Série de Exercicios 5

1. Na aula “Campos Magnetostdticos | derivamos o campo de uma espira de
corrente em coordenadas esféricas utilizando o potencial escalar magnético. Embora as
expressdes obtidas para as componentes do campo magnético sejam muito Uteis para
calculos analiticos, elas ndo sdo apropriadas para cdlculos precisos dos campos, sem
aproximacgoes, para aplica¢Oes praticas, utilizando métodos numéricos. Neste problema
vamos derivar a expressdo para o potencial vetor do campo de uma espira em
coordenadas cilindricas, que permite expressar as componentes do campo em termos
de integrais elipticas. O inicio deste cdlculo esta feito na se¢ao 5.5 do Jackson, mas
referéncias mais Uteis sao A. Shadowitz; The Electromagnetic Field, Se¢dao 5.1, e W. R.
Smythe; Static and Dynamic Electricity, Cap. 7. A configuragdo bdasica é mostrada na
figura. A espira estd no plano (x, y) e o eixo vertical passa pelo centro da espira. Como
hé simetria azimutal, podemos colocar o vetor posi¢do 7 no plano (x, z) para simplificar.

a) Considerando que a corrente é dada por
=]f@ydi

escreva a expressao para dS na direcdo é,, em
coordenadas esféricas, e mostre que a expressao
para a densidade de corrente que representa o
anel de corrente no plano (x, y) tem que ser dada
por
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b) Utilizando a expressao do potencial vetor como integral da densidade de
corrente, decompondo a densidade de corrente em coordenadas cartesianas, para

poder fazer a integracdo no angulo ¢, e calculando |7 — 7’|, obtenha
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c) Explique por que a integral sobre ¢’ cancela a componente A, do potencial vetor
e, como pela escolha dos eixos A, < A, obtenha
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d) Faca a transformacédo de variaveis ¢’ = w + 2¢' e obtenha
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obtenha a expressao final para o potencial vetor (Equacdo 5.37 do Jackson)

A= Ho 4]R (2 — k»)K(k) — 2E (k) R
é
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sdo as integrais elipticas de primeira e segunda espécies, respectivamente.

f) As componentes do campo sdo mais facilmente calculadas (e mais Uteis para
calculos numéricos) em coordenadas cilindricas. Fazendo a transformacdo para essas
coordenadas (r cos 8 = z;rsin @ = p), mostre que
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g) Calcule as componentes do campo magnético. Para as derivadas envolvendo as
integrais elipticas, utilize as seguintes relagdes
dK E K dE E K
dk_k(l—kz) k’ dk _ k k
e obtenha
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Essas expressdes possibilitam o calculo numérico preciso do campo magnético de
qgualquer solenoide com geometria cilindrica. As integrais elipticas sdo mais
precisamente calculadas utilizando suas aproximacdes polinomiais (M. Abramowitz & I.
Stegun; Handbook of Mathematical Functions; Cap. 17].

2. Um problema classico de Fisica Ill é o cdlculo do campo magnético de um
solenoide muito longo. Geralmente este calculo é feito usando a Lei de Ampeére na forma
integral, supondo o campo interno na direcdo do eixo do solenoide e o externo nulo.
Essa ultima hipotese ndo é facilmente aceita pelos alunos. No entanto, o cdlculo sem
aproximacoes baseado na Lei de Biot-Savart prova que esta correta. Siga os cdlculos da
secdo 10.2.2 do Zangwill, reproduzida abaixo, fazendo as passagens que ndo estejam
bem detalhadas.



10.2.2 An Infinitely Long Solenoid

Figure 10.3 shows an azimuthal current K flowing on the surface of an infinitely long solencoid. The
cross sectional shape of the solenoid is arbitrary but uniform along its length. The vector R =r —rs
in the Biot-Savart integral (10.16) is drawn for the case when the observation point P lies outside the
body of the sclenoid. However, the calculation to be outlined below appliez equally well when F lies
inside the body of the solenocid.

We exploit the fact that Kd ¢4 = X d€ is an azimuthal vector by factoring the surface integral in
(10.16) into a z-integral and a line integral around the solenoid’s perimeter:

Lesl
i KxR oK df < R
B(F) = E[afS T am [ a’gjtg — (10.21)

el
From the geometry, R + R/ = —z% and RT = RZ 4 2, Using thisinformationand 4 £ = d R’ in{10.21)

gives
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Figure 10.3: An infinitely long solenoid with a uniform cross sectional shape. The surface current density K has
corstant magnitide, but is everywhere paralle] to the azimuthal vector € = dRY tangent to the solenoid surface,

The first integral in square brackets in (10.22) has the value 2/ R, The second integral vanishes
because its integrand is an odd function of z. Therefore,
pokK [ R xJR
2 R
An important observation is that the vector R’ % ¢R’ points in the —Z-direction when F lies outside
the solenoid and points in the 4Z-direction when P lies inside the solenoid. Moreover,

B(F) = (10.23)

IR’ x ¢R'| = R'd R sin{w — o) = R'd K sinex, {10.24)

and the law of sines gives

4R sine = |[R' + dR'| sin(d8) ~ R'd8. {10.25)

Therefore, |R' x dR’| & R?d8, and the magnitude of (10.23) is

B(P) = %K j{ a8. (10.26)
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When P lies outside the solenoid, the vector R" in Figure 10.3 sweeps out zero net angle & as its tip
traces out the closed circuit of the integral (10.26). When P lies inside the solenoid, R’ sweeps out an
angle 27 over the same closed circuit. Hence,

o KE FP inside the solencid,
B(FP) = _ _ (10277
0 P outzide the solenoid.

The magnetic field is uniform and axial everywhere inside the solenoid and vanishes everywhere
outzide the solencid.

3. Considere dois anéis circulares, de raios a e b e coaxiais, separados de uma
distancia z entre seus planos, como mostra a figura. A indutdncia mutua entre esses dois
anéis pode ser calculada pela Férmula de Neumann .
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a) Usando coordenadas cilindricas, com angulos azimutais ¢ S “

e @', mostre que
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b) Definindo o 4ngulo @ = @ — @', mostre que a expressio para a indutancia matua
fica
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e argumente porque, na segunda integral, fn <p2( )d{ = 2f ( )dag.

e) Obtenha, finalmente,



M = uyVab [(; - k) K(k) — %E(k)

f) Aindutancia mdtua é também definida como M = 1,/1; = ¥, /15, onde ;; é
o fluxo magnético produzido pela corrente no circuito i que atravessa a drea do circuito

- -
J. Usando a expressao para o potencial vetor obtido no problema 1l e B = V X A, derive
a mesma expressdo para a indutancia mutua.

4, A Bobina de Helmholtz consiste em duas espiras circulares coaxiais, de raio R,
cujos planos estdo separados de uma distancia igual ao raio (Zangwill, secao 10.4.2),
conforme indica a figura. Utilizando as expressdes para as componentes do campo
produzido por uma espira de corrente deduzidas no problema 1, e os desenvolvimentos
assimptéticos apropriados para as fungdes elipticas,

a) mostre que, ao longo do eixo da bobina, a componente B,
do campo se anula;

b) obtenha a expressdo para o campo no ponto médio do eixo
entre as espiras

8 uoNI

BZO - m R )
onde N é o nimero de voltas em cada espira.
c) mostre que, nesse mesmo ponto todas as trés primeiras derivadas de B, com
relacdo a z se anulam;
d) encontre o valor aproximado do raio p, também no plano médio entre as espiras,
em que B, = By,.
5. Considere um sistema de bobinas com corrente sé na dire¢io é,, em

coordenadas cilindricas, tal que A = A(p(p,z)éq,. Mostre que, para esse sistema, as
equacoes para as linhas de forca correspondem a

pAy(p,z) = costante

6. (Zangwill)

11.1 Magnetic Dipole Moment Practice A currsnt distribution produces the vector potantial

+ fhn Ap sin g
Ho 2o S0 expl —Ar).
r

A8, $) =1

What iz the magnetic moment associated with this current distribution?




7. (Zangwill)

11.4 The Magnetic Moment of a R otating Charged Disk A cormpact disk with radius R and uniformsurface
charge density o rotates with angular speed w. Find the magnetic dipole moment m when the axis of rotation
is

(a) the symmetry axis of the disk,
{b) any diameter of the disk,

8. Blindagem magnética. Em algumas experiéncias fisicas, é necessario blindar
campos magnéticos externos, inclusive o terrestre. Para isso, é necessario envolver a
regido de interesse com folhas metalicas de alto valor da permeabilidade magnéticas,
denominadas “u-metals”. Um exemplo elucidativo de como esta blindagem ocorre é
discutido na sec¢do 5.12 do Jackson. Neste estudo dirigido os alunos deverdo seguir em
detalhe essa secao do livro texto, justificando adequadamente todas as passagens. Ja de
inicio, devem justificar a escolha do potencial escalar magnético fora da casca de
blindagem, equacdo 5.117, que o Jackson simplesmente afirma que “deve ser assim”. A
divergéncia desse potencial quando r — oo é aceitavel?

9. No artigo [L. Naser and Z. Chako; American Journal of Physics 87, 971 (2019)], os
autores discutem uma formulacéo alternativa para as condi¢des de contorno para as condi¢cfes
de contorno em problemas magnetostaticos. Os alunos devem ler o artigo detalhadamente e
reproduzir todos os calculos das segbes Il e IV.
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We present an alternative formulation of the magnetostatic boundary value problem that is useful
for calculating the magnetic field around a magnetic material placed in the vicinity of steady
currents. The formulation differs from the standard approach in that a single-valued scalar potential
plus a vector field that depends on the given currents but not on the magnetic material are used to
obtain the total magnetic field instead of a magnetic vector potential. We illustrate the method with

examples. © 2019 American Association of Physics Teachers.
https://doi.org/10.1119/10.0000004

I. INTRODUCTION

Solving for the magnetic field around linear, isotropic,
magnetic materials placed in the vicinity of steady current-
carrying conductors is one of the most important uses of
magnetostatics. The evaluation of the fields follows from a
standard manipulation of Maxwell’s equations and is treated
extensively in the literature.'™ The following description is
limited to linear, isotropic materials for simplicity though the
method itself is more general. The relevant Maxwell’s equa-
tions are

4n

VxH=-—17, (D
c

— —

V-B=0, 2)

where J is a given current density and we impose continuity
of the normal component of B and the tangential component
of H across the surface as boundary conditions

1

—

im'ﬁ|s :Bext'ﬁ|s; (3)

i ><I—Iint|s =1 ><I—1exl|sa (4)

where 7 is the unit normal at the surface.
In the standard procedure for solving this problem, we
define the vector potential by

- —

V xA=B8, ()

which then automatically satisfies Eq. (2). For convenience,
we choose V - A = 0 and then Eq. (1) yields

o l,n o 4me
Vox—(VxA) =227, 6)
1 c
L durm -
vA=-"1F %

c

where p= 1 outside the magnetic material. .

In a two-dimensional problem, a single component of A
will often suffice to obtain the magnetic fields. However, in
any truly three-dimensional problem solving Eq. (7) to yield
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all three components of A can represent a formidable task.
The impracticality of applying a standard magnetic scalar
potential approach to such a problem arises from the fact
that the scalar potential ¢, defined in a current-free region as

H=-%¢ ®)

is not single valued. This fact can be seen if we rewrite Eq.
(1) in terms of the scalar potential using Eq. (8) and integrate
over an area transverse to and including all of the current.
Applying Stoke’s theorem, we find

4n
A¢ |closedloop = ?Ienclosed- )

Hence the scalar potential picks up a contribution every time
we go around a source current.

This multi-valuedness can become awkward, especially in
situations where the magnetic body itself carries a free cur-
rent. In this paper, we will discuss a formulation that over-
comes the major shortcomings of the procedure just
discussed. Essentially, the method consists of removing the
rotational component of the magnetic field from the total
magnetic field and evaluating the remainder as the gradient
of a single-valued scalar potential. It will be shown by means
of some examples that this approach offers the simplest solu-
tion to any fully three-dimensional problem. It is important
to note that this procedure is well-known to engineers” but it
appears to have eluded the notice of the general physics
community. Moreover, their emphasis is in finite element
methods while here we demonstrate its power in analytical
calculations. There have been other publications dealing
with alternate methods of calculating the magnetostatic
field,® but to our knowledge there isn’t anything in the phys-
ics literature that uses the scalar potential method described
here.

II. THE NEW FORMULATION

We begin by defining a new vector H, as

V-Hy=0, (10)
- _, 4r -
V xHy=—1J, (1D
C
© 2019 American Association of Physics Teachers 971



from which it is clear that H is the magnetic intensity in the
absence of magnetic materials. We then have

Ho(F) = %JJ;; (_'?;;) &7 (12)
Defining the vector C as

C=H —H,, (13)
we see that

V xC=0, (14)

V- (uC) = =V - (uH,), (15)

since 7 ~I-?0 is continuous across the surface by Eq. (10).
From Eq. (14), it is clear that we may write C = —V ¢,
where ¢ is a single-valued scalar potential.” This function is
continuous everywhere but is not differentiable at the bound-
ary surface. It follows that we must distinguish between the
interior potential ¢;,, and the exterior potential ¢.y, and
solve Laplace’s equation

Vi = 0, (16)

Ve =0, (17)
subject to the following boundary conditions:

(7% Vin)ls = (V X x5, (18)

(= DHo - itls = (¥ i — Vexs) - s, (19)

with V¢ — 0 as || — oo. Once the scalar potential is
known, we obtain the magnetic field from

H=-V¢+H,. (20)

Exact solutions to the equations above can sometimes be
obtained by writing an expansion for ¢ in a basis appropriate
to the geometry of the problem, and matching the expres-
sions thus obtained for the interior and exterior regions at the
boundary in accord with Eqgs. (18) and (19). A few such
examples will be evaluated shortly. In addition, for more
elaborate geometries that are less prone to yielding closed-
form algebraic solutions, the scalar potential ¢ may be deter-
mined numerically, often with much greater ease than the
evaluation of the corresponding vector potential. The compu-
tational economy of this method is one of its most striking
advantages, but we must bear in mind its generality as well;
the method may be applied to any problem, irrespective of
whether the magnetic material carries a source current or
not.

III. ANALOGY WITH ELECTROSTATICS

Not surprisingly, this procedure has a simple analogy in
electrostatics.®® Consider a linear, isotropic dielectric in free
space subject to an electric field E, that may arise from
charges embedded in the dielectric medium. The source
charge distribution is assumed to remain unchanged, and the
equations that determine the electric field are

972 Am. J. Phys., Vol. 87, No. 12, December 2019

V- (E) =0, Q1)
VxE=0, (22)

with boundary conditions
it X Eimls = i X Eoxls, (23)
€Eint - fils = Eext - s, 24)

and with |E| — 0 as || — 0. Writing

Em = Vi, + Eo, (25)

Eexq = =V ey + Eo, (26)
we get

Vi = 0, @7)

Vier =0, (28)

with boundary conditions

(7 % Vin)ls = (V X dhes))s, (29)
(e = DEo - iilg = (€Viny — Vo) - s, (30)

and with V¢ — 0 as |F| — co. The correspondence between
these equations and the previous set is clear: (u — 1)H - 7ilg
replaces (e — 1)Ej - 7i|g as the “source term.” Some exam-
ples of the use of this method are now presented.

IV. EXAMPLES OF THE METHOD

A. Current-carrying wire parallel to a cylinder of
permeability u

We begin with an infinitely long wire carrying (constant)
current / and oriented parallel to the axis of an infinitely long
cylinder of permeability u. Let the radius of the cylinder be
p=a and let the distance between the wire and the cylinder
be d > a. We take a point on the axis of the cylinder as the
origin of coordinates, and note that the problem has symme-
try along the cylinder’s axis, which we choose to be the z-
direction. Choosing the yz-plane to contain the wire, we have
in polar coordinates

Ao

p? — 2pdsin 0 + d? [dcosop + (p —dsin0)0,

Hy=

(€19}

where /g is the current per unit length in the wire. Writing
the general forms of ¢iy (p, 0) and ¢y (p, 0) corresponding
to solutions of V¢ = 0 with no z-dependence as

din(p,0) = Z 0" (A, cosmf + B,, sinmb), (32)

m=1

2

Dexi(p, 0) = Z 0" (C,, cos mO + D,, sinm0), (33)

m=1

the boundary conditions yield
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Amazm = Cma (34)
Bma2m = Dm: (35)

and

( -1 [_7 :Z ,u—|—1 m—1
(Am cos mb + B,, sinm0). (36)

To determine the coefficients A,, we note from Eq. (31)
that

- Aod cos 0
Hy-p= 37
0-p p? —2pdsin 0 + d?’ G7
and we therefore need to evaluate integrals of the form
21
cos 0 cos nf
I, = - 38
L a® + d* — 2ad sin 0 (38)

where n>1. We set z=¢" and switch to an integration
around the unit circle |z| = 1, giving

_ I (22 + D!

The integrand has simple poles at z=ia/d and z=id/a, as
shown in Fig. 1. Since only z =ia/d lies within the unit cir-
cle, picking up the residue from that pole we find

0, for n = 2m,

I, = 2 (40)
(—1)'"% (g) , for n=2m+ 1.

To evaluate the B,, coefficients, we need to evaluate integrals
of the form

4 Im(2)

_ i(asin®)
b

Re(z)

\

Fig. 1. Simple poles of /,,.
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21 .
cos 0 sinn0
Iy = - 41
L a* 4+ d* — 2adsin 0 “D
and following an analogous procedure, we find
0, for n =2m+ 1,
J” _ 2m—1 42
(=)™ d—nz <g) , for n=2m. “2)
With these results, we can now obtain
Ay =0, (43)
(71)mA
Appi] = —5—7——, 44
(=D"A
By = — , 45
2 d2n12m ( )
BZm+1 = O> (46)
where A = Ao(u — 1)/(u + 1). We then have
= )" cos (2m+1)0 4.,
1nl ,0’ mz: A m + 1 d2m+1 ,0
> " sin2m0
-y A— . 47
2 2m T P @7)
Setting y = ipe"’/d, we can recast Eq. (47) as
00 2m+1 o0 2m
Y Yy
¢int(p7 0) = Im -
“=2m+1 ;::1 2m
2dp cos 0
— —arctal pi p2
A p?sin 20
—arctan | ———— | 48
+ p aretan <d2 + p?cos 20) (48)

Using a similar procedure, we obtain the external potential

2a’pd cos 0
2L —

A a*sin 20
Zarctan| ———— |, 4
+ p aretan <p2d2 + a*cos 20) “49)

A
qsexl(pv 9) = EarCtan<

The full field is then determined from

B=uH=uHy— Vo). (50)

B. Sphere of constant permeability u concentric with a
ring of current

Consider a sphere of constant permeability ¢ and radius a,
concentric with a circular ring of radius » > a that carries a
(constant) current /, as shown in Fig. 2. We wish to obtain
the magnetic field everywhere in space. We begin by consid-
ering the case r < b. Using spherical coordinates, one can

L. Nasser and Z. Chacko 973



Fig. 2. Sphere of permeability u and radius « surrounded by a concentric
ring of radius b carrying current /.

show'” that for 7 < b the solution of Egs. (10) and (11) for
the circular ring in free space is

1‘70 F =21 Zf(n)l”zann_H (COS 0)7 Gbh
n=0
Z 2"P;nJrl (cosb), (52)
n=0

where A= nl/c and

(—1)" (2n+ 1!

f(n) = 2nb2n+1 n! ) (53)
(=1)" (2n—1)N
80 = S (54)
while for » > b we have
oo
- Z T P2n+1 cos 0), (55)
=0
= lem Lo (cos 0), (56)
=0
with
—1)"(2n + DN p2rt2
a(n) :( ) T ) , 67
B (—=1)"(2n 4 1)1 p?+2
P = ! %)

Note that since we are considering b > «, the boundary con-
dition becomes
(0= DHo - Als = (u—DHo - 7|,_,

o0

=2(u— I)Zf(n)(f”PzHl (cos ).

n=0
(59)

This problem has azimuthal symmetry, so we look for solu-
tions of Laplace’s equation with this symmetry

bi = Y _ A’ Py(cos 0), (60)
l
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B
Pout = Zﬂ%m(cos 0). (61)

?
From the boundary conditions (18) and (19), we obtain
Ay = Ba® !, (62)

ZA/CZ

(u—1Ho-7|,_, [14£(1 4 w)]P(cos 0).

(63)

Using Egs. (57)—(59) in Eq. (63) we finally obtain
A2n anfo and

22— D)f (n)
u2n+1)+ (2n+2)’

Appyr = (64)

Boni1 = a" P Ay (65)
With the coefficients of the scalar potential expansion in
hand, the field itself follows directly from Eq. (20).

V. CONCLUSION AND FURTHER WORK

We hope to have established that the procedure described in
this paper offers a very general method of calculating the mag-
netic field when a source current is contained by, or placed in
the vicinity of, a linear magnetic material. Moreover, this pro-
cedure is always simpler than the standard vector potential for-
mulation for any truly three-dimensional problem. Applying
the method requires nothing beyond the standard mathematical
machinery needed to tackle boundary-value problems in elec-
trostatics, and we hope that this alternative formulation will
find its way into the standard curriculum on electricity and
magnetism. There are many other fun problems students can
solve to get practice with the method. For example, students
can carry on where we left off in our second example and treat
the case where the ring of current is embedded within the
sphere (b < a). Another example students can work on is an

z A

Fig. 3. Infinitely long, straight wire carrying a current / a distance d from the
center of a sphere of permeability p and radius a.
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infinitely long straight wire with (constant) current / placed a
distance d from the center of a sphere with permeability u and
radius a (see Fig. 3). This problem can be solved when the
wire is outside the sphere (¢ < d) and also when the wire
passes through the sphere (@ > d).
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Chladni Plates

From the 1888 catalogue of James W. Queen & Co. of Philadelphia: “Bench, with Screw Supports for Six Plates of
Brass, three round and three square. Two plates of each shape are of the same size, but one double the thickness of
the other. Each pair is accompanied by a third plate of the same thickness as the first but half the diameter...$25.00”
This set of Chaldni plates is at the physics department of the University of Utah, and was probably imported from the
workshop of Rudolph Koenig in Paris. (Picture and text by Thomas B. Greenslade, Jr., Kenyon College)
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