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Introduction

Buildings are one of the most important economic sectors.
The global world’s annual output of construction is close
to US$3000 billion and represents almost one tenth of the
global economy (CICA, 2002). In parallel, buildings
represent more than 50 per cent of the national capital
investment, while the sector employs more than 111
million employees and accounts for almost 7 per cent of
total employment, as well as 28 per cent of global indus-
trial employment. As mentioned by CICA (2002), every
job in the construction sector generates two new jobs in
the global economy; thus, it can be said that the buildings
sector is in a direct or indirect way is linked to almost 20
per cent of global employment.

Concerned with the consumption attributed to the
building sector, Baris Der Petrossian (2001) has reported
that almost one sixth of the world’s resources are
consumed by the construction sector, which is responsi-
ble for almost 70 per cent of sulphur oxide (SO,) and 50
per cent of carbon dioxide (CO,) emissions. According to
the United Nations Centre for Human Settlements
(Habitat) (UNCHS, 1993), buildings use almost 40 per
cent of the world’s energy, 16 per cent of the world’s fresh
water and 25 per cent of the world’s forest timber.

As aresult of intensive energy conservation measures,
the specific energy consumption of buildings spent for
heating purposes has almost stabilized or decreased, at
least in the developed world. On the contrary, the specific
energy needs for cooling has increased in a dramatic way,
mainly because the increase of family income in devel-
oped countries has made the use of these systems highly
popular. Recent statistics show that there are more than
240 million air-conditioning units installed worldwide
(ITR, 2002), while the refrigeration and air-conditioning

sectors consume about 15 per cent of all electricity used
worldwide.

The impact of air conditioning on electricity demand
is a significant problem since peak electricity loads are
increasing continuously; thus, utilities have to build
additional plants. In parallel, important environmental
problems are associated with the use of air conditioning.

Passive and hybrid cooling techniques involving heat
modulation and dissipation methods and systems, partic-
ularly convective cooling techniques, can contribute
highly to reducing the cooling load of buildings and to
improving thermal comfort during the summer season.

Results of recent research projects (Santamouris and
Argiriou, 1997; Santamouris, 2004) have improved knowl-
edge on this specific topic, and developed design tools
and advanced techniques to better implement ventilative
cooling systems.

In fact, ventilation is very important for the building’s
energy load. According to Liddament and Orme (1998),
air change accounts for approximately 36 per cent of the
total space conditioning energy and contributes to almost
half of heating equipment losses. Techniques using venti-
lation for cooling have gained increased interest since the
early 1980s (Chandra et al, 1982a, 1982b). Extended
monitoring has shown that naturally ventilated buildings
typically use less than 50 per cent of the corresponding
energy consumption of air-conditioned buildings
(Kolokotroni et al, 1996a, b). Research and assessments of
passive ventilation cooling techniques in Europe
(Kolokotroni et al, 2002) have shown that ventilative
cooling techniques may contribute highly to reducing the
cooling needs of buildings in Europe.

Sizing of ventilation systems for cooling, as well as
selection of the more appropriate strategies to follow,
depends upon many climatic, technical, operational,
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Table 8.1 Actual and forecast total air-conditioning sales in the world

(In thousands 1998 1999 2000 2001 2002 2003 2004 2005 2006
of units) Actual Actual Actual Actual Projected Forecast Forecast Forecast Forecast
World total 35,188 38,500 41,874 44,834 44,614 46,243 47,975 50,111 52,287
Japan 7270 7121 7791 8367 7546 7479 7344 7459 7450
Asia (excluding Japan) 11,392 11,873 13,897 16,637 16,313 17,705 19,227 20,890 22,705
Middle East 1720 1804 1870 1915 1960 2010 2060 2112 2166
Europe 1731 2472 2709 2734 3002 3157 3318 3489 3670
North America 10,437 12,408 12,322 11,894 12,521 12,522 12,524 12,525 12,525
Central and South America 1588 1665 2109 1939 1866 1906 1973 2043 2114
Africa 511 670 664 758 781 806 833 861 887
Oceania 539 487 512 593 625 659 693 731 770

Source: JARN and JRAIA (2002)

economic and cultural parameters. Existing tools permit
accurate evaluation of the expected performance of the
various techniques, while combination methods such a
multi-criteria analysis may help to optimize the ventila-
tion system (Blondeau et al, 2002).

This chapter aims to present the more recent progress
on the field of convective or ventilative cooling. The main
scientific knowledge in the field of natural and mechani-
cal ventilative cooling, as well as in the field of thermal
comfort, is also discussed.

Cooling buildings: Recent trends

The continuous improvement of living standards, in
association with the increased income of major human
groups and non-climatic responsive architecture, has
contributed highly to increasing the total sales of air
conditioners. Based on recent data, there are more than
240 million air-conditioning units installed worldwide
(ITR, 2002), while according to a recent study of the
International Institution of Refrigeration (ITR, 2002), the
refrigeration and air-conditioning sectors consume about
15 per cent of all electricity utilized worldwide.

The total annual sales of air-conditioning equipment
is close to US$60 billion, of which US$20.9 billion are
spent for room air units, US$15.7 billion for packaged
systems, US$6.5 billion for roof-top units and US$12.3
billion for residential heat pumps (ITR, 2002). Such a
number represents almost 10 per cent of the car indus-
try’s business.

The air-conditioning market is under continuous
expansion. In 1998, the total annual sales of the air-condi-
tioning industry was close to 35,188,000 units; in 2000, it
increased to 41,874,000 units, increasing further to
44,614,000 units in 2002 (JARN and JRAIA, 2002), with a
predicted level of 52,287,000 units in 2006 (see Table
8.1).

The use of air conditioning in the US and Japan is
much higher than in Europe. The European Energy
Room Air Conditioners (EERAC) study (Adnot, 1999),
carried out by the European Economic Community
(EEC), has shown that in Europe, the ‘penetration rate’ of
room air conditioners (using 1997 data) is less than 5 per
cent in the residential sector and less than 27 per cent in
the tertiary sector (see Table 8.2). The penetration rate in
the tertiary sector is almost 100 per cent in Japan and 80
per cent in the US, while almost 85 per cent and 65 per
cent of the residential buildings in Japan and the US,
respectively, have at least one air conditioner correspond-
ingly.

The number of houscholds in the US with central air
conditioning has increased from 17.6 million in 1978 to
47.8 in 1997. In parallel, the number of households with
room air conditioners has increased during the same
period from 25.1 to 25.8 million (see Table 8.3; EIA, 1997).
The energy consumption due to air conditioning has
increased, during the same period, from 310,000 billion
to 420,000 billion British Thermal Units (Btu). In 1997,
American households with air conditioners spent almost
US$140 per year for air conditioning, while almost 40 per
cent used their air conditioners all summer. Because of
the increased efficiency of air conditioners, increase in
clectricity consumption has not followed the rate of
penetration of air conditioners.

Table 8.2 Penetration of room air conditioners
in the tertiary and residential sector in the US,
Japan and Europe, 1997

Country Tertiary Residential
Japan 100% 85%
us 80% 65%
Europe <27% <5%

Source: Adnot (1999)
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Table 8.3 Consumption of electricity for air conditioning and associated factors by survey year

Survey year Household electricity Number of Number of Average seasonal
consumption for households with households with energy efficiency
air conditioning central air conditioning room air conditioning ratio (SEER) of

(billion Btu) (millions) (millions) central air conditioning
units sold during the year

1978 310,000 17.6 251 7.34

1980 320,000 22.2 24.5 7.55

1981 330,000 22.4 26.0 7.78

1982 300,000 23.4 25.3 8.31

1984 320,000 25.7 25.8 8.66

1987 440,000 30.7 26.9 8.97

1990 480,000 36.6 271 9.31

1993 460,000 421 241 10.56

1997 420,000 47.8 25.8 10.66

Source: Energy Information Administration (EIA) (1978-1982, 1984, 1987, 1990, 1993, 1997) Residential Energy Consumption Surveys

In parallel, the energy consumption for the cooling
purposes of the US commercial sector is close to 250TWh
(Terawatt hours) per year, while the corresponding peak
power demand for summer cooling is close to 109GW.

There are several problems associated with the use of
air conditioners. The most important problem deals with
the serious increase of peak electricity loads that oblige
utilities to build additional plants in order to satisfy
demand. As the use of these plants is for a short period,
the average cost of electricity increases considerably. In
California (Besant-Jones and Tenenbaum, 2001), the
demand for electricity during the summer months of 2002

Electricity used (TW)

increased due to air-conditioning loads because of the
highest temperatures recorded for 106 years. As a conse-
quence, the supply started to fall below demand and
electricity prices increased tremendously. It is character-
istic that during 1998—1999 and the first months of 2000,
the market clearing price in the day-ahead Cal PX (an
energy price index in California) was between US$25 and
US$50/MWh; it increased to US$150/MWh during the
summer months of 2000 (Besant-Jones and Tenenbaum,
2001).

Southern European countries face a very important
increase in their peak electricity load, mainly because of
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Source: Adnot (1999)

Figure 8.1 Electricity load curves for 1995 and 2020 in Spain
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the very rapid penetration of air conditioning. Because of
high demand for air conditioners, Italy faced substantial
electricity problems during the summer of 2003. Figure
8.1 depicts the actual load curves, as well as the foreseen
evolution of peak electricity load in Spain (Adnot, 1999).
It is evident that an extremely high increase of the peak
load is expected, which may require doubling of installed
power.

In parallel, important environmental problems are
associated with the use of air conditioning. Emissions of
refrigerant gases used in air-conditioning installations
significantly affect ozone depletion and global warming.
Refrigeration and air conditioning-related emissions
represent almost 64 per cent of all chlorofluorocarbons
(CFCs) and hydrochlorofluorocarbons (HCFCs) produced
(AFEAS, 2001). New air conditioners use more efficient
refrigerants that have a lower impact on atmospheric
ozone depletion.

Problems related to indoor air contamination should
not be neglected as well. Cooling coils and condensate
trays can become contaminated with organic dust that
may lead to microbial growth. The organic dust may also
cause mould and fungal growth in fans and fan housing.
Inefficient and dirty filters may also lead to unfiltered air
in buildings. Contaminated emissions from cooling towers
that have not been properly maintained may cause spread
of Legionella from poorly maintained systems.

Ventilation for cooling: Basic principles

Ventilation contributes to reducing or eliminating energy
for cooling purposes, as well as increasing thermal
comfort through two mechanisms:

* by removing the higher-temperature indoor air and
replacing it with fresh low-temperature ambient air;
and

* by cooling down the human body through the mecha-
nisms of convection, radiation and perspiration.

Fresh air may be introduced to the indoor space through
the building openings, (natural ventilation), through the
use of fans, (mechanical ventilation) or by a combination
of openings and fans (hybrid ventilation).

Cooling of the human body by convection occurs
when the surrounding air is cooler than the skin and, thus,
heat is carried away from the body. The higher the air
speed, the higher is the body cooling effect. According to
the existing standards (ASHRAE, 1992; 1SO, 1994)
permitted air speed should not exceed 0.2m/scc.
However, recent research trying to better understand

thermal comfort mechanisms in naturally ventilated
buildings (Nicol, 2003) has shown that occupants of these
buildings may prefer much higher indoor air speeds.
Quite recently, the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE)
has quantified the difference between the thermal
response of people living in air-conditioned and naturally
ventilated buildings. A new adaptive comfort standard has
been proposed.

In parallel, when ceiling fans are used, air blows
downward on the human body; thus, higher speeds are
allowed and are supported by the human body. This
permits an increase in the indoor air temperature of up to
2° C, which results in very important energy conservation.

When the temperature of the surrounding opaque
surfaces in a building is lower than skin temperature, the
body is losing heat by radiation. Use of ventilation,
especially during the night time, may contribute signifi-
cantly to reducing the interior temperature of the opaque
surfaces of a building. Thus, the radiative balance is
negative for the human body, while the interior air
reduces its temperature because of the convection
between the opaque surfaces and the indoor air.

During hot weather or physical exercise, the human
body dissipates excess heat through perspiration mecha-
nisms. When air flows around the skin, it contributes to
evaporation of human moisture and, thus, to benefits from
the associated latent heat.

Natural ventilation is caused by naturally produced
pressure differences due to wind, temperature difference
or both. Natural ventilation is achieved by allowing air to
flow in and out of a building by opening windows and
doors or specific ventilation components such as
chimneys. The effectiveness of natural ventilation
depends upon the wind speed, temperature difference,
size and characteristics of the openings and their orienta-
tion to the prevailing wind direction.

The flow rate Q through an opening of a relatively
large free area is calculated using the common orifice flow
equation:

0=CAVQAP/p (1)

where C is the discharge coefficient of the opening, A is
the opening area [m?], AP is the pressure difference across
the opening [Pa] and p is the air density [kg/m3]. The
discharge coefficient is a function of the temperature
difference, wind speed and opening height (Pelletret et
al, 1991). Specific expressions for the discharge coefficient
are given in Allard (1998). Experiments to determine the

discharge coefficients are reported by Flourentzou et al
(1998).
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Calculation of airflow through large openings is a
complicated task. Simplified, network, zonal and compu-
tational fluid dynamic (CFD) models may be used to
calculate the airflow rate in naturally ventilated buildings.
A review of the commonly used models is given by
Vollebregt et al (1998) and Allard (1998). Simplified
models are based on experimental or simulated data and
generally propose simple formulas or graphs for design-
ing the envelopes of naturally ventilated buildings
(Chandra et al, 1986; Ernest, 1991; CSTB, 1992;
Etheridge, 2002; Fracastoro et al, 2002). These tools must
always be used in the limits of their validity. Zonal models
are based on the equations of mass and energy conserva-
tion. A zone is divided into several macroscopic
homogeneous cells in which mass and heat conservation
must be obeyed (Lebrun, 1970; Howarth, 1985; Inard and
Buty, 1991, 1996; Togari et al, 1993; Rodriguez et al, 1994;
Wurtz et al, 1996, Haghighat et al, 2001) Zonal models can
quite accurately predict the temperature patterns in a
room; but their main limitation is that a pre-knowledge of
the flow pattern is necessary.

Network calculation models are the more commonly
used tools. Network models are based on the equation of
mass conservation, combined with some empirical knowl-
edge. Well-known network models for natural ventilation
systems are ATOLOS (Dascalaki and Santamouris, 1998b),
COMIS (Allard et al, 1990), CONTAM (Walton 1994) and
BREEZE, (BREEZE, 1993). Most of these models can be
used for mechanical ventilation calculations as well.

Ventilation and thermal comfort

Energy savings associated with the use of ventilative
cooling techniques are fully linked to applied thermal
comfort standards. In parallel, thermal comfort is linked,
as well, with the perception of indoor air quality in a
building and productivity (Humphreys et al, 2002;
McCartney and Humphreys, 2002). Existing standards
and methods primarily cover thermal comfort conditions
under steady-state conditions. The most well-known and
widely accepted methods are the ‘comfort equation’
proposed by Fanger (1972) and the J. B. Pierce two-node
model of human thermoregulation (Gagge, 1973; Gagge
et al, 1986). Based on these models, several steady-state
thermal comfort standards have been established (Jokl,
1987; ASHRAE, 1992; 1SO, 1994).

Because of the thermal interaction between a build-
ing’s envelope, its occupants and the auxiliary system,
steady-state conditions, in practice, are rarely encoun-
tered in buildings. In particular, indoor temperature in
free-floating buildings is far from steady. Monitoring of

passive solar buildings with a constant set-point has
shown that there are important indoor fluctuations of
between 0.5 and 3.9 °C as a result of the control system
(Madsen, 1987). Thus, knowledge of thermal comfort
under transient conditions is necessary.

Field studies and basic thermal comfort research
(Humphreys, 1975) have shown that there is an important
discrepancy in the steady-state models, especially for the
zones where no mechanical conditioning is applied. This
is mainly due to the temporal and spatial variation of the
physical parameters in the building (Baker, 1993). In fact,
occupants living on a permanent basis in air-conditioned
spaces develop expectations for low temperatures and
homogeneity and are critical when indoor conditions
deviate from the comfort zone that they are used to. On
the contrary, people who live in naturally ventilated build-
ings are able to control their environment and become
used to climate variability and thermal diversity. Thus,
their thermal preferences extend to a wider range of
temperatures or air speeds. Such an adaptation to the
thermal environment has been extensively studied and
documented, (Nicol et al, 1995; Brager and De Dear,
1998, 2000; De Dear, 1998; De Dear and Brager, 1998;
Rijal et al, 2002).

Field surveys have verified that comfort temperature
is very closely related to mean indoor temperature (Nicol
et al, 1999; McCartney and Nicol, 2002). Nicol and
Humphreys (1973) suggested that such an effect could be
the result of the feedback between the thermal sensation
of subjects and their behaviour.

The adaptive principle has also been verified through
the PASCOOL research project. Based on previous work,
the comfort group of the European research project
PASCOOL (Baker, 1993; Baker and Standeven, 1994;
Standeven and Baker, 1994) has carried out field measure-
ments to understand the mechanisms by which people
make themselves comfortable at higher temperatures. Tt
was found that people are comfortable at much higher
temperatures than expected, while it was observed that
people take a number of actions to make themselves
comfortable, including moving to cooler parts of the room.
It is characteristic that there were 273 adjustments to
building controls and 62 alterations to clothing out of 864
monitored hours.

Various other research studies have verified the
adaptive comfort approach. Klitsikas et al (1995) have
performed comfort studies in office buildings in Athens,
Greece, during the summer period. It was found that the
theoretical predicted mean vote (PMV) value is almost
always higher or equal to the measured thermal sensation
vote, and the subjects felt more comfortable than
predicted by the PMV theory. Lin Borong et al (2004)
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have performed comfort studies in Chinese naturally
ventilated buildings. They concluded that the thermal
sensation of people has a larger range than that in a stable
environment. Comparisons have been performed against
the PMYV scale and it has been found that the PMV model,
when applied to unstable or natural thermal environments
to evaluate people’s thermal sensation, needs correction.
Similar results have been found during a comfort survey
under hot and arid conditions in Israel (Becker et al,
2003), in Singapore (Hien and Tanamas, 2002), in
Indonesia (Feriadi, 2002a), in Algeria (Belayat et al, 2002)
and in Bangladesh,Mallick, 1994).

Humphreys and Nicol (2002) and Parsons et al (1997)
have provided some explanations for the errors in the
PMYV theory. According to the authors, since PMV is a
steady-state model there is a theoretical contradiction
between the basic assumptions of the model and the
imbalance assumed if the body is not comfortable.
Another reason is related to the uncertainty and the fuzzi-
ness to exactly calculate the metabolic heat and clothing
insulation.

Important research has been carried out in order to
develop an adaptive comfort standard. Analysis of the data
included in the ASHRAE RP-884 database involving data
of comfort surveys around the world (De Dear and Brager,
2002) has shown that while PMV predictions fit very well
with the preference of occupants in heating, ventilating
and air-conditioning (IIVAC) buildings, occupants of
naturally ventilated buildings prefer a wider range of
conditions that more closely reflect outdoor climate
patterns (see Figure 8.2).
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Figure 8.2 Observed (OBS) and predicted indoor comfort
temperatures from ASHRAE RP-884 database for
naturally ventilated buildings

The same conclusions have been reported from
various comfort field studies (Webb, 1959; Nicol, 1973;
Humphreys, 1975; Busch, 1992; Nicol and Roaf, 1994;
Matthews and Nicol, 1995; Taki et al, 1999; Nicol et al,
1999; Bouden and Ghrab, 2001) As a result of the field
studies, it was proposed that optimum comfort tempera-
ture is a function of the outdoor temperature, and may be
predicted by equations of the following form
(Humphreys, 1978; Auliciems and De Dear 1986; Nicol
and Raja, 1995):

Tcomf =a Ta,aut +b (2>
where T, is the mean outdoor air temperature. Thus,

De Dear and Brager (2002) have proposed the following
expression:

Tooms = 0317, + 17.8 (3)

while Humphreys (1978), Humphreys and Nicol (2000)
and Nicol (2002) have proposed an almost similar expres-
sion:

Teome = 0.534T, ,,, + 11.9 (4)

Based on these results, a new adaptive thermal comfort
for naturally ventilated buildings has been proposed to be
integrated within ASHRAE Standard 55 (see Figure 8.3).

Designing for ventilative cooling requires knowledge
of the appropriate air speed inside buildings. However,
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Figure 8.3 Proposed adaptive comfort standard (ACS)
for ASHRAE Standard 55, applicable for naturally
ventilated buildings
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the impact of air movement on thermal comfort is an open
research area (Arens et al, 1984; Arens and Watanabe,
1986; Tanabe and Kimura 1994). Air velocity affects both
convective and evaporative losses. Recently, studies
performed in tropical climates (De Dear, 1991; Mallick
1996; Hien and Tanamas, 2002), confirm that the increase
in air velocities, especially at higher temperatures,
enhances thermal comfort conditions. According to
Kukreja (1978), indoor air speed in warm climates should
be set at 1.00-1.50m/s. Hardiman (1992) proposes an air
speed of between 0.2—1.5m/s for light activity. Hien and
Tanamas (2002) report that undesirable effects of high air
movements of above 3m/sec have been observed.

Similar results are also reported from a recent Danish
climatic chamber research project (Toffum et al, 2000),
where the subjects preferred 28° C when permitted to
select their own preferred airspeed than 26° C, with a
fixed air speed of 0.2m/sec.

Adaptive and variable indoor temperature comfort
standards for air-conditioned buildings may result in
remarkable energy savings for cooling (Auliciems, 1989;
Milne, 1995; Wilkins, 1995; Hensen and Centrenova,
2001). Estimated energy savings of more than 18 per cent
over that from using a constant indoor temperature are
reported by Stoops et al (2000), while the corresponding
energy savings for UK conditions have been estimated at
close to 10 per cent.

Designing for natural ventilation
and cooling

Direct ventilative cooling

Natural ventilation may be used directly for cooling
purposes when the ambient temperature and humidity
are within comfort limits. This technique is a common
practice in mild climates; but in hot areas, indirect natural
ventilative cooling techniques, such as night ventilation,
may be used. The exact boundaries of outdoor tempera-
ture and humidity within which indoor comfort can be
provided by daytime natural ventilation have been
proposed by Givoni (1994). For an indoor wind speed of
2m/sec, the upper suggested outdoor temperature for hot
developed countries is close to 32° C.

The potential of direct ventilative cooling techniques
has been assessed worldwide through detailed experi-
mental and theoretical studies. The expected reduction of
the cooling needs varies as a function of local climatic
conditions; but a mean maximum contribution of close to
50 per cent of the needs has frequently been reported. In
particular, Chandra et al (1986) have calculated the poten-
tial of direct natural ventilation techniques to reducing

the cooling needs of buildings in the US. They concluded
that the possible reduction of cooling needs varies
between 10-50 per cent as a function of climatic charac-
teristics. Carrol et al (1982) have simulated the impact of
natural ventilation in office buildings in the US. Energy
savings varied from 25 per cent in humid climates up to
50 per cent in warm climates. Vieira and Parker (1991)
have found that in Florida, US, the longer the natural
ventilation season can be extended, the lower overall air-
conditioning consumption will be. Data from 384
single-family homes, apartments and condominiums have
shown that each month, from May to September, a house-
hold claimed to use natural ventilation rather than air
conditioning, resulted in an average savings of 777
kilowatt hours (kWh).

In Europe, Emmerich et al (2001) have reported that
natural ventilation in the UK may provide cooling energy
savings of the order of 10 per cent and fan power savings
of the order of 15 per cent of annual energy consumption.
Cardinale et al (2003) have studied the cooling potential
of daytime natural ventilation in major Italian cities. They
report energy savings of up to 53 per cent compared to an
air-conditioned building. Santamouris and Fleury (1989)
have studied the cooling potential of daytime ventilation
in Greece and found that it is possible to cover almost 30
per cent of the cooling load of an air-conditioned build-
ing. Aynsley (1999) has also studied the possibility of
providing comfort using natural ventilation for a building
located in the Australian tropics. He concluded that the
proper design of building permits thermal comfort to be
achieved for most of the hot period.

Important tools to assess the potential of direct
ventilative cooling techniques have been developed
under the framework of the URBVENT research project
by the European Commission. Germano et al (2002) have
developed a tool to estimate the natural ventilation poten-
tial, as well as the passive cooling potential, of urban
buildings. The method uses geographic information
system (GIS) techniques, as well as multi-criteria evalua-
tion, and may assist designers integrating natural
ventilative cooling techniques in urban buildings. In the
framework of the same research project, Ghiaus and
Allard (2002) have developed a method to assess the
potential of direct natural ventilative cooling using degree
hours data.

Architectural integration of openings

The overall architectural design of a building determines
its ventilation and passive cooling potential. Vernacular
architecture in warm climates is full of ideas and examples
on how to better integrate natural ventilation and passive
cooling in buildings (Fathy, 1986).
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Techniques to enhance natural ventilation in build-
ings have been well researched, and appropriate
strategies involving reduction of the plan depth,
maximization of the skin permeability through openings,
minimization of internal obstructions, increased
openness, orientation to prevailing winds, and use of the
stack effect are among the main proposed strategies
(Fleury, 1990; Hyde, 2000). The CIBSE Applications
Manual (CIBSE, 1997) and Martin (1995) describe several
natural ventilation configurations incorporating advanced
windows, window and vent actuators, thermal chimneys,
wind chimneys, atria, etc.

The overall architecture of a building and, in particu-
lar, the positioning and shape of the openings, balconies
and internal partitions, as well as the shape of the build-
ing, play a very important role and determine the air speed
and comfort conditions in naturally ventilated buildings.
Important research has been carried out in trying to
optimize the main architectural parameters (Olgay, 1973;
Sobin, 1981; Kindangen et al, 1996, 1997; Chand et al,
1998; Chiang et al, 2000; Prianto et al, 2000; Prianto and
Depecker, 2002). Givoni’s (1976) pioneering work on the
position of openings in naturally ventilated buildings has
permitted a better understanding of the specific contribu-
tion of windows to different boundary conditions.

Rosenbaum (1999) has summarized some of the main
conclusions of research on the position of walls and
proposed techniques to enhance airflow through the
building’s envelope. The main suggestions are:

* In order to enhance cross-ventilation, irregularly
shaped or spread-out buildings have to be designed.

e It is better to face the building at an oblique angle to
the prevailing wind than to face it directly perpendi-
cular to the wind direction.

* The inlet area should be equal to the outlet area.

* Horizontally shaped windows perform better than
vertical windows.

Other building elements may be used to enhance airflow
in naturally ventilated buildings. In particular, verandas,
balconies and decks may contribute to significantly
increasing the air speed inside a building because
pressure differences may also increase (Chand, 1973a). As
reported, when the angle of incidence ranges from 0-60
degrees, the windward or leeward location of a veranda
open on three sides produces an important air motion in a
room. In parallel, the use of pelmet-type wind deflectors
enhance the air movement at a working plane in a room
by about 30 per cent (Chand et al, 1975). In addition,
sashes projecting outward result in enhanced indoor air
motion compared with those projected inward (Chand

and Bhargava, 1975).

Single-sided naturally ventilated buildings may not
present a high airflow rate because of the specific
pressure difference. Givoni (1976) has proposed the use
of wing walls in windward openings that permit the
creation of distinct positive and negative pressures on the
openings and, thus, enhance the airflow in the building.
Givoni (1976) reported that for oblique winds, the use of
wing walls created an average air velocity in the room of
about 40 per cent of the outside wind, while when no
wing walls were used, the air speed was just 15 per cent
of the ambient wind.

Chandra et al (1983), have carried out full-scale exper-
iments to measure the performance of wing walls. Airflow
was measured in a room with and without wing walls.
They found that the presence of the wing walls consider-
ably increases the inlet air speed to the room.

Atria and courtyards

Ventilated atria and courtyards attached to buildings may
enhance natural ventilation and promote convective
cooling. Courtyards are well known from ancient times.
They were used in ancient Greek and Roman architec-
ture, as well as in Mesopotamia, the Indus Valley, the Nile
Valley and in China. Their overall form and construction
have endured over 6000 years with very few modifica-
tions, (Hinrichs, 1988).

Courtyards are associated with naturally ventilated
buildings in hot climates. Atria and courtyards are gener-
ally hotter during the daytime but present a much lower
temperature during the night (Chandra, 1989).
Courtyards are transitional zones that improve comfort
conditions by modifying the microclimate around the
building and by enhancing the airflow in the building.
Important research has been carried out to better under-
stand the airflow processes and the cooling impact of
courtyards (Bagneid, 1987; Etzion, 1988; Hoffman et al,
1994; Berger and Semega, 1995; Cadima, 2000; Majid et
al, 2002; Feriadi, 2002b). A classification system of atria as
well as an extensive literature review has been prepared
by Eureca Laboratories (1982).

In a recent paper, Rajapaksha et al (2003) have studied
the potential of a ventilated courtyard to provide passive
cooling in buildings located in warm, humid climates. It
was found that the overall performance depends upon the
flow patterns. Better performance is reported when the
courtyard acts as an air funnel, discharging indoor air into
the sky.

Methods and tools to design atria and estimate the
airflow through them have been proposed by Hunt and
Holford (1998), Holford and Hunt (2000), Gage et al
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(2001), Todorovic et al (2002) and Holford and Hunt
(2003).

Solar chimneys

Solar chimneys have been extensively studied as a config-
uration to implement natural ventilation in buildings
where solar energy is available. Solar chimneys are
natural draught components that utilize solar energy to
build up stack pressure and, thus, drive airflow through
the chimney channel. Solar chimneys are similar to
conventional chimneys except that the south wall is
replaced by a glazed surface, which enables it to collect
solar radiation (Haisley, 1981; Kumar et al, 1998; Afonso
and Oliveira, 2000). Such a technique, called “Scirocco
room’, is well known from traditional Italian architecture
of the 16th century (Cristofalo et al, 1989). Quite recently,
important experimental, numerical and theoretical
research has contributed to a better understanding of
solar chimneys.

The ability of solar chimneys to improve the ventila-
tion rate in naturally ventilated buildings was studied by
Bansal et al (1993, 1994). Tt was found that the impact of
solar chimneys is substantial in inducing natural ventila-
tion for low wind speeds. Gan and Riffat (1998) and Shao
ct al (1998) have also studied a solar-assisted technique to
enhance natural ventilation, coupled with a heat-pipe
heat-recovery system. They report a heat recovery
efficiency of about 50 per cent. The performance of solar
chimneys when integrated with air-conditioned buildings
has been studied by Khedari et al (2003). It was reported
that the solar chimney could reduce the average clectrical
consumption of the building by 10-20 per cent. The
contribution of solar chimneys to improving ventilation
and cooling in hot climates was studied by Bouchair,
(1987, 1989, 1994) and Tan (2000). Theoretical models and
simulation techniques to calculate the performance of
solar chimneys have been proposed by Pedki and Sherif
(1999), Rodrigues et al (2000) and Letan et al (2003).

Passive and active stacks have been incorporated
within a high-rise residential building in Singapore
(Privadarsini et al, 2003). It was found that passive stacks
cannot change the air velocity in the building, while the
use of active stacks leads to a substantial increase in air
velocity within the rooms. Similar results on the use of
active stacks in naturally ventilated buildings are reported
by Hien and Sani (2002).

Solar chimneys with a uniform heat flux on a single
wall were investigated experimentally for different
chimney gaps, heat flux inputs and different chimney
inclinations by Chen et al (2003). No optimum gap was
found, while it was reported that the airflow rate reached

a maximum at a chimney inclination angle of around 45
degrees. This is about 45 per cent higher than that for a
vertical chimney under otherwise identical conditions.

The integration of solar chimneys with cooling
cavities to enhance both ventilation and cooling has been
studied by various researchers (Barozzi et al, 1992;
Aboulnaga and Abdrabboh, 1998, 2000; Hamdy and Fikry,
1998; Pasumarthi and Sherif, 1998; Hunt and Linden,
1999; Khedari et al, 2000a, 2000b; Li, 2000; Raman et al,
2001; Day et al, 2003). Cooling cavitics induce downward
buoyancy airflow in a vertical cavity, where the air is
cooled using mainly evaporative cooling techniques. It
has been found that such a combination leads to increased
airflow rates and an important reduction of indoor
temperature depending upon the characteristics of the
system.

The ventilation performance of light/vent pipes has
been studied by Oliveira et al (2001). Light/vent pipes are
composed of two concentric tubes. The channel space
between the tubes is allowed for airflow. Air is flowing
either because of the temperature difference or because
of the wind pressure. Experiments have shown that
light/vent components enhance the airflow by 44 per cent.

Wind towers

Wind towers or cooling towers are well known and have
traditionally been used in Middle Eastern and Persian
architecture (Bahadori, 1978, 1985). Air enters the towers
at the windward face, its higher part, and leaves at the
lower part, which is in communication with the building.
The air may be cooled by evaporative or convective
cooling through the tower. Research has shown that inlet
and outlet opening areas for wind towers have to be 3-5
per cent of the floor area that they serve (Nielsen, 2002).

New active developments, particularly coolers where
the air was forced by a fan through wetted pads, have
been used during the past in desert areas of the US. In
natural downdraught coolers, the air is not forced through
the pads and air is provided simply by gravity flow
(Cunningham and Thompson, 1986). The performance of
natural downdraught coolers is studied by Badran (2003),
while the necessary pressure coefficients to evaluate the
airflow in wind towers are provided by Karakatsanis et al
(1986) and Bahadori (1981). In parallel, the performance
of downdraught evaporative coolers has been studied in
detail by various authors and design tools have been
proposed (Givoni, 1991; Sodha et al, 1991; Chalfoun,
1992; Thompson et al, 1994).

A high-efficiency and innovative development of the
downdraught evaporative cooler is achieved through the
PDEC (Passive Downdraft Evaporative Cooling) research
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programme of the European Commission, (PDEC, 1995).
The improvement consists of replacing the wetted pads
with rows of atomizers — nozzles that produce an artificial
fog by injecting water at high-pressure through minute
orifices. This feature produces much better regulation of
the system, a significant reduction of the pressure losses
and a lower size of equipment.

Innovative components

Various innovative ventilation components have been
proposed for integration within buildings. Fairey and
Bettencourt (1981) have proposed a roof-top ventilation
component known as ‘La Sucka’ that is based on the use
of dampers on two or four sides of a roof-top cupola. The
component permits the airflow through the leeward part
of the cupola by closing the dampers in the windward
facade. Fuller (1973) has proposed a ‘dymaxion dwelling
machine’ that is a rotating roof which aligns to the wind
direction, while Givoni (1968) has proposed a double-
ceiling system for cross-ventilation.

Control of naturally ventilated buildings

In naturally ventilated buildings, controls have to be used
to modify the indoor environment. Control can be
automatic or manual by the building’s occupants.
Appropriate control, like window opening or use of blinds,
may reduce the need for mechanical cooling. The impor-
tance of control has been clearly shown by various studies
and research (Baker and Stadeven, 1995; Leaman and
Bordass, 1995; Nicol et al, 1999).

Liem and van Paascen (1998) have found that by
controlling a naturally ventilated building, an improve-
ment in the established comfort is observed; but the exact
type of simple control algorithm has a marginal influence
on the improvement. Kolokotroni et al (2001) have studied
the performance of a naturally ventilated educational
building in the UK and have concluded that although
thermal mass and natural ventilation can reduce the effect
of external hot weather and establish comfort in the build-
ing, manual or automatic control should be set in place so
that the benefits are not offset by overcooling the build-
ing during cold spells.

Experimental surveys trying to identify the control
actions undertaken by individuals in naturally ventilated
buildings (Raja et al, 1998, 2001) have shown that controls
are used in response to discomfort and, in general,
occupants who have greater access to controls (for
example, those close to a window) report less discomfort
than those who have less access.

Various automatic control strategies can be used to
achieve comfort in naturally ventilated buildings. Pitts

and Abro (1991) have developed an intelligent controller
to optimize night ventilation in a building through an
active solar chimney. The controller could calculate the
cooling needs, the comfort conditions in the building and
the cooling capacity of the solar chimney. Thus, appropri-
ate decisions can be taken. La Roche and Milne (2001,
2002, 2003) have designed and tested an intelligent
controller to optimize the use of mechanical ventilative
cooling using a whole-house fan. The controller is based
on a set of decision rules that takes into account indoor
and outdoor temperatures, and experimental testing has
shown that this can improve indoor comfort and reduce
energy consumption.

In particular, artificial intelligence techniques seem
to offer numerous advantages compared to classical
control systems. Such a controller, for naturally ventilated
buildings, was proposed by Dounis et al (1995a, 1995b). A
comparison of ON-OFE PID and PI with deadband and
fuzzy controllers for naturally ventilated buildings has
been performed by Dounis et al (1996a, 1996b), and it has
been shown that fuzzy controllers present important
advantages compared to other conventional strategies.
Eftekhari and Marjanovic (2003) have proposed a fuzzy
logic controller to optimize the opening position in
naturally ventilated buildings. Tt was found that such a
controller is capable of providing better thermal comfort
inside the room than a manual control of openings or
seasonal operation. Kolokotsa (2001) has designed and
tested a prototype fuzzy controller for naturally ventilated
buildings using local operating networks and smart cards
technology. The research has been carried out in the
frame of the European research project BUILTECH, and
has resulted in the design of a prototype controller that
significantly improves indoor environmental quality in
naturally ventilated buildings. Kolokotsa (2003) has also
tested five different fuzzy controllers for naturally venti-
lated buildings, particularly fuzzy B fuzzy PID, fuzzy PI,
fuzzy PD and adaptive fuzzy PD, and has concluded that
all controllers achieve important energy and comfort
improvements.

Indirect ventilative cooling techniques
Principles of night ventilative cooling

Night-time ventilation is associated with the circulation
of low-temperature ambient air in a building and the
reduction of the temperature of indoor air, but mainly of
storage mass. Thus, indoor thermal conditions in a build-
ing are more positive during the following day. Night-time
ventilation is suitable for areas with a high diurnal
temperature range and where night-time temperature is
not so cold as to create discomfort.
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Night ventilation systems are classified as direct or
indirect, depending upon the procedure used to transfer
heat between the thermal storage mass and the condi-
tioned space. In direct systems, cool air is circulated
inside the building zones and heat is stored in the exposed
opaque elements of the building. The reduced tempera-
ture mass of the building contributes to reducing the
indoor temperature of the following day through convec-
tive and radiative procedures. Circulation of the air can
be achieved by natural or mechanical ventilation. In
direct systems, the mass of the building has to be exposed
and the use of coverings or false floors or ceilings has to
be avoided (Santamouris, 2003).

In indirect systems, cool air is circulated during the
night through a thermal storage medium where heat is
stored and is recovered during the following day period.
In general, the storage medium is a slab covered by a
false ceiling, a floor or a phase-change material storage,
while the circulation of the air is always forced. It is
evident that during the day period, the temperature of
the circulated air has to be higher than the correspon-
ding temperature of the storage medium. Direct and
indirect night ventilation systems are used many times in
a combined way.

Thus, night ventilation affects indoor conditions
during the next day in four ways by: (Kolokotroni and
Aronis, 1999):

1 reducing peak air temperatures;

2 reducing air temperatures throughout the day and, in
particular, during the morning hours;

3 reducing slab temperatures; and

4 creating a time lag between the occurrence of exter-
nal and internal maximum temperatures.

It is evident that the performance of night cooling systems
depends upon three main parameters:

1 the temperature and the flux of the ambient air circu-
lated in the building during the night period;

2 the quality of the heat transfer between the circulated
air and the thermal mass:

3 the thermal capacity of the storage medium.

Important theoretical and experimental research has been
carried out to better understand the phenomena, to evalu-
ate the cooling potential of night ventilation techniques,
and to develop computational and design tools and codes.

Extended experimental work on night ventilation
techniques are reported by Baer, (1983, 1984); Agas et al
(1991); Van der Maas and Roulet (1991); Geurra et al
(1992); Barnard (1994); Givoni (1994, 1998a); Hassid

(1994); Van der Maas et al (1994); Blondeau et al (1995a,
2002); Ren (1995); Kolokotroni et al (1996a, 1997);
Meierhans (1996); Santamouris and Assimakopoulos
(1996); Santamouris et al (1996); Behne (1996); Feustel
and Stetiu (1997); Aboulnaga and Abdrabboh (1998);
Burton (1998); Dascalaki and Santamouris (1998a);
Demeester et al (1998); Geros et al (1999); Nicol et al
(1998); Wouters et al (1998); Zimmerman and Anderson
(1998); Roucoult et al (1999); CEC (2000b); Liddament
(2000); Shaviv et al (2000); Turpenny et al (2000a); Barnard
et al (2001); Blake (2001); Axley and Emmerich (2002);
Herkel et al (2002) and Todorovic et al (2002).

Cooling potential of night ventilative techniques
applied to free-floating buildings

Various important theoretical and experimental works
have been performed in order to assess the efficiency of
night-cooling techniques applied to free-floating build-
ings. Most of the research shows that it is possible to
reduce the peak indoor temperature of the next day
between 0.5-3° C as a function of the airflow rate, the
thermal storage capacity of the building and the daytime
and night-time temperature of the ambient air.

Research carried out in southern climates has shown
that the reduction of the indoor temperature during the
following day may be between 2-3° C. Geros et al (1999)
performed measurements in free-floating office buildings
in Athens, Greece. The authors reported that under free-
floating conditions, the use of night ventilation decreases
the next-day peak indoor temperature by up to 3° C.
Results of sensitivity analysis have shown that the
expected reduction of the overheating hours varies
between 39 per cent and 96 per cent for airflow rates for
10 and 30 air changes per hour (ACH), respectively (see
Figure 8.4).

Shaviv et al (2001) have studied the cooling potential
of night ventilation techniques in Isracl for different levels
of thermal mass. They showed that it is possible to achieve
a reduction of 3-6° C in a heavy constructed building
without operating an air-conditioning unit. Similar results
are reported by Becker and Paciuk (2002) regarding the
application of night ventilation techniques in office build-
ings in Israel.

Solaini et al (1998) have studied the performance of
night ventilation techniques in an experimental building
in Ttaly and found that these techniques play a very
important role in its cooling needs. Silvestrini and
Alessandro (1988) report that for Italian conditions, 3
ACH during the night may provide a good perception of
comfort; when 10-15 ACH are applied, the building
presents its minimum energy consumption for cooling.
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Figure 8.4 Average overheating hours and reduction due to the use of night ventilation in the
Meletitiki Building, Athens, Greece

In California, Givoni (1998) measured the potential of
night ventilation to reduce maximum daytime tempera-
tures in buildings with different mass levels. Tt was found
that night ventilation has almost no effect on the low mass
building, but has an important effect in heavy buildings.
When the outdoor temperature was 38° C, the indoor
maximum temperature of the high mass building was only
24.5° C.

Rainaweera and Hestnes (1994) have calculated the
impact of night ventilation techniques when applied in
typical dwellings in Sri Lanka. They found that an increase
of the flow rate from 8 ACH to 14 ACH decreases the
maximum indoor temperature of the next day by 0.5° C.

Golneshan and Yaghoubi (1985, 1990) have simulated
the contribution of night ventilation techniques in Iranian
residential buildings. They report that the use of 12 ACH
per hour during the night with 1 ACH during the day may
provide comfortable indoor conditions.

When applied in mild climates, night ventilation may
reduce indoor temperatures by up to 1-2° C; but this may
be sufficient to cover a very high part of comfort needs.
Birtles et al (1996), as well as Kolokotroni et al (1998),
have performed simulations to study the potential of night
ventilation and thermal mass to cover the cooling needs
of office buildings in the UK. They concluded that these
techniques can provide the required cooling in most
cases, while for the rest, a high percentage of the cooling
requirements can be met by night ventilation.

Blondeau et al (1995b) have measured the potential of
night ventilated offices in France and found that it is possi-

ble to reduce the maximum next-day indoor temperature
by 1.5-2° C.

Neeper and McFarland (1982) and Kammerud et al
(1984) have simulated the impact of night-ventilated
massive passive solar houses in the US. They concluded
that increasing the airflow by up to 10 ACH does not
contribute to additional energy savings. Further studies by
Chandra and Keresticioglu (1984) for the same building,
considering a variable heat transfer coefficient, have
shown that under specific conditions the optimum ACH is
close to 25. Parker (1992) has measured the efficiency of
whole-house fans to provide night cooling in a free-float-
ing house in Florida. They report reductions of the total
daily average interior temperature by over 2.5° F due to
the removal of heat from the thermal mass of the building.

Cooling potential of night ventilative techniques
applied to air-conditioned buildings

Night ventilation applied to air-conditioned buildings
may reduce the required energy for cooling, as well as the
peak electricity demand. Experiments, theoretical studies
and real applications have shown that there is a very high
savings potential that may exceed 50 per cent of the
cooling load of massive buildings for an indoor tempera-
ture of close to 26° C and a high airflow rate. In parallel,
the reduction of the peak electricity demand may
decrease by up to 40 per cent. Different results are
reported as a function of the climate and building charac-
teristics, as well as of the airflow and operational
conditions.
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Figure 8.5 Cooling load reduction due to the use of night ventilation in the Meletitiki Building, Athens, Greece

Geros et al (1999) performed measurements in air-
conditioned night-ventilated office buildings in Athens,
Greece. They found that the early morning indoor air
temperature can be reduced by 0.8-2.5° C depending
upon the considered set-point temperature. Sensitivity
analysis that attempts to identify the impact of airflow
rates, as well as of the set-point temperature, has shown
that the expected energy conservation varies between 48
per cent and 94 per cent for set-point temperatures of
between 26-29° C and airflow rates of between 10 and 30
ACH, respectively (see Figure 8.5).

A similar analysis has been performed by Blondeau et
al (1995), who have studied the cooling potential of night
ventilation techniques when applied to an air-conditioned
building in France. It is found that the lower the set-point
temperature during daytime, the lower the contribution
of night cooling. For a 22° C temperature set-point, night
ventilation covers almost 12 per cent of the cooling load,
while when the set-point temperature rises to 26° C, the
corresponding contribution increases to 50 per cent of the
load.

Carrilho da Graca et al (2002) have simulated the
effect of night ventilation in a six-storey apartment in
Beijing and Shanghai. They found that night cooling may
replace air conditioning for about 90 per cent of the time
in Beijing and 66 per cent in Shanghai. Olsen and Chen
(2003) have studied the performance of night ventilation
techniques coupled with a variable air volume flow rate
(VAV) and a displacement ventilation system for an office
building in the UK. They found that when night ventila-
tion is associated with a VAV system, it contributes to

reducing the energy consumption for cooling by 12 per
cent. In parallel, the peak chiller load is reduced by about
20 per cent for both the displacement ventilation and VAV
systems when night cooling is used.

Kolokotroni and Aronis (1999) have studied the
impact of night ventilation techniques in air-conditioned
offices in the UK. They reported that application of night
ventilation is beneficial and results in an energy saving of
about 5 per cent and an installed capacity saving of about
6 per cent, while for heavyweight buildings the figures
increase to about 15 and 12 per cent, respectively.

Martin et al (1984) have simulated the impact of night
ventilation in air-conditioned non-residential buildings in
Los Angeles, Atlanta and New York. They found that in
Los Angeles, cooling energy consumption can be reduced
by up to 7 per cent by night ventilation with 3 ACH.
Increasing the airflow to 30 ACH does not contribute to
additional benefits. In Atlanta, night ventilation has no
impact in low-mass buildings, but it contributes to reduc-
ing the cooling load of high-mass buildings by 6-7 per
cent for 3 ACH during the night. The performance is not
improved significantly when 30 ACH are applied. Finally,
in New York, small benefits can be achieved in high-mass
buildings.

Various studies have considered the use of whole-
house fans to provide night ventilation. Studies by Kusuda
(1981) in air-conditioned buildings have shown that the
use of whole-house fans to provide night-time ventilation
may contribute to reducing the air-conditioning load by
up to 56 per cent. Similar studies are reported by Burch
and Treando (1979) and Ingley et al (1983). Burch and
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Table 8.4 Reduced electrical peak power demand of a building for different night ventilation strategies (percentage)

Berlin, Germany Locarno, Switzerland Red Bluff, US San Francisco, US
No chiller Natural night ventilation -40? -521 - -31
Mechanical night ventilation -382 -511 - -29
With chiller Mechanical night ventilation -30 -28 0 -9

Notes: 1 Room temperatures and humidity levels are frequently beyond the thermal comfort range.

2 Indoor air humidity might exceed 60 per cent relative humidity (RH) for about 200h/a (hours per annum).

Source: Behne (1996)

Treando (1979) measured the performance of whole-
house fans installed in an air-conditioned house in
Houston, Texas, that was used to provide night ventila-
tion. They found that on days when the daily average
temperature was below 75° I the whole-house fan was
able to satisfy all of the cooling requirements. Savings in
air-conditioning consumption from use of the whole-
house fan varied between 6.5-10 per cent. Ingley et al
(1983) performed a similar experiment in Florida and
reported a 22 per cent electricity saving for the house with
the whole-house fan while the daily air-conditioning use
was reduced by 44 per cent on milder summer days.

Behne (1996) has performed a detailed study to evalu-
ate the potential of night ventilated buildings under
various operational conditions. The study has been
performed for Berlin, Germany; Locarno, Switzerland;
Red Bluff, US; and San Francisco, US. Naturally and
mechanically ventilated free-floating and mechanically
ventilated air-conditioned buildings have been consid-
ered. As shown in Table 8.4, under natural ventilation
conditions, peak power gains vary between 31 per cent
for San Francisco and 52 per cent for Locarno, while the
peak power conservation in air-conditioned buildings
varies from 9 per cent for San Francisco to 30 per cent for
Berlin.

Slab cooling

In indirect systems, cool night air is circulated through a
thermal storage medium where heat is stored and recov-
ered during the day period. In general, the storage medium
is a slab covered by a false ceiling or floor, while circulation
of the air is always forced. During the following day, the
temperature of the circulated air has to be higher than the
corresponding temperature of the storage medium. A
design analysis of this concept for office buildings is given
by Barnaby et al (1980). Slab cooling combined with phase
change materials (PCM) storage has been applied in a real
building in the UK by Barnard (1994; Barnard et al, 2001).

Fleury (1984) simulated the impact of night cooling
through hollow-core concrete floor slabs in a small office
building in Los Angeles and New York. No important

benefits have been found for New York, while in Los
Angeles, when a suitable control strategy was followed,
the total energy consumption was reduced by 13 per cent
and the total electricity peak demand was reduced by 7
per cent.

Use of phase change materials (PCM)

Phase change materials can be used to store energy
during the night and to recover it during the day. Cool air
is circulated during the night at the PCM store and is
stored under the form of latent heat. During the following
day, the high-temperature ambient air is circulated
through the PCM, where the latent heat offered to the
material cools the air. The efficiency of the system deals
primarily with the phase change temperature of the
material, the temperature of the ambient air during the
night period and the airflow rate. Phase change materials
can be paraffin, eutectic salts, etc., and can be embedded
in microcapsules, thin heat exchangers, plaster, gypsum
board or other wall-covering materials.

During recent years, many research studies and
experimental applications have been carried out. Kang
Yanbing et al (2003) studied the use of an external PCM
store associated with night ventilation techniques. A fatty
acid was used as a phase change material. They found that
the use of a PCM store decreases the maximum room
temperature of the next day by almost 2° G, compared to
a commonly night-ventilated building.

Turpenny et al (20004, ¢) have proposed and tested a
PCM storage with embedded heat pipes, coupled with
night ventilation. A high heat-transfer rate was measured
and it was concluded that the system can ameliorate the
performance of night cooling techniques.

The use of PCM wallboard coupled with mechanical
night ventilation in office buildings has been studied by
Stetiu and Feustel (1996). They concluded that PCM
storage associated with night ventilation techniques offers
the opportunity for system downsizing in climates where
the outside air temperature drops below 18° C at night.
Calculations for a prototype IEA (International Energy
Agency) building located in California show that PCM
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wallboard could reduce the peak cooling load by 28 per
cent.

Modelling night ventilation

Proper design of buildings using night-ventilation cooling
techniques needs to consider all of the parameters that
define the energy and environmental performance of
buildings. The use of detailed simulation programmes
using well-validated algorithms is the more appropriate
method to achieve the best possible efficiency and global
performance.

When detailed simulation codes are not used, more
simplified assessment methods may be employed. During
recent years, several codes have been prepared to calcu-
late the specific performance of night ventilation
techniques. These tools are designed to help architects
and engineers to consider in a more simplified but
accurate way the sizing of night cooling techniques. In
what follows, information on some of the data is provided.

NiteCool (Tindale et al, 1995) was developed
especially for assessing a range of night-cooling ventila-
tion strategies and was designed under the Energy
Related Environmental Issues in Buildings (EnREI)
Department of the Environment (DOE) programme in
the US. The tool is based on single zone ventilation.
LESOCOOL is another simple computer tool to evaluate
the potential of night ventilative cooling (Roulet et al,
1996). LESOCOOL calculates the cooling potential and
the overheating risk in a naturally or mechanically venti-
lated building, showing the temperature evolution, the
airflow rate and the ventilation heat transfer. It can also
take into account convective or radiative heat gains.

Santamouris et al (1996) have proposed a detailed
methodology to calculate the performance of air-
conditioned as well as free-floating night-ventilated build-
ings. The method is based on the principle of modified
cooling degree days and is extensively compared against
theoretical and experimental data. The method is
integrated within the simulation tool SUMMER
(Santamouris et al, 1995) and calculates the variation of
the balance point temperature of a free-floating or air-
conditioned night-ventilated building, as well as the
overheating hours and the cooling load. In parallel, it
performs comparisons with a conventional free-floating or
air-conditioned building.

Givoni (1992, 1998a), has proposed a formula to
predict the expected indoor maximum temperature with
different amounts of mass and insulation in a night venti-
lated building. Shaviv et al (2001) has proposed a method
to estimate the decrease of the maximum temperature
from the diurnal temperature swing as a function of the
amount of thermal mass and the night ventilation rate.

(Millet, 1997) has proposed a simplified resistance
capacitance model that takes into account the thermal
inertia of the building and the impact of night ventilation.
Attention is paid to the impact of the outdoor noise
(related to the windows opening at night). This model was
validated by comparing its results to a more detailed one
(TRNSYS) and was used to produce guidance rules.

Finally, Stein and Reynolds (1992) have proposed
calculation methods and rules of thumb to estimate the
amount of heat that can be removed from the building for
given boundary conditions in a night ventilated building.

Constraints and limitations of
ventilative cooling techniques

Ventilative cooling is a very powerful technique, but it
presents important limitations. Main problems are associ-
ated with noise and pollution, reduction of the wind speed
in the urban environment and moisture control. In fact,
moisture and condensation control is necessary, particu-
larly in humid areas. Pollution and acoustic problems, as
well as problems of privacy, are associated with the use of
natural ventilation techniques.

Outdoor pollution presents a serious limitation for
naturally ventilated buildings, especially in urban areas.
Stanners and Bourdeau (1995) have estimated that in 70
to 80 per cent of European cities with more than 500,000
inhabitants, the levels of air pollution, regarding one or
more pollutants, exceeds the World Health Organization
(WHO) standards at least once per year. Air cleaning
through filtration can be applied when mechanical venti-
lation or flow-controlled natural-ventilation components
are used. Noise can be a serious limitation for naturally
ventilated buildings. Stanners and Bourdeau (1996)
reported that unacceptable noise levels of more than
65dBA affect between 10-20 per cent of urban inhabitants
in most European cities. In parallel, as estimated by the
Organisation for Economic  Co-operation and
Development (OECD) (OECD, 1991), almost 130 million
people in OECD countries are exposed to noise levels
that are unacceptable.

Recent research has shown that the most significant
limitation of natural ventilation techniques is due to the
specific climatic conditions of cities. Because of specific
urban characteristics, there is a serious increase in
ambient temperature because of the heat island effect, as
well as a serious decrease in wind speed in urban canyons.
Both reasons seriously decrease the cooling potential of
natural and night-ventilative cooling techniques.

Geros et al (2001) have carried out specific experi-
ments in ten urban canyons in Athens to study the
reduction of the airflow in single-sided and naturally
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Figure 8.6 Reduction of air change rate for single-sided and cross-ventilated buildings in ten urban canyons

cross-ventilated buildings. They found that because of the
reduced wind speed, the airflow through the buildings
can decrease by up to 90 per cent (see Figure 8.6). Thus,
efficient integration of natural and night ventilation
techniques in dense urban areas requires full knowledge
of wind characteristics, as well as adaptation of ventilation
components to local conditions.

Geros et al (1999) have compared the cooling load of
a night ventilated building when located in ten specific
urban canyons against the load of the same building
located in a non-obstructed site. They reported that
because of the reduced wind speed in the canyons, the

cooling load of urban buildings increases by between 6-89
per cent for the single-sided ventilation, and by between
18-72 per cent for the cross-ventilated building depend-
ing upon the characteristics of the canyon (see Figure 8.7)

In parallel, a similar comparison has been performed
for a free-floating night-ventilated building (Geros et al,
1999). It has been calculated that the maximum indoor
temperatures of the urban buildings increase between
0.0-2.6° C for single-sided buildings and between
0.2-3.5° C for cross-ventilated buildings, depending upon
the characteristics of the canyon. Figure 8.8 illustrates the
specific differences for the ten urban canyons. Thus, a
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Figure 8.7 The difference of the cooling load calculated for a night ventilated building located
in a canyon and in a non-obstructed site
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Figure 8.8 The difference between the maximum indoor air temperature calculated for a night ventilated
building located in a canyon and in a non-obstructed site

correct sizing and design of night-cooled buildings using
natural ventilation techniques has to be based on data
appropriate for urban locations.

Use of fans and mechanical ventilation
systems to provide thermal comfort

Use of fans for comfort

Box fans, oscillating or ceiling fans can increase the
interior air speed and improve comfort (Chand, 1973b;
Chandra, 1985). Higher air speeds permit the building to
be operated at a higher set-point temperature and thus to
reduce its cooling needs. As reported by Chandra et al
(1986), for every degree Fahrenheit increase of the
thermostat during the summer, the cooling load is
decreased by 7-10 per cent. Air-circulation fans allow the
thermostat to increase by 4° F; thus, fans can contribute
up to 40 per cent of the cooling needs of buildings under
the assumption that the occupants are always close to the
fan. James et al (1996) have shown that the additional use
of ceiling fans in air-conditioned buildings contributes to
substantial savings of energy if the air-conditioning set-
point is lowered.

Ceiling fans have dominated the US market.
According to a study by Ecos Consulting and the Natural
Resources Defense Council of the USA (2001), two out of
every three homes in the US have at least one ceiling fan,
and, on average, each fan consumes about 130kWh per

year. In total, there are almost 193 million ceiling fans in
the US. Ceiling fans can save energy when users raise air-
conditioning thermostats. Rohles et al (1983) and
Scheatzle et al (1989), have shown that ceiling fans can
extend the comfort zone outside the typical ASHRAE
comfort zone. In particular, at an air velocity of 1.02m/sec,
comfort may be achieved at 27.7° C for 73 per cent
relative humidity, 29.6° C for 50 per cent humidity and
31° C for 39 per cent relative humidity. Fairey et al (1986)
have shown that the use of ceiling or oscillating fans may
significantly contribute to reducing the cooling load of
buildings in the southern US if the thermostat settings are
raised accordingly. As reported, energy savings of about
30 per cent are calculated for typical frame buildings in
Orlando and Atlanta by increasing the thermostat setting
from 25.56° C to 27.78° C. The energy savings may
increase by up 50 per cent for heavy-mass buildings.

In the Florida climate, savings are roughly 14 per cent
for a 2° F increase, according to the Florida Solar Energy
Center. Although studies suggest a 2-6° I increase in the
thermostat set-point, James et al (1996) report that in 386
surveyed Florida households, they have not identified any
statistically valid differences in thermostat settings
between houses using fans and those without them,
although fans were used an average of 13.4 hours per day.

Chand (1973b), in his pioneering work, has studied
the air motion produced by a ceiling fan and has
concluded that:
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* the minimum clearance between the fan
blades and the ceiling should be about
30cm;

* the capacity of a fan to meet the require-
ment of a room with a longer dimension
L metres should be about 55 Lm?/min;
while

* the reduction of the ceiling height from
2.9m to 2.6m produces an increase in the
air movement in the zone.

Aynsley et al (1977) have provided air speed contours as
generated by ceiling fans and concluded that effective air
speeds are produced up to 1 fan blade diameter away from
the centre of the fan.

Schmidt and Patterson (2001) have designed a new
high-efficiency ceiling fan that can decrease the power
consumption and, therefore, electricity charges by a factor
of between two and three. A new very efficient ceiling fan
of improved aerodynamics blades has been designed and
tested by Parker et al (1999). The new ceiling fan presents
a much higher airflow performance than existing fans and
uses advanced control technology.

Finally, Wu (1989) has demonstrated the potential of
oscillating fans to extend the comfort zone. In particular,
for an air speed of 1.52m/sec, comfort is achieved at 31° C
at 50 per cent relative humidity (RH), at 32° C at 39 per
cent RH, or at 33° C at 30 per cent RH.

Source: Maldonado (1999)

Figure 8.9 Percentage of hours in which the free cooling is
applicable for the south zone of a reference building

Free-cooling techniques

Free-cooling and economizer cycles can significantly
contribute to reducing the cooling demand of buildings.
Free cooling is a strategy that reduces or minimizes the
cooling demands of a building by using an excess of
ambient air when outdoor air temperatures are lower than
indoors.

In free-cooling techniques, ventilation rates used are
larger than those needed to meet the basic fresh air
requirements of occupants and lower or equal to the
supply airflow rates obtained for design conditions in
every zone as a function of the design supply air tempera-
ture needed to meet peak cooling loads.

A full description of free-cooling techniques, as well
as an assessment of the energy potential of free-cooling
techniques for Europe, is given by Maldonado (1999) (see
Figure 8.9). The design and details of free cooling are also
described in ASHRAE (1980) and Perkins (1984).

Recently, Olsen et al (2003), have studied the perform-
ance of various low-energy cooling techniques coupled
with a VAV and a displacement ventilation system for an
office building in the UK. They found that the annual
energy cost for displacement ventilation and VAV systems
that use free cooling is about 20 per cent less than for the
existing building, which uses a fixed minimum supply air
rate that does not take advantage of free cooling.

Hybrid systems

Hybrid ventilation can be described as ‘systems that
provide a comfortable internal environment using both
natural ventilation and mechanical systems but using
different features of these systems at different times of the
day or secason of the year and within individual days’
(Heiselberg, 2002). Compared to conventional ventilation
systems, hybrid ventilation systems vary because they are
based on an intelligent control system that permits
switching between natural or mechanical modes in order
to minimize energy consumption.

The main advantages of the hybrid ventilation
systems are summarized by Heiselberg (2002):

*  Hybrid ventilation results in higher user satisfaction
as it permits a higher degree of individual control of
the indoor climate.

e These systems optimize the balance between indoor
air quality, thermal comfort, energy use and environ-
mental impact and thus fulfil the needs for a better
indoor environment and reduced energy consump-
tion.
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*  Hybrid ventilation systems have access to natural and
mechanical ventilation modes and exploit the benefits
of each mode in the best way.

* These systems are also very appropriate solutions for
complex buildings since they are associated with
more intelligent systems and control.

Various hybrid ventilation systems have been proposed
and applied in different types of buildings. An extended
review of the systems, as well as of their existing applica-
tions, is provided by Delsante and Vik (2001). Olsen et al
(2003) have also found that in the UK, while natural venti-
lation alone cannot maintain appropriate summer comfort
conditions, the use of a hybrid system employing natural
ventilation, together with a VAV system to maintain
comfort during extreme periods, is the best choice, using
at least 20 per cent less energy than any purely mechani-
cal system.

Results from the first-generation hybrid-ventilated
buildings show that such a technique has a very high
cooling potential. It has been found that it is quite effec-
tive in providing good indoor air quality (IAQ) and
thermal comfort, while energy performance is good,
though requiring further improvements.

Summary

The energy consumption of buildings is high and is
expected to increase further because of improved
standards of living and the increase in world population
During the last 20 years, air conditioning has presented a
very high penetration rate and this has contributed signif-
icantly to increasing absolute energy consumption, as well
as the peak electricity load of the building sector.

Convective cooling techniques have proven to be
extremely energy efficient under specific climatic condi-
tions. Extensive experimental and theoretical studies have
shown that the application of convective cooling
techniques may substantially reduce or neutralize the
cooling load of buildings.

Over the last 20 years, important basic and industrial
research has been carried out that has resulted in the
development of new high-efficiency strategies, systems,
control devices and tools. However, the continuing
increase of energy consumption, primarily because of the
important increase in air-conditioning installations,
demands a more profound examination of convective
cooling techniques and their impact upon buildings.
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