Função constante, Função linear e Função afim

Evandro R. da Silva

ICMC - USP

Função constante

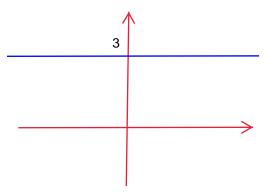
Definição

Seja $c \in \mathbb{R}$ fixado. Uma função $f : \mathbb{R} \to \mathbb{R}$ dada por f(x) = c é chamada de função constante igual a c.

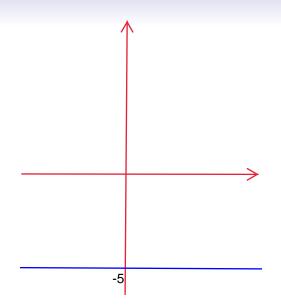
Obs:

- 1) O gráfico da função constante é uma reta paralela ao eixo Ox passando pelo ponto (0, c).
- 2) A imagem da função constante é $Im(f) = \{c\}$.

 $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 3.$



$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = -5.$$



Função linear

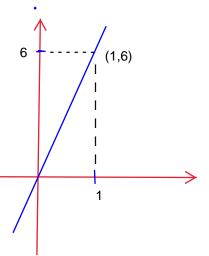
Definição

Seja $a \in \mathbb{R}$ e $a \neq 0$. Uma função $f : \mathbb{R} \to \mathbb{R}$ dada por f(x) = ax é chamada de função linear.

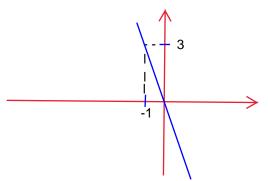
Obs:

- 1) O gráfico da função linear é a reta que passa pelos pontos (0,0) e (1,a).
- 2) A imagem da função linear é $Im(f)=\mathbb{R}$. De fato, dado $y\in\mathbb{R}$, existe $x=\frac{y}{a}$ tal que $f(x)=ax=a\frac{y}{a}=y$.
- 3) A função linear f(x) = x é chamada função identidade.

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = 6x.$$



$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = -3x.$$



Função afim

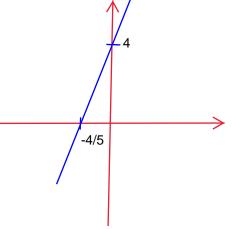
Definição

Sejam $a \in \mathbb{R}$, $a \neq 0$ e $b \in \mathbb{R}$ fixados. Uma função $f : \mathbb{R} \to \mathbb{R}$ dada por f(x) = ax + b é chamada de função afim.

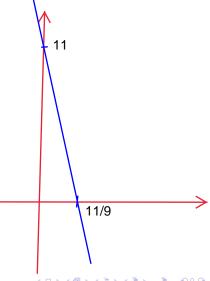
Obs:

- 1) Toda função linear f(x) = ax é uma função afim com b = 0.
- 2) O gráfico da função afim é a reta que passa pelos pontos (0, b) e $(-\frac{b}{a}, 0)$, se $b \neq 0$.
- 3) O coeficiente a da função afim f(x) = ax + b é denominado coeficiente angular da reta representada no plano cartesiano. O coeficiente b é chamado coeficiente linear.

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = 5x + 4.$$



$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = -9x + 11.$$



Obtenha a equação da reta que passa pelo ponto (-2,4) e tem coeficiente angular igual a -3.

Solução: A equação procurada é da forma f(x) = ax + b. Temos que o coeficiente angular a é -3, isto é, a = -3 e daí f(x) = -3x + b.

Temos também que (-2,4) está no gráfico de f (na reta), isto é, 4=f(-2)=-3(-2)+b=6+b o que implica b=-2. Portanto a equação procurada é f(x)=-3x-2.

Obtenha a equação da reta que passa pelo ponto (-2,1) e tem coeficiente linear igual a 4.

Solução: A equação procurada é da forma f(x) = ax + b. Temos que o coeficiente linear b é 4, isto é, b = 4 e daí f(x) = ax + 4.

Temos também que (-2,1) está no gráfico de f (na reta), isto é, 1=f(-2)=a(-2)+4=-2a+4 o que implica -2a=-3 o que implica $a=\frac{3}{2}$. Portanto a equação procurada é $f(x)=\frac{3}{2}x+4$.

Obtenha a equação da reta que passa pelos pontos (3,1) e (0,5)

Solução:

A equação procurada é da forma f(x)=ax+b. Temos que 1=f(3)=3a+b e 5=f(0)=b, o que implica, 3a+5=1, que implica 3a=-4 que implica $a=\frac{-4}{3}$. Portanto a equação procurada é $f(x)=\frac{-4}{3}x+5$.

Teorema

Toda função afim é bijetora.

Demonstração:

Mostremos que f é injetora. De fato, se $f(x_1) = f(x_2)$ temos que $ax_1 + b = ax_2 + b$ o que implica $ax_1 = ax_2$ o que implica $x_1 = x_2$.

Mostremos que f é sobrejetora. De fato, dado $y \in \mathbb{R}$, existe $x = \frac{y-b}{a}$ tal que $f(x) = ax + b = a\left(\frac{y-b}{a}\right) + b = y - b + b = y$.

Função crescente e decrescente

Definição

Seja $f: \mathbb{R} \to \mathbb{R}$.

Dizemos que f é crescente se , para quaisquer $x_1 \in \mathbb{R}$ e $x_2 \in \mathbb{R}$ com $x_1 < x_2$ então $f(x_1) < f(x_2)$.

Dizemos que f é decrescente se , para quaisquer $x_1 \in \mathbb{R}$ e $x_2 \in \mathbb{R}$ com $x_1 < x_2$ então $f(x_1) > f(x_2)$.

Obs: 1) Dizer que f é crescente é equivalente a dizer que

$$\frac{f(x_1)-f(x_2)}{x_1-x_2}>0, \quad \text{para quaisquer } x_1 \text{ , } x_2 \text{ com } x_1\neq x_2.$$

2) Dizer que f é decrescente é equivalente a dizer que

$$\frac{f(x_1)-f(x_2)}{x_1-x_2}<0, \quad \text{para quaisquer x_1 , x_2 com $x_1\neq x_2$}.$$

Teorema

Seja $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b uma função afim. Então

- 1) f é crescente se e somente se a > 0,
- 2) f é decrescente se e somente se a < 0.

Dem: 1) f(x) = ax + b é crescente se e somente se

$$0 < \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{(ax_1 + b) - (ax_2 + b)}{x_1 - x_2} = \frac{a(x_1 - x_2)}{x_1 - x_2} = a$$

2) f(x) = ax + b é decrescente se e somente se

$$0 > \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{(ax_1 + b) - (ax_2 + b)}{x_1 - x_2} = \frac{a(x_1 - x_2)}{x_1 - x_2} = a$$

1)
$$f(x) = 6x - 11$$
 é crescente pois $a = 6 > 0$.

2)
$$f(x) = -7x + 3$$
, é decrescente pois $a = -7 < 0$.

