Geometria Vetorial: Planos em \mathbb{R}^n (\mathbb{R}^3 ,...)

ZAB0161 – "Álgebra linear com aplicações em geometria analítica"

Prof. Dr. Jorge Lizardo Díaz Calle

Dpto. de Ciências Básicas – FZEA – USP

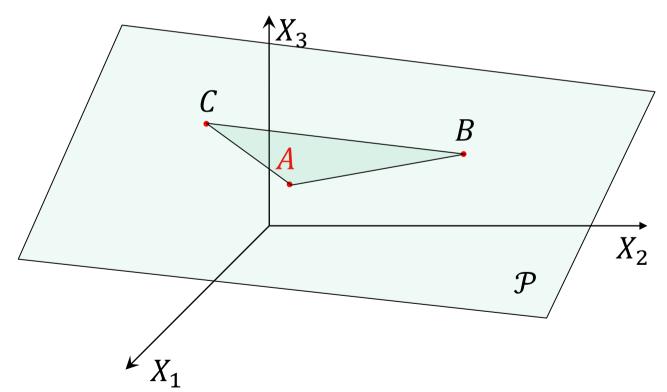
20 de maio de 2020

Axioma de Hilbert

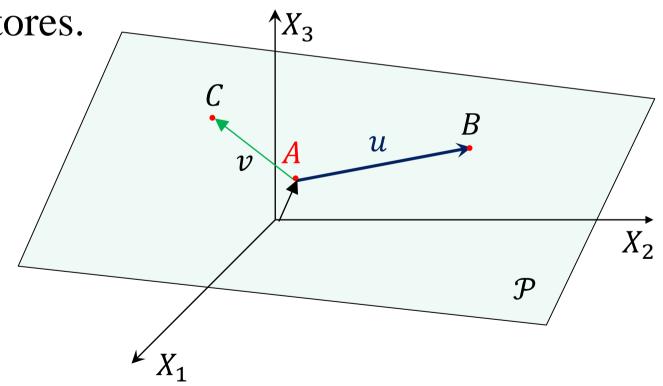
Uma das premissas propostas por David Hilbert (1899) no livro "Grundlagem der Geometrie" ("Fundamentos da Geometria") para fundamentar um tratamento moderno da geometria euclidiana foi:

Três pontos distintos A, B e C não situados na mesma reta sempre determinam completamente um plano.

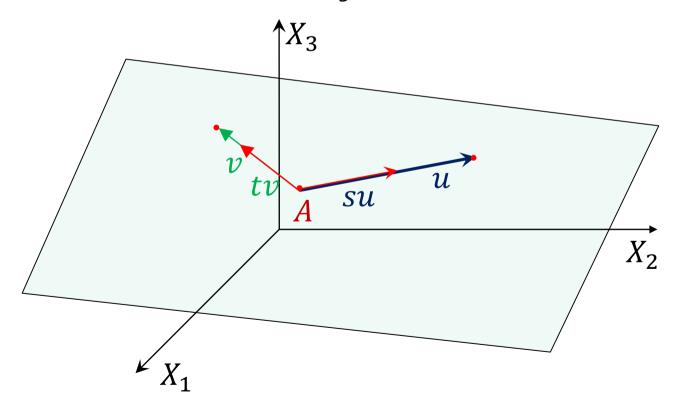
Em \mathbb{R}^3 . No desenho está o plano que contêm os três pontos diferentes. \mathcal{P} é o conjunto de todos os pontos coplanares com os pontos A, B e C.



Em \mathbb{R}^3 . Com três pontos diferentes podemos formar dois vetores não nulos. Assim, ficamos com um ponto e os outros dois são substituidos pelos vetores. $\uparrow X_3$

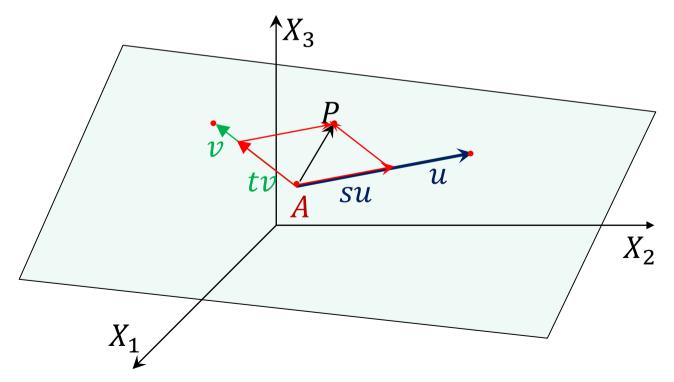


Se considerarmos um **múltiplo** do vetor v, tv, e outro **múltiplo** do vetor u, su, para escalares t e s, formamos uma combinação linear deles.



Em \mathbb{R}^3 . Somando a combinação linear ao ponto fixo A, atingimos um ponto P = A + tv + su.

Podemos formar o conjunto de todos os pontos obtidos como soma de *A* mais uma CL de *v* e *u*.



Equação vetorial do Plano em \mathbb{R}^3

Definição (vetorial):

Dados dois vetores não paralelos e não nulos $v, u \in \mathbb{R}^3$, e dado um ponto fixo A, então define-se o plano que passa pelo ponto A e com vetores de direção u e v ao conjunto de pontos que satisfaçam $\mathcal{P} = \{P \mid P = A + tv + su, \text{ onde } s, t \in \mathbb{R}\}$ $\mathcal{P}: P = A + tv + su, \text{ onde } s, t \in \mathbb{R}$

A equação considerada é chamada de **equação vetorial** do plano \mathcal{P} .

Equações paramêtricas do plano em \mathbb{R}^3

Considerando os dois vetores não paralelos e não nulos $v, u \in \mathbb{R}^3$, e a partir da equação vetorial, separando as equações por componentes obtemos um sistema de equações que chamaremos de **equações paramétricas** do plano \mathcal{P} .

Seja $P = (x_1, x_2, x_3) \in \mathcal{P}$ então:

$$\mathcal{P}: \begin{cases} x_1 = a_1 + tv_1 + su_1 \\ x_2 = a_2 + tv_2 + su_2 \\ x_3 = a_3 + tv_3 + su_3 \end{cases}$$

onde $t, s \in \mathbb{R}$.

Generalizando: equações do plano em \mathbb{R}^n

Considerando dois vetores não paralelos e não nulos $v, u \in \mathbb{R}^n$, e um ponto de passagem fixo A, definimos o plano \mathcal{P} como o conjunto de pontos $\mathcal{P}: P = A + tv + su$, onde $s, t \in \mathbb{R}$

Chamaremos de equação vetorial do plano \mathcal{P} .

Chamaremos de equações paramétricas do $\mathcal P$ a

$$\mathcal{P}: \begin{cases} x_{1} = a_{1} + tv_{1} + su_{1} \\ x_{2} = a_{2} + tv_{2} + su_{2} \\ \vdots \\ x_{n} = a_{n} + tv_{n} + su_{n} \end{cases} \text{ onde } t, s \in \mathbb{R}.$$

Equação geral do plano em \mathbb{R}^3

Lembrando do produto vetorial $n = v \times u$, que é ortogonal a ambos os vetores, multiplicamos a equação vetorial do plano com o produto vetorial vezes n. Então

$$P = A + tv + su$$
, onde $s, t \in \mathbb{R}$
 $P \cdot n = A \cdot n + tv \cdot n + su \cdot n$
 $P \cdot n = A \cdot n$

Pela ortogonalidade somem os parâmetros s e t.

Observar que o vetor $n = v \times u$ é conhecido e será chamado de **vetor normal** de \mathcal{P} .

Equação normal do plano em \mathbb{R}^3

Para todo ponto
$$P = (x_1, x_2, x_3) \in \mathcal{P}$$
, então $(x_1, x_2, x_3) \cdot (n_1, n_2, n_3) = (a_1, a_2, a_3) \cdot (n_1, n_2, n_3)$

Observar que o segundo membro é um escalar fixo:

$$d = (a_1, a_2, a_3) \cdot (n_1, n_2, n_3)$$

Então a equação do plano ficou

$$n_1 x_1 + n_2 x_2 + n_3 x_3 = d$$

para quaisquer $P \in \mathcal{P}$.

A equação é chamada de **equação geral** do plano \mathcal{P} .

Se
$$P = (x, y, z) \Rightarrow ax + by + cz = d$$
.

Planos paralelos e ortogonais em \mathbb{R}^3

Dois planos \mathcal{P}_1 e \mathcal{P}_2 no espaço vetorial \mathbb{R}^3 , são **paralelos** se seus vetores normais são paralelos entre sí.

$$\mathcal{P}_1 \parallel \mathcal{P}_2 \Leftrightarrow n_1 \parallel n_2$$

Dois planos \mathcal{P}_1 e \mathcal{P}_2 no espaço vetorial \mathbb{R}^3 , são **ortogonais** se seus vetores normais são ortogonais entre sí.

$$\mathcal{P}_1 \perp \mathcal{P}_2 \Leftrightarrow n_1 \perp n_2$$

Em uma indústria de embalagens, no plano \mathcal{P} encontrase a linha de produção de embalagens cartonadas

$$\mathcal{L}_1$$
: $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$

O plano \mathcal{P} é paralelo com a linha de embalagens laminadas

$$\mathcal{L}_2: \begin{cases} 2x = y + 7 \\ 3x = z \end{cases}$$

Determine a equação vetorial, equação geral e equações paramétricas do plano \mathcal{P} .

Resolução:

Nos dados da primeira linha de produção, fazemos

$$\mathcal{L}_1$$
: $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2} = t$

Igualando o primeiro, segundo e terceiro membro com o último, obtemos equações para cada variável (equações paramétricas)

$$\mathcal{L}_1: \begin{cases} x = 1 + t \\ y = 2 - t \\ z = 1 + 2t \end{cases}$$

Obtemos um ponto de passagem, A = (1,2,1), e um

vetor de direção da reta \mathcal{L}_1 , v = (1, -1, 2).

Como a reta \mathcal{L}_1 está contida no plano, o ponto A é um ponto de passagem do plano e v é um vetor de direção do mesmo plano \mathcal{P} .

Como a reta \mathcal{L}_2 é paralela ao plano \mathcal{P} , podemos resgatar o vetor de direção de \mathcal{L}_2 e considerar como o segundo vetor de direção do plano \mathcal{P} .

Mas a expressão de \mathcal{L}_2 não permite visualizar o vetor de direção

$$\mathcal{L}_2: \begin{cases} 2x = y + 7 \\ 3x = z \end{cases}$$

Como *x* aparece em ambas equações, criamos um parâmetro com ele e expressamos na forma

$$\mathcal{L}_2: \begin{cases} x = s \\ y = -7 + 2s \\ z = 3s \end{cases}$$

Daqui o vetor de direção é u = (1,2,3).

Portanto, a equação vetorial do plano, para $r, m \in \mathbb{R}$,

$$\mathcal{P}: P = (1,2,1) + r(1,-1,2) + m(1,2,3)$$

Para a equação geral, calculamos o vetor normal

$$n = v \times u = (-7, -1, 3)$$

então a equação geral é

$$\mathcal{P}: -7x - y + 3z = -6$$

As equações paramétricas são

$$\mathcal{P}: \begin{cases} x = 1 + r + m \\ y = 2 - r + 2m \\ z = 1 + 2r + 3m \end{cases}$$

Em indústrias de diversos ramos utilizam-se esteiras transportadoras.

Em uma indústria uma esteira foi instalada sobre o plano \mathcal{P} : 2x + y + z = 3. A um engenheiro da indústria, lhe é solicitado que verifique se o ponto de recibimiento de materia prima S = (1,2,2) bate com o plano da esteira, ou está acima ou embaixo do mesmo.

Também informe as equações paramétricas e a equação vetorial do plano que contêm a esteira.

Resolução

Verificar que o ponto S = (1,2,2) bate com o plano da esteira, é verificar se o ponto pertence ao plano.

Se o ponto pertence ao plano, então as coordenadas do ponto devem satisfazer a equação do plano:

$$\mathcal{P}: 2x + y + z = 3$$

Mas: 2(1) + (2) + (2) = 6 > 3.

Como o valor é maior, o ponto pertence a região acima do plano.

Exemplo 2

Existem muitas formas de determinar as equações paramétricas e equação vetorial de um plano.

Aqui vamos determinar dois pontos do plano, então teriamos um ponto de passagem e um vetor que une esses pontos.

Utilizamos a equação para todo ponto do plano:

$$\mathcal{P}: 2x + y + z = 3$$

Damos valores simples, sempre que possível:

Para x = 0 e y = 0 então necessariamente z = 3.

Para x = 0 e y = 1 então necessariamente z = 2.

Exemplo 2

Temos os pontos A = (0,0,3) e B = (0,1,2) então v = B - A = (0,1,-1).

Para conseguir o outro vetor faço o produto vetorial do vetor ν vezes o vetor normal n=(2,1,1).

Logo
$$u = v \times n = (2, -2, -2)$$

As equações solicitadas são: para $s, t \in \mathbb{R}$

$$\mathcal{P}: P = (0,0,3) + t(0,1,-1) + s(1,-1,-1)$$

$$\mathcal{P}: \begin{cases} x = s \\ y = t - s \\ z = 3 - t - s \end{cases}$$