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1.6 The Conjugate Gradient Method

The conjugate gradient method of Hestenes and Stiefel [HS] was originally developed as
a direct method designed to solve an n x n positive definite linear system. As a direct
method it is generally inferior to Gaussian elimination with pivoting. Both methods require
n steps to determine a solution, and the steps of the conjugate gradient method are more
computationally expensive than those of Gaussian elimination.

However. the conjugate gradient method is useful when employed as an iterative ap-
proximation method for solving large sparse systems with nonzero entries occurring in
predictable patterns. These problems frequently arise in the solution of boundary-value
problems. When the matrix has been preconditioned to make the calculations more effec-
tive, good results are obtained in only about ,/n iterations. Employed in this way, the method
is preferred over Gaussian elimination and the previously-discussed iterative methods.
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Throughout this section we assume that the matrix A is positive definite. We will use
the inner product notation

(x,v) =x'y, (7.26)

where x and y are n-dimensional vectors. We will also need some additional standard results
from linear algebra. A review of this material is found in Section 9.1.

Theorem 7.30

For any vectors X, v, and z and any real number «, we have
(@) (x,y) = (y.x): (b) {ax,y) = (X,ay) = a(X,y):
() (x+zy) =Xy +zy: (d) (x.x) =0

(e) (x,x}) =0ifand onlyif x =0. |
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When A is positive definite, (x,Ax) = xX'AX = 0 unless x = 0. Also, since A is
symmetric, we have x’Ay = x'A'y = (Ax)'y. so in addition to the results in Theorem 7.30,
we have for each x and v,

(x,Ay) = (Ax)'y = XA’y = x'Ay = (Ax,y). (7.27)

The following result is a basic tool in the development of the conjugate gradient method.

Theorem 7.31

The vector x* is a solution to the positive definite linear system Ax = b if and only if x*
produces the minimal value of

g(x) = (x,Ax) — 2(x, b). |
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Proof Letx and v # 0 be fixed vectors and f a real number variable. We have
gx4+tv) = (X + tv,AX + tAv) — 2(x + tv,b)
= (X, AX) + t{V,AX) + £{x,AV) + > (v,Av) — 2(x,b) — 2t(v.b)
= (x,Ax) — 2(x, b) + 21{v,Ax) — 2(v,b) + 1> (v, Av),
\ A
g(Xx +1v) = g(x) — 2f{v.b — Ax) + 1*(v,Av). (7.28)
With x and v fixed we can define the quadratic function f in f by
hit) = g(x +1v).

Then h assumes a minimal value when /'(f) = 0, because its t coefficient, (v, Av), is
positive. Because

Wity = =2{(v.b — AX) 4+ 2t{v.Av),
the minimum occurs when
(v.b — Ax)
(v,Av)

f=
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and, from Equation (7.28),
h(i) = g(x +1v)
= g(x) — 2f{v,b — AX) + 1> (v, AV)

B (v.b—Ax) (v.b—Ax)\*
=g(x)—2 AV (v.b Ah}—|—( v AY) ){T.Al}

(v.b — Ax)*
(v,Av)

So for any vector v # 0, we have g(x + fv) < g(x) unless {v,b — Ax) = 0, in which case
g(x) = g(x + fv). This is the basic result we need to prove Theorem 7.31.

Suppose x* satisfies Ax* = b. Then (v, b — Ax*) = 0 for any vector v, and g(x) cannot
be made any smaller than g(x*). Thus, x* minimizes g.

On the other hand, suppose that x* is a vector that minimizes g. Then for any vector v,
we have g(x* + tv) = g(x*). Thus, (v.b — Ax*) = 0. This implies that b — Ax* = 0 and,
consequently, that Ax* = b, n = om

= g(x) —
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To begin the conjugate gradient method, we choose x, an approximate solution to
Ax* = b, and v # 0, which gives a search direction in which to move away from x to
improve the approximation. Let r = b — Ax be the residual vector associated with x and

_(v,b—Ax) (v.r)

(V.AV)  (v.AV)’
If r # 0 and if v and r are not orthogonal, then x 4 fv gives a smaller value for g than g(x)
and is presumably closer to x* than is x. This suggests the following method.

Let x' be an initial approximation to x*, and let v'" # 0 be an initial search direction.
Fork =1.2.3,.... we compute

(vi® b — Ax&—1)
{‘rﬂuﬂ;jeﬂ"'ﬁ}}

fp =

x® — &= 4 py®

and choose a new search direction v'**!. The object is to make this selection so that the
sequence of approximations {x*'} converges rapidly to x*.
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To choose the search directions, we view g as a function of the components of x =
(X1, X2,....X)". Thus,

glxy, x2, ..., x) = (X,AX) — 2(x, b) ZZ&,JLJ{, ZZJ:,EJ,

i=1 j=I

Taking partial derivatives with respect to the component variables x; gives

[1] — 2 Z agx; — 2by,

i=1

which is the kth component of the vector 2(Ax — b). Therefore, the gradient of g is

g dg g :
Ve(x) = | —(x). x) | =2(Ax — b) = —2r.
2(X) ( I, (X), P (X) o, (\}) (AX ) r,

where the vector r is the residual vector for x.
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From multivariable calculus, we know that the direction of greatest decrease in the
value of g(x) is the direction given by —Vg(x): that is, in the direction of the residual r.
The method that chooses

vEHD — b0 — b _ Ax®

is called the method of steepest descent. Although we will see in Section 10.4 that this
method has merit for nonlinear systems and optimization problems, it is not used for linear
systems because of slow convergence.

An alternative approach uses a set of nonzero direction vectors {v!, ... v} that
satisfy

(v, AV =0, if i #].

This is called an A-orthogonality condition, and the set of vectors {v'",.. ., v("} is said
to be A-orthogonal. It is not difficult to show that a set of A-orthogonal vectors associated
with the positive definite matrix A is linearly independent. (See Exercise 13(a).) This set of
search directions gives

{‘,(.ﬂ;j*h . Ax(i‘—]}} I::‘rl:.kj'.- l.l.ﬁ—ljl}

L (v, AvE®) T (v Ay
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The following theorem shows that this choice of search directions gives convergence
in at most n-steps, so as a direct method it produces the exact solution, assuming that the
arithmetic 1s exact.

Theorem 7.32

Let {v'",....¥"} be an A-orthogonal set of nonzero vectors associated with the positive
definite matrix A, and let '’ be arbitrary. Define

{‘.-(M?h _ Ax“‘_”}

(k) _ lk=T1) (k)
h, = VO AvE) and x"' =x + v,

for k = 1,2.....n. Then, assuming exact arithmetic, Ax'” = b. []
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Proof Since, foreachk=1.2.....n, x* =x%U 1 £,v® we have
Ax'™ = Ax"D 4 Ayt

= AX"Y + hAVY 4 AV 4 AV,
Subtracting b from this result yields
AX™ —b = AX? — b + 1AV + HAVY 4+ AV

We now take the inner product of both sides with the vector v'* and use the properties of
inner products and the fact that A is symmetric to obtain

(A" — b, vy = (AP — b v 41 AV V) o AV V)
— {AE{D} o h,\-‘{“} + 1 {V“},Av‘“} 44ty {1-‘“”.;41-'“”}.
The A-orthogonality property gives, for each k,

(AX'W — b, v} = (AXD — b, v0) 4 1 (vP AV, (7.29)
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However t; (v, Av#) = (v h — Ax*-1) s0

f {‘.{k}!A‘.{*J] — {,f-{kJ+h —Ax[ﬂ} +Ax[ﬂ'} —AI[“ 4 .nn _Ax[-*—EJ +Ax{k—1" —Ax[k_]}]l

(v, b —AxY) 4 (v A — AT 4 (v AR A,

But for any 1,
0 = x4y and Ax' = AxD LA,
S0
A AXD = A
Thus
fk{‘r'[t-',ﬁ‘r'm} — {v{”,h —Ax[ﬂ'"} _ a‘]{v[hfﬂv[“} L Ik_l{v{kﬂziv[‘r"l}]l.
Because of the A-orthogonality, (v, Av") =0, for i # k. so
W AV = (v b — Ax.
From Eq.(7.29),
{Ax{” —h. v"“]l — {Ax[ﬂ} —hﬁ'{k}} + {v[“._,b _Axiﬂ}:,
= (Ax? —b,v*) 4 (b — Ax® v¥))

= {Axm} —hﬂ'{k}} _ {Ax[ﬂ} —bﬂ'{*}} — 0

Hence the vector Ax™ — b is orthogonal to the A-orthogonal set of vectors {v'", ..., v},
From this, it follows (see Exercise 13(b)) that Ax'™ —h = 0, so Ax'"" = h. E o ow
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Example 1

The linear system

4.1'[—|—3.1'3 =24,
3.1'[—|—4.1'3— .1'3=3D.
— xn+4n=-24

has the exact solution x* = (3.4, —5)". Show that the procedure described in Theorem 7.32
with x'” = (0,0,0)" produces this exact solution after three iterations.



Solution We established in Example 2 of Section 7.4 that the coefficient matrix MAP2210

4 3 0
A= 3 4 -1
o -1 4

of this system is positive definite. Let v'" = (1,0,0), v'¥ = (=3/4,1,0), and v*¥ =
(—3/7.4/7.1). Then

4
{‘_.;1]A,‘.r:'_'|} — T{JJEA‘JZ] — {LD.D} [ 3
0

0
|
4
3
4 3 0 7
{v“tm-”‘}:u,ﬂ,m[g 4 —I] 3 ]=EL
1

and

3 4 3 0 -7
{‘-{Elfm-ﬂ‘}:(—i,l,[}) 34 -1 i =0
0 -1 4 I

Hence {v'V, v¥, v/¥} is an A-orthogonal set.
Applying the iterations described in Theorem 7.22 for A with x'” = (0,0,0)" and
b = (24,30, —24)' gives

P =1 — Ax" = b = (24,30, -24y,

. 2
(vl ) = yip® =24 (v AvD) =4, and 5 =—="=6.



Hence

= x4 vt = (0,0,00 + 6(1,0,0) = (6,0,0)".

Continuing, we have

Py 12

) 48
(ly _ : _ - .
D—b_axV =(0,12,-24)"; n= O A® = 7F =T

{

3 ‘(6 48
—.1.0) =(z.=.0}:
47 ) (? 7 ) |

. , 48
P = x4 v = (6,0,0) + 5 (—

1

2 (3 L02) 1
ﬁh:h_ﬂxlz}:(ﬂfﬂﬂ_ﬂ)z fh = wvoLr) I.J]ﬁ’:_

(W3 Av3) 2447

and

6 48 34
xr'—h = f{"z} —|—f2'\'r3| = (?,T,{}) + {—5} (_?; ?ﬂ. 1) = f?" 41 _5}1‘

Since we applied the technique n = 3 times, this must be the actual solution.

MAP2210
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Before discussing how to determine the A-orthogonal set, we will continue the devel-
opment. The use of an A-orthogonal set [v'", ..., v} of direction vectors gives what is
called a conjugate direction method. The following theorem shows the orthogonality of the
residual vectors r' and the direction vectors v/, A proof of this result using mathematical
induction is considered in Exercise 14.

Theorem 7.33

The residual vectors r'*!

the equations

.where k = 1.2, ....n, for a conjugate direction method, satisfy

(r*® vUy =0, foreach j=12.....k

The conjugate gradient method of Hestenes and Stiefel chooses the search directions

{v*"} during the iterative process so that the residual vectors {r'*'} are mutually orthogonal.

To construct the direction vectors {v!!, v/2)_ ..} and the approximations {x'", x'?), ...}, we
start with an initial approximation x'”’ and use the steepest descent direction r'™” = b—Ax"
as the first search direction v'!.
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Assume that the conjugate directions v, ..., v~ and the approximations x'", . . .,
x*~1 have been computed with

k=1 k=2 _I_”_[_],'.uc—l-.’
where
(VO AV =0 and (rrP) =0, for i#].

If x—1) is the solution to Ax = b, we are done. Otherwise, r=U =h — Ax*-D £ 0 and
Theorem 7.33 implies that {(r*~" v} =0, foreachi = 1.2,.. ..k — 1.
We use r'’* ! to generate v'*) by setting

VB =) o k)
We want to choose s;_ so that
{,‘.[-’i—l}fﬁ‘.{ﬂ} — 0.
Since
Av® = Apt=D 45 AviEED
and

{‘,{k—l},‘q‘.{k}} — {‘.{k—l'l,‘l._lll.[k—l}} + 55 l{‘,[.‘c—I]’A,‘.[.‘c—]J},

we will have (v~ Av®) = 0 when

{,'.[.E—ljfﬂr{k—l'l}
{1'[&—1}+A1'{k—l}}‘

§p_1 = —



It can also be shown that with this choice of s;_; we have {1'“",,4}'["}} = (), for each

i=1.2.....k — 2 (see [Lu], p. 245). Thus {v'"', .. .v*'} is an A-orthogonal set.

Having chosen v'*), we compute

! {‘I-'r‘he r[i—]]} {l.rk—]] + .Ik_]'r'['t_l", r[.ic—l'u}
K= {T{k]f;“.rk'u} - {T{Hfﬂi"‘h}l

{l.rk—]]el.rk—]]:l {,'.[.E—]]+l.[k—]]]|

= {‘.rk'ukﬂ,'.[h} + k-1 {‘.rhﬂq.r.rk'u}

By Theorem 7.33, (v D p=1) =0, s0

{].{k—l}’ ].{k—l}}

= {T{k]fA‘.rh} ‘

Thus

(ki =x[£—]]

X + v,

To compute +'*', we multiply by A and subtract b to obtain
Ax® — b = Ax® 1 _ b 4 AvE
or
r = pk=1 _ g Ay,
This gives

{r[.‘:}, ]_{k]]l — {r[":_]]f l_[.‘:'l} _ !k {AT”H, r[.‘:}} — —rj; I:l'[k-l,ﬂ'r'[i-'}.

(7.30)

MAP2210
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Further, from Eq. (7.30),

{r“‘”,r[*‘“) — Ik{,'.rk'lbﬂ,'.[i}}’

{‘.rm’m.{k}}l {l.[.E]’A,'.[.E}} “}"lf&}{r{hf l.”:'l} .l[].{i:}f l.”:]::,

_'j"‘:=——= —

{‘.{klfﬁ_‘.r&]} - {T[Ic}”,_h.{k]}, = {1,-’1‘;[}{['['[“12 l.r.f:—]]}, T {l.r.f:—l}f l.”i:—l.}}l '

In summary, we have
]_{D‘] —h —Ax[ﬂ}; l".I'l'l — r[ﬂ};

and, fork=1.2.....n.

Jk—1) uk—1) Ak (k)
I i | | R |
{ : }' ’ x{H:x”r—l} + 1 ‘.r.h’ ].{k1= l.rJ:_h _ ka‘.[E}’ Sp= { : ::'

{}-[&W’A}.[i}} o {l.rk-l}fl.rk-l}}, ?

I, =

and

v+l — p &) 4 g v (7.31)
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Dados x(0), b, A, N
multiplicacao matrix-vetor

r = b- AX )
v o= 1 pode_ser customizada para
o = <v,v> = <r,r> matrizes esparsas
k =1
Enquanto k < N

u = A.v

t = a /<v,u>

X = X + t*v

r = r — t*u

B = <r,r>

se B < TOL saida x,r

s = B/ o

Vv = r + s*v

o = B

k =%k + 1

Se k > N saida x,r,k
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Example 2

The linear system Ax = b given by

4.1'] + 3.1’3 =24,
3x; + 4 — x3 =30,
— n+4n=-24

has solution (3.4, —5)'. Use the conjugate gradient method with x'™' = (0,0, 0y




A 4
3

0

b= 24
k= 0
X = 0
= 24
V= 24
k= 1
u=Av 186
X=X +t*v 3,526
r=r-t*u -3,325
V=r+s*v -2,808

3 0
4 -1
-1 4
30 -24
0 0
30 -24
30 -24
alpha <V, V> =
216 -126
<u,v> =
t= alpha/<u,v>
4,407 -3,526
-1,732 -5,490
beta=  <r,r>=
s= beta/alpha
-1,086 -6,007

alpha= beta

2052

13968
0,14691

44,1902965
0,02154

44,2

MAP2210
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k= 2
u=Av -14,489
X=X +t*v 2,858
r=r-t*u 0,121
V=r+s*v 0,119
k= 3
u=Av 0,101
X=X +t*v 3,000
r=r-t*u 0,000
V=r+s*v 0,000

-6,761  -22,940
<u,v>=
t= alpha/<u,v>
4,149 -4,954
-0,124 -0,034
beta = <r,r>=
s= beta/alpha
-0,125 -0,038
alpha= beta
-0,104 -0,029
<u,v>=
t= alpha/<u,v>
4,000 -5,000
0,000 0,000
beta=  <r,r>=
s= beta/alpha
0,000 0,000

alpha= beta

185,817
0,23782

0,03122766

0,00071

0,0

0,02618391
1,19263

5,9634E-30
1,91E-28

0,0

-

MAP2210
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3.  Perform only two steps of the conjugate gradient method

MAP2210

on each of the following

linear systems. Compare the results in parts (b) and (c) to the results obtained in parts (b) and (c) of

Exercise 1 of Section 7.3 and Exercise 1 of Section 7.4.

a Ing— o+ =1, b. 10x;— x =9,
—x; + 6xz + 2x3 =0, —x + 100 — 23 =1,
X420+ T =4 — 20+ lx; = 6.
c. 1+ 5x: =6, d. 44+ 00— x4+ x=-2,
dxy + 10x; — dx; = 15, n4+4dn— n— ny=-1,
— 4 4+ 85— 1y =-—11, —X1— 454+ =0
— X3+ 5y =11 In— X4+ x4+ig=1
e. du+ 0+ a4+ X5 =6, f. 4q— x — Xy = (),
N4+3In+ a4+ x = 6, —x1+4x — 13 — X5 =5,
O+ 45— - x5==5, — X+ 4x; — x; =10,
X — x+4dxy = 6, —X +dxy — X5 = 6,
X — X3+ +4dxs=6. — X — Xg+dxs — xp=-2,
— X3 — X5+ dx5 = 6.

Implementem o método em Python
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