as the inverse of the output radius, 1IR(P2), and
the imaginary part as the divergence divided by the
width of the output collimated beam, - o()p 2 )('P 2 ).
Then expression (57) is equal to l/q(P2 ). Taking its
inverse and multiplying and dividing by q(P1 ), we see
that q(P) changes according to the ABCD law:

q(P 2 ) = Cq(Tl) + D (58)

Therefore we will name q(P) as the complex beam
parameter of the beam. Equation (58) is the ABCD
law for any (orthogonal) laser beam, provided that the
magnitudes defined in Section 2 are well defined.

From the ABCD law and the conservation law [Eq.
(55)] one can again deduce the width, divergence, and
radius transformations. Note that by using only the
ABCD law, which provides only two equations from
their real and imaginary parts, it is not possible to
deduce the transformation formulas. The conserva-
tion law is the third condition necessary to solve this
system: Let K(P1) be the invariant product for the
input beam. The conservation law establishes that
K(P1 ) = K(T2 ) [see Eq. (55)]. Equating the real
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parts of the two members of the generalized ABCD
law, we obtain R(P2 ) as Eq. (50). The imaginary
part provides K(P2 )/ 2(P2 ), which is equal to K(P,)/
)2 (P2). Then a value of 03(P2 ) like the one in Eq.

(39) is obtained. Finally, a value of 00(4)2) like that of
Eq. (49) can be obtained from the conservation law
K(Pj) = K(P2 )-

5. Cylindrical Symmetric Beams
This section and Appendix A are brief repetitions of
Sections 2 and 3 for cylindrical symmetric beams
passing through cylindrical symmetricABCD systems.
All the results, including the conservation law, Eq.
(55), and the extended ABCD law, Eq. (58), remain
valid in this case.

For cylindrical symmetric beams it is useful to
write all the magnitudes in polar coordinates (r, 0).
The integrated intensity in the transversal plane is

I(P) = go do f P(r)P"*(r)rdr

= 2r JO P(r)P*(r)rdr. (59)

The width of the beam is twice the two-dimensional
MSD in any direction,18

to(P) = 2 I f 1 cos2 OdO foiP(r)P*(r)r3drl

[n. .11/2
= 2 I J0 (r)P*(r)r3 dr (60)

and the radius of curvature is the value of R that
minimizes the expression

f2wr0 f k 1 2rd,f0 '0 |[arg T(r)] + R rdrdO, (61)

where the prime denotes differentiation with respect
to r. Differentiating with respect to R, one finds

1~t) _________ 1' (ptP* - PP*')r 2
dr, (62)R(P) (P) 2(P) 

which is the average radius of curvature of the wave
front along any transversal direction. The diver-
gence is defined by the two-dimensional MSD along
any direction of the spatial frequency plane,

( = 2X g )(P) dp , (63)

where p is the radial polar coordinate in the spatial
frequency plane.

Now the ABCD matrix represents a paraxial optical
system with cylindrical symmetry. In such a case

the amplitude distribution at the output plane is
given by the generalized Huygens integral for cylindri-
cal symmetric systems,3 which is essentially a zero-
order Hankel transformation of the input beam

T2 (r2 ) = i B I' Pl(r)exp[-iAB (Arl 2 + Dr2 2)j

27rrLr 2)
x r1Jo AB drl, (64)

where Jo is the Bessel function of the first kind and
zero order.

The procedure for obtaining the width, divergence,
and radius at the output plane as a function of the
input ones is similar to the orthogonal case, and the
details are given in Appendix A. It is seen from this
appendix that the three transformation formulas are
identical to the orthogonal case, and therefore the
conservation and the ABCD law remain valid for
cylindrical symmetric beams.

6. Examples

A. Super-Gaussian Beams
To illustrate the cylindrical symmetric case and the
formalism in general, we consider the family of
functions (r) = exp(-rI/o)s), where s is a real
number larger than or equal to 2. These functions
represent the beam profile of some lasers for fusion
experiments (e.g., with s = 5).5 To interpret the
values of the width, divergence, and radius of these
beams, we first need to take a look at t and its
Fourier transform As. For s = 2 the beam is Gauss-
ian. When s increases Ps becomes more and more
squared, and in the limit P. is the circular hard
aperture of radius . The far-field patterns 44)*
have a big central maximum with small sidelobes
surrounding them for all s. The central maximum
stretches with s, but only a little. The limit is the
central maximum of the Airy pattern corresponding
with the circular aperture of radius 03. The frac-
tional power in the central maximum decreases with s
(until 0.838), and therefore the fractional power in
the sidelobes increases with s (until 0.162). Howev-
er, the values of the intensity distributions in the
sidelobes are always very small in comparison with
the peak intensities (lower than 0.0175 for all s).
Some of the intensity distributions, PSPS* and 4)4)*
can be seen in Figs. 3(a) and (b).

These beams, usually high-power beams, accumu-
late a self-induced wave-front distortion by passing
through the laser medium. This effect is the so-
called whole-beam self-focusing effect. Under cer-
tain conditions7 this aberration is proportional to the
intensity profile,

1,(4)(r) = PY(r)exp(-ikL j TP(r) 2), (65)

where L (always greater than zero) is the magnitude
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Fig. 3. (a) Intensity profiles of some 'IS and %sfa). (b) Some far-field intensity patterns of the unaberrated beams 4A and (c) of the
aberrated beams P8(a). These patterns are shown in logarithmic scale for best viewing of the sidelobes. On the top of (c) the comparison
between aberrated and unaberrated far-field patterns is shown in lineal scale. (d) Conserved products for the 'P8 beams (dashed curve) and
for the 'P(a) beams (solid curve) as a function of s. The magnitude of the aberration is L = 0.75A.

of the phase distortion. Although the intensity pro-
files of both the aberrated and unaberrated beams are
identical for all s, their far-field patterns are different
enough for small and moderate values of s (e.g.,
s < 20). In contrast, the phase aberration of Eq.
(65) becomes a constant phase kL as I TP(r) 12 tends to
the circular hard aperture, i.e., the aberration tends
to disappear for large s and the Fourier transforms
()(a) tend to 4)S. Figure 3(c) shows some far-field
intensity distributions for the aberrated case,
(4 S(a) 4)s(a)*. The top of this figure shows how the
aberration fairly modifies the far-field pattern for low
s and how the effect of the aberration is much weaker
for s = 20.

The parameters of these beams can be calculated
with an appropriate table of integrals.'9 The widths
of both P and T (a) are given by

22/s 2 1\
W2(TP) = F r + .W 032 (66)

where F is the Euler gamma function; the divergences
are given by

S222 /s X2

8F(21s) Tr20)2

002(4)8(a)) = 0
2

(4)S) [1 (67)

and the radii are given by

R(P8) 's R(P8(a ) 24 /sF[(21s) + (1/2)](o2

(68)

Then the conserved products K(T) = w(T)[0o2(4)) -
(02 (P)/ R2 (P)]1/ 2 are
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X2 S2 (4/s)
K 2(ps) = - 4 (21 ) (69)

72 4 '(2kL 2 [3\2F(2s

K2 (P8 (a)) = K 2 (Ap) 1 + 2kL [1 _ j3 2 2 r224s)J

(70)

The values of 03(P) are slightly lower than 03 for s >
2 because of the faster decay of these functions when
r increases. The divergences of the unaberrated
beams are always greater than the Gaussian diver-
gence and they increase as ,/E for large s. This
growth is first due to the small enlargement of the
central maximum of 4) and second to the growth of
the sidelobes with s. The only effect of the aberra-
tion on the divergence is to multiply it by a constant
factor greater than one, which can be written as 1 +
(2kL/3)2. The wave front of the unaberrated beam
is plane because Ps is real. The aberration, besides
increasing the divergence, is taken into account like a
mean curvature of the wave front that is proportional
to the magnitude of the aberration [Eq. (68)]. Then
the transformation formula of the width for the free
evolution shows that the aberrated beams will reach
an axial point of minimum width given by Eq. (43),
explaining the self-focusing of these beams.

Equations (69) and (70) may be understood as a
measure of the removal of these beams from the
Gaussian beam optimum behavior. We see that
K(,P) is greater than X/7r for s > 2; as the divergence,
it grows as ,/a. The conserved products K[P8(a)] for
the aberrated beams with L = 0.75 X as a function of s
can be seen in Fig. 3(d). This figure can explain the
use of the profiles represented by PS, with s larger
than 2, in the presence of this type of aberration.
Two factors are at work for the value of K[qIP(a)].
The first is the loss of quality caused by the increase
of the energy in the sidelobes; the second is the loss of
quality caused by the aberration. The first factor
becomes important for large s, and the second for low
s. For s 4 (when L = 0.75 X) K[TI(a)] reaches a
minimum value, which must be understood as a
commitment between these two opposite factors.

B. Truncated Gaussian Beam

The last example is the free evolution of a truncated
Gaussian beam. We have said before that the MSD
of the Fourier transform of these types of beams is
not well defined. This would mean that the ABCD
law and the conservation laws derived in this paper
would no longer apply in a strict sense. However, let
us fix the scope of these laws from a more realistic
point of view. First we have to establish the physical
meaning of the concepts of convergence and diver-
gence when they are applied to magnitudes involving
integration over the whole plane, such as the width,
divergence, and radius.

Physically speaking, only the integrals over a finite
area are measurable. Then the convergence of the

width, divergence, and radius means that the value of
the corresponding integrals over the whole plane can
be approximated with arbitrarily adjustable accuracy
by means of the measured, or numerically calculated,
integrals over a finite area. Obviously the precision
increases as the integration area contains more and
more of the beam intensity. Therefore, we can
conclude that the ABCD law and the conservation law
are exact laws to transform the theoretical magni-
tudes, o0(T), 00(4)), and R(T), which are defined by
means of an infinite area of integration; furthermore,
their results are arbitrarily close to the exact ones
when these laws are applied to the transformation of
the previous magnitudes measured or evaluated over
a finite integration area.

The divergence of 0o(T), 00(4)), or R (T) means that
the value of any one of these magnitudes is arbitrary
and unbounded, depending on the size of the integra-
tion domain. This undetermination disappears if we
specify a criterion to define the integration domain.
In spite of this, we cannot state any generalized
conclusion about the validity of the transformation
laws when they deal with these magnitudes defined
over a finite area. Nevertheless, we can expect a
certain degree of approximation to the ABCD law and
the conservation law when the integration areas
contain most of the energy of the beam.

A weakly truncated9 cylindrical Gaussian beam has
been studied as an example in which one of the
magnitudes, the divergence, diverges. For a weakly
truncated beam the power loss in the truncation is
small, but the diffraction effects are still significant
(see Ref. 9). In particular, the near-field patterns
are different enough from the Gaussian beam, show-
ing significant Fresnel ripples. To simplify the calcu-
lation and the physical situation of the problem, we
assume that the beam has its waist on the aperture
plane. Actually we have chosen an input Gaussian
width of o = 1 mm, truncated by an aperture whose
radius is a = V/2 mm, and with a wavelength of X =
0.6328 x 10-3 mm. The Fresnel integral has been
used for evaluating the free evolution behind the
aperture plane. This exact calculation allows us to
obtain the values of the width of the beam, 03(P), and
the radius of curvature of the wave front, R(T), at
several planes. In contrast, the divergence 00(4 )) has
been evaluated at the spatial frequency plane. To
obtain these previous magnitudes, we have carried
out the integration over a circular integration area
containing a known encircled energy in the spatial
frequency plane by using the exact amplitude distribu-
tion. The amount of encircled energy has been used
like a constant parameter to determine the integra-
tion limits on the planes behind the aperture, where
we have calculated the width and the radius of
curvature following a conservative criterion.

The adequate values for the encircled energy must
be greater than 99.3% for this particular beam. This
value determines an integration domain containing
only the central maximum of the Fourier transform.
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Fig. 4. Evolution of the (a) width and (b) radius of curvature of
the diffracted Gaussian beam: woo is the width of the input
Gaussian beam and ZR is its Rayleigh range. The open circles are
numerical data, based on the Fresnel integral, with a 99.4%
criterion; the solid curve is the ABCD law prediction; the dashed
curve is the evolution of the nondiffracted Gaussian beam.

A lower value would partially exclude the outer region
of the central maximum and would not provide a
correct evaluation of the divergence. In contrast,
values greater than 99.3% can be chosen if we include
some of the rings of the Fourier transform in the
integration area. For instance, if we take into ac-
count both the central maximum and the first ring to
evaluate the divergence, then 99.4% of the total
energy will be encircled.

Figure 4(a) shows the evolution of the width of the
diffracted beam. The open circles represent the
numerical data obtained by means of the Fresnel
integral when the calculation uses the 99.4% criterion.
The solid curve shows the behavior predicted by the
ABCD law:

W2(T) = 032 (To) [1
0o2(40)1

+ 0 2(po)X

where z is the axial coordinate and 0(P 0) and 00(4 0)
are the width and divergence of the truncated
Gaussian beam computed with the 99.4% criterion
just behind the aperture plane (z = 0). The maxi-
mum relative error between the ABCD law prediction
and the numerical data is lower than 1% in the region
between N = 9 and N = 0.3, where N = a2/zX is the
Fresnel number. Besides, we have found that the
maximum error follows an inverse relation with
respect to the fractional power within the integration
domain (1.2% error for the 99.3% criterion and 0.7%
for the 99.6% criterion).

Figure 4(b) shows the evolution of the averaged
radius of curvature of the diffracted beam. Here
again the open circles are the numerical data for the
99.4% criterion and the solid curve is the ABCD law
evolution,

R(P) [ = 1 (72)
z2002(4)0

A measure of the validity of this formula can be
represented by the phase difference between the
spherical wave fronts of radius R (P) when the radius
is obtained from Eq. (72) or from the numerical data.
The maximum error always occurs at the edge of the
integration domain rma> (i.e., the maximum error is
given by I /2krm R 2[1R(T) - 1IRN(P)] , where RN(P)
are the numerical data). After evaluating this error
at several positions along the z axis, we found that it
lies between 0.003wm and 0.03rr rad. In addition, this
error is similar for several similar criteria. This fact
has to be interpreted as an actual growth of the
accuracy as the fractional power increases, i.e., the
error remains constant regardless of the growth of
rma), with the fractional power. The difference be-
tween both of the spherical wave fronts at the edge of
the integration domain is approximately constant
although this domain stretches, i.e., R(P) approaches
RN(P) as the fractional power increases.

We also have calculated the value of the product
K 2 (P) = 0o2(()) - [2(P)/R2(,P)]032(P) which re-
mains almost constant in the free propagation after
the aperture. The actual value for this example is
K(P) = (1.027 ± 0.007)(X/r) when the 99.4% crite-
rion is chosen. The maximum relative variation,
AK(P)IK(T) (where the overbar denotes the mean
value along the propagation axis), remains lower than
2, 1.5, and 1% for the 99.3, 99.4, and 99.6% criteria,
respectively, again showing an increase of the accu-
racy with the fractional power. At the same time the
magnitudes involved in the definition of K show big
changes in wide ranges (AR(P)/R(T) 400% and
A03()/3() 100%).

The detailed study of this example shows how the
ABCD law and the conservation law still represent,
with a high degree of accuracy, the transformation of
the width, divergence, and radius of curvature, at
least for the free propagation of a weakly truncated
Gaussian beam. The procedure explained in this
section is necessary for truncated beams and in
general when the width, divergence, or radius diverge.
It can also be applied when the three magnitudes
converge if we modify the integration region by
removing the areas without physical interest as wide-
spread energy. In this case we will lose accuracy in
the transformation laws but we will improve the
characterization of the beam.

7. Conclusions

We have studied the propagation of non-Gaussian
and nonspherical light beams through paraxial opti-
cal systems. We have investigated the whole behav-
ior of the beam without considering the exact inten-
sity profile and wave front. To do this we needed to
define the width, divergence, and radius of curvature
for non-Gaussian and nonspherical beams. The com-
plex beam parameter for this type of beams has been
defined by involving the three previous magnitudes.
The formulas of transformation of the width, diver-
gence, and radius of curvature show that they repre-
sent the immediate generalizations of the same mag-
nitudes for Gaussian beams.
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We have used the generalized Huygens integral to
prove that the new complex beam parameter changes
according to the ABCD law when an orthogonal or
cylindrical symmetric beam is transformed by a real
ABCD system. The ABCD law is also valid for
off-axis and tilted beams. We have found that the
product of the minimum width, o(T), times the
divergence at the same plane, 00(4)), is conserved by
any ABCD transformation. To evaluate the con-
served product at any plane along the propagation of
the beam, we find that it is necessary to collimate the
beam, measure its width and divergence, and finally
multiply them. This invariant product allows us to
classify the light beams according to its value. In
particular, beams with 03o(T)00(4) = X/T (minimal
beams) are Gaussian beams or beams whose global
behavior is reducible to the Gaussian case. Beams
with wo(P)O(4)) > X/wr (nonminimal) are essentially
different from Gaussian beams, and it is not possible
to find a Gaussian beam that evolves, with regard to
its width, divergence, and radius, as a nonminimal
beam.

We have applied the results to some typical laser
beams. From the ABCD law and the conservation
law it is possible to deduce algebraic and useful
fomulas that yield an adequate description of the
laser-beam properties of interest. By using an exam-
ple we have seen how the method presented in this
paper can be applied to truncated beams.

Finally, the further developments, consequences,
and particular cases of the usual ABCD law (paraxial
resonator theory, circle diagrams, optical systems
design, Gaussian beams in lenslike media, misaligned
systems, etc.) can be reinterpreted for non-Gaussian
beams by using the extended ABCD law and the
complex beam parameter defined here.

Appendix A

Here we deduce the formulas of transformation of the
width, divergence, and radius when a cylindrical
symmetric beam incides on a cylindrical symmetric
ABCD system.

We can obtain the width at the output plane of the
system as a function of the input parameters by
substituting Eq. (64) and its conjugate into Eq. (60):

8,Tr 2

02O = X2 B2
1P,) fOfO drldr 'r1r1'P 1(r1)P,*(r1')

XB
x exp[- AB A(r,2 r ,1

x 2r f0 r2
2 Jo (TB Jo (TABrr r2 dr2 .

(Al)

The integral in r2 can be identified8 with the zero-
order Hankel transform of r2

2J0(2Trr1r 2/XB) that

gives two terms with the first and second derivative of
the 8 function:

r2B2 = ( ) fO Jo drldr1'rlr1PP1(r)'P1*(rl')

x exp[- B A(rl - rP2)]

Ž• XB 8(2) - + 5(' (r8M r)
Xr, X8|AB |+r11 X B |

(A2)

The 8 functions allow us to carry out the integral in
rl' to yield

02(2 N 1(P') |-X 2B 2 fo tF(r)T1*(r)dr

- X2B 2 fo T,(r)P,* (r)rdr

- 47riXAB o [T1(r)P,*(r)r + T(r)P1 *(r)]

+ 47r2A2 f 0 Tl(r)TP*(r)r3dr . (A3)

The identity

(r 2PP*) = 2rTT* + r 2 T'T* + r2 p* (A4)

allows us to identify the radius in the third integral of
Eq. (A3). The first two integrals in Eq. (A3) are
related to the divergence of the input beam by means
of the identity

_4r2 fJo 4)*p3dp = f J IP*'dr + PT*f"rdr,

(A5)

and the last integral in Eq. (A3) gives the width of the
input beam. One then finds the formula for the
width transformation, Eq. (39), given in Section 3.
Because the width for cylindrical symmetric beams is
also the width in the x direction, the meaning of Eq.
(39) for orthogonal astigmatic and for cylindrical
beams is the same.

The radius of the output beam can be obtained by
differentiating Eq. (64) with respect to r2 to obtain

47r2 . 21Trrr2
P2 '(r 2 ) = A22 Pl(rl)rl r2 DJo ( B

- ir 1J1 (2AB ) exp[- AB (Arl + Dr22)j drl.

(A6)

With this derivative and the complex conjugate of
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Eq. (64), we can write

J P 2'(r2)P2 *(r2 )r2
2 dr2 = -

3B3 g0 g0 dridrl'rl rl'

X P 1(r 1)P 1*(rt)exp XBA(r12 - r 1?2)]

x dr 2r2
2 r (2rrlr2J (2Trl'r2)

- ir J (2 Or2) (2rrlr2)] (A7)

The integral with the first term in the square
bracket is similar to that in Eq. (Al), providing a term
with the output width. The integral in r2 with the
second term in the square bracket gives18

2'r dr2 r2
2

J 2Trlr2) J(1Orlr2)
fs o, Xrr2J B XJ B 

+ XB (r ' - ri\]
r1 xB

Then the integral in rl' in Eq. (A7) can be carried out
to obtain

D
Jo T2 (r2)P2 *(r2 )r2

2 dr2 = - i (Tl)2 

+ fo drr 2 T(r)T* '(r)

27riA co ,
+ B gf drr3P1(r)P,*(r). (A9)

Introducing this equation and its complex conju-
gate into the definition of the radius, Eq. (62), we find

1 D 0W2(P) A w2(,P1)
R(P2 ) -B -0

2 (P2 R() B (02 - (AlO)

Factoring 02(P1)/3 2 (P2 ), using Eq. (38) for W3(P 2),
adding and subtracting DBW2 (T)/R2(T)O 2(P2 ), and
taking into account that AD - BC = 1, we obtain Eq.
(50). By the same method it is easy to prove that the
divergence of the output beam is given by Eq. (49).

The three transformation formulas are identical
for orthogonal and radial symmetric beams. There-
fore the conservation and the ABCD laws remain
valid in the last case.
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Note added in proof A similar ABCD law that
applies to orthogonal, on-axis, and untilted beams
was also derived by P. A. Blanger [Opt. Lett. 16,
196-198 (1991)].
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