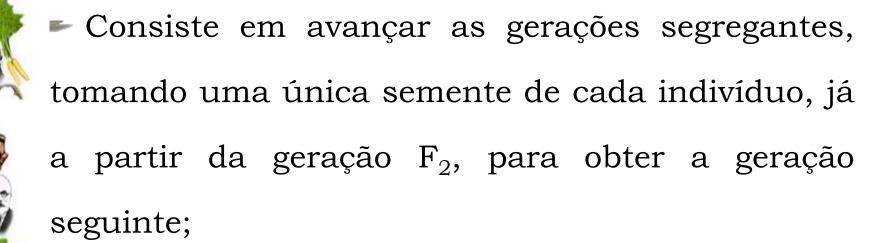


Melhoramento de espécies autógamas

Método SSD e Método do Retrocruzamento



MÉTODO DESCENDENTE DE UMA SEMENTE (SSD - SINGLE SEED DESCENDENT)

Foi proposto com o intuito de reduzir o tempo requerido para se atingir uma alta proporção de locos em homozigose, por meio do avanço das gerações fora da época normal de semeadura da cultura;

ESALQ/USP – LGN-313 MELHORAMENTO GENÉTICO Prof. José Baldin Pinheiro

Dessa forma, cada linhagem corresponde a uma planta F_2 diferente e, portanto, reduz-se a perda devido à amostragem deficiente.

Prof. José Baldin Pinheiro

Método SSD

 $\mathbf{F_2}$

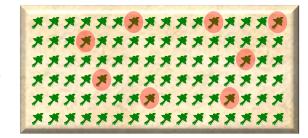
Uma única semente por planta

Colhe-se apenas uma semente de cada planta da população, as quais são misturadas para a obtenção da geração F₃

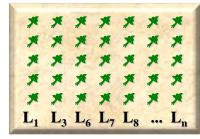
 $\mathbf{F_3}$

Uma única semente por planta

Novamente colhe-se uma semente por planta, tomando-se uma amostra de todos os indivíduos da população. Estas sementes são misturadas e semeadas para formar a geração F₄. O processo se repete até a geração F₆.

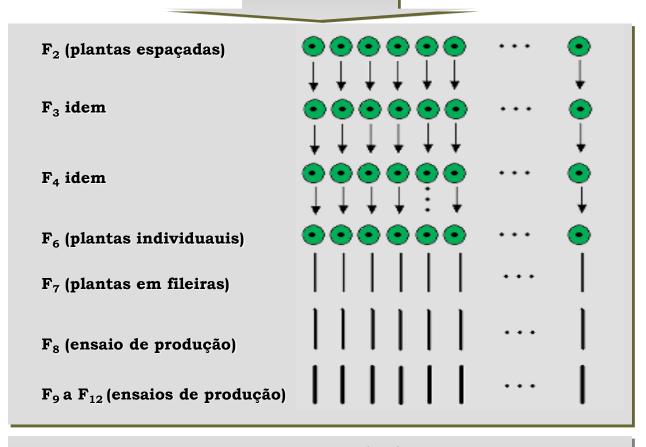

Prof. José Baldin Pinheiro

Método SSD (cont.)


F₆

Nesta geração colhem-se plantas individuais cujas sementes darão origem às famílias $F_{6:7}$.

F_{6:7}


As família serão avaliadas em experimentos com repetição

Prof. José Baldin Pinheiro

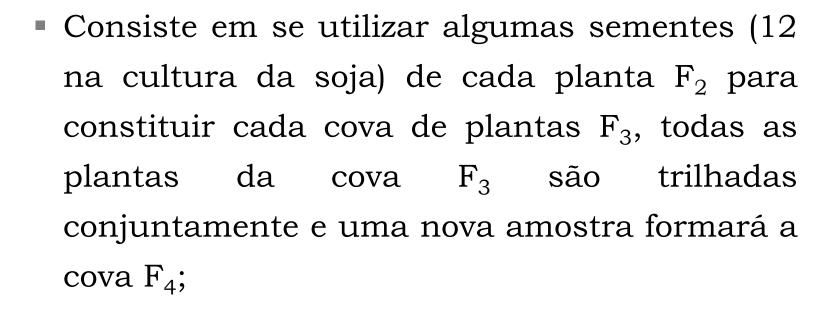
Seleção pelo Método SSD (Single Seed Descendent)

Variedade A x Variedade B

Nova variedade

Variações do método:

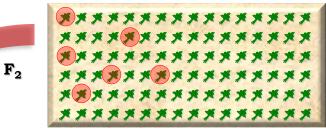
- ► Método SPD "Single Pod Descendent" (Descendente de uma única vagem);
- Método SHD "Single Hill Descendent" (Descendente de uma cova por planta F_2);
- ► Método SHDT "Single Hill Descendent Thinned" (Descendente de uma cova por planta F_2 com desbaste).

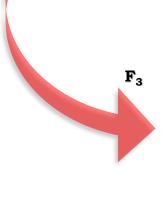

Método SPD - "Single Pod Descendent" (Descendente de uma única vagem)

Consiste em colher, a partir da geração F₂ até F₄, uma vagem com duas ou três sementes por planta e debulhá-las conjuntamente para a semeadura da geração seguinte (recomendável a colheita de duas amostras).

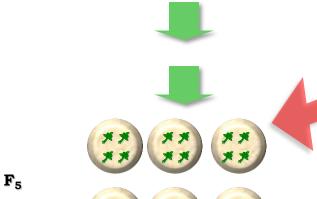
Método SHD - "Single Hill Descendent" (Descendente de uma cova por planta F₂)

■ Em F₅ colhe-se uma planta por cova para formar uma linhagem pura.


Prof. José Baldin Pinheiro


Método SHD

Colheita de sementes F₃ de cada planta F₂ individualmente.



Cultivo da população F₃ em covas. Colheita e debulha de todas as plantas de cada cova conjuntamente.

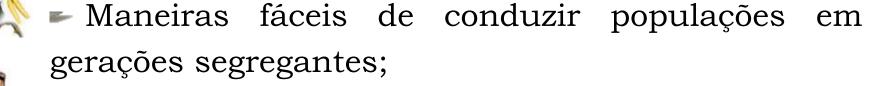
Prof. José Baldin Pinheiro

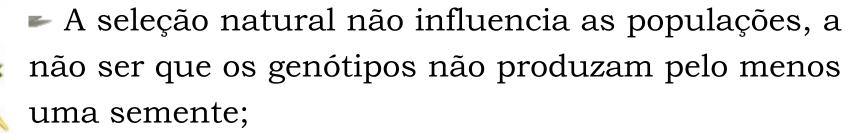
Método SHD (Cont.)

Colheita e debulha de uma planta individual agronomicamente superior dentro de cada cova (nível elevado de homozigose)

Testes de linhagens avançadas F_{6:5}

F_{6:5}


Método SHDT - "Single Hill Descendent Thinned" (Descendente de uma cova por planta F_2 com desbaste)



• Quando a maioria das plantas da cova apresentam a primeira trifoliolada completamente desenvolvida, é feito o desbaste deixando-se uma única planta por cova.

Aspectos favoráveis dos métodos SSD e derivados:

O cultivo das populações segregantes pode ser feito em qualquer ambiente (verão, inverno, telados, casa-de-vegetação e locais diferentes).

Aspectos desfavoráveis dos métodos SSD e derivados:

- ► Quando é realizada a seleção artificial em gerações segregantes, a mesma é baseada no fenótipo de plantas individuais e não no desempenho da progênie;
- A seleção natural não pode influenciar a população de um maneira positiva, a não ser que os genótipos não germinem ou não deixem sementes na descendência.

Aspectos específicos dos métodos SSD e derivados:

SSD - aspectos favoráveis

- A essência desse método é o rápido avanço das gerações segregantes;
- Requer menos área que o método SHD;
- Qualquer planta na população é descendente de uma planta F₂ diferente, o que resulta em maior variabilidade genética nas populações.

SSD - aspectos desfavoráveis

- Parte das plantas F₂ não são representadas por linhagens F₅ em função de falhas na germinação ou não produção de sementes por planta durante as gerações segregantes;
- O tamanho da população para o método SSD deve ser ajustado para a porcentagem de germinação;
- No método SSD gasta-se mais tempo que no método SPD para a colheita de uma amostra para a semeadura e outra para a reserva.

SPD - aspectos favoráveis

- Condução de populações segregantes de maneira simples;
- Quando o número de plantas F_2 é limitado pode-se aumentar o número de plantas a partir da geração F_2 .

SPD - aspectos desfavoráveis

 Perde-se a identidade de plantas F₂ ao longo das gerações segregantes.

SHD - aspectos favoráveis

- Possibilita trabalhar, desde a geração F₂, com o tamanho populacional desejado na geração F₆, função das poucas falhas na condução das gerações segregantes;
- Cada cova, a partir da geração F_3 , é descendente de uma planta F_2 diferente, o que resulta em maior variabilidade genética nas populações.

SHD - aspectos desfavoráveis

- A segregação para ciclo é um aspecto que complica a condução de populações segregantes;
- Requer mais tempo na semeadura e colheita que os outros dois métodos;
- Necessita de mais área do que os outros dois.

MÉTODO DO RETROCRUZAMENTO

- Método eficiente para melhorar variedades que são muito boas, com relação a um grande número de atributos, porém deficientes em algumas características;
- Como o próprio nome indica o método utiliza uma série de retrocruzamentos para a variedade a ser melhorada sendo que o caracter a ser melhorado é mantido por seleção;

Método do Retrocruzamento

- ► O genitor que contém o alelo desejável é denominado de não recorrente, ou doador. O genitor submetido aos sucessivos cruzamentos com os indivíduos da população segregante é denominado de recorrente;
- Resultado final é uma variedade com as mesmas características do genitor recorrente, sendo porém superior a esse em relação ao caracter selecionado.

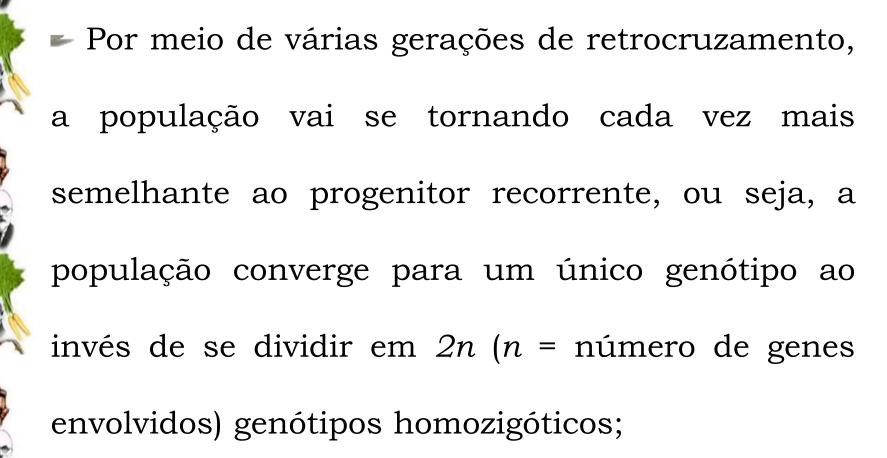
Método do Retrocruzamento

- Para que se tenha sucesso no retrocruzamento os seguintes requisitos devem ser satisfeitos:
 - a) deve existir um progenitor recorrente satisfatório;
 - b) deve ser possível manter, com boa intensidade, o caráter em transferência por meio dos vários retrocruzamentos;
 - c) um número suficiente de retrocruzamentos deve ser feito para reconstituir, num alto grau o progenitor recorrente.

ESALQ/USP – LGN-313 MELHORAMENTO GENÉTICO Prof. José Baldin Pinheiro

1. Base genética do Retrocruzamento

Nas gerações segregantes obtidas por autofecundação, espera-se que metade dos indivíduos homozigotos seja do tipo desejado para qualquer loco em particular.


Ex.:

- \otimes de uma população F_1 do cruzamento AA x aa consiste de (1/4 AA: 1/2 Aa: 1/4 aa) \rightarrow apenas 1/4 AA.
- Retrocruzando a população F₁ para o progenitor AA, temos:

 $(1/2 \text{ AA: } 1/2 \text{ Aa}) \rightarrow \text{assim } 1/2 \text{ AA}$

ESALQ/USP – LGN-313 MELHORAMENTO GENÉTICO Prof. José Baldin Pinheiro

ESALQ/USP – LGN-313 MELHORAMENTO GENÊTICO Prof. José Baldin Pinheiro

 No retrocruzamento a homozigose é atingida na mesma proporção da ⊗, conforme a fórmula:

m = número de gerações de retrocruzamentos;

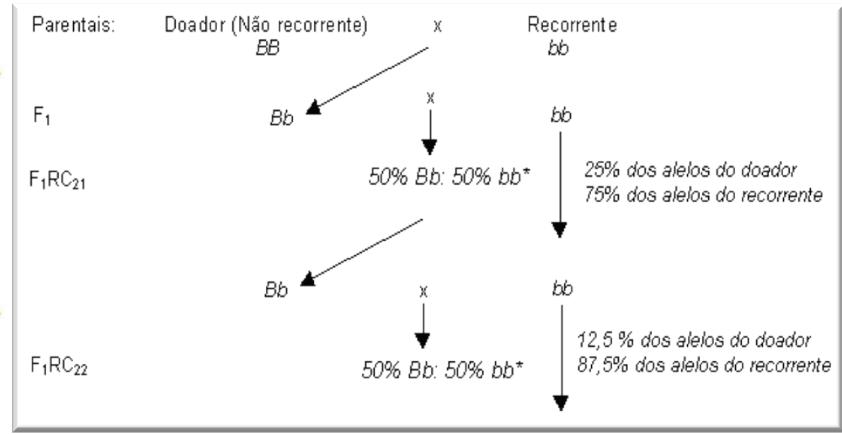
n = número de genes envolvidos.

ESALQ/USP – LGN-313 MELHORAMENTO GENÉTICO Prof. José Baldin Pinheiro

► O procedimento a ser utilizado no retrocruzamento depende do controle genético do

caráter a ser transferido e da necessidade de

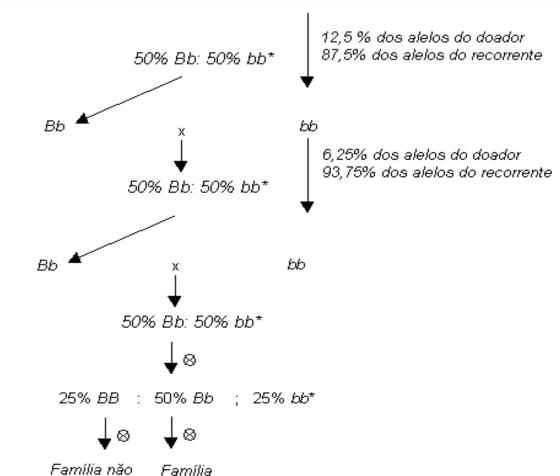
realizar ou não testes da descendência para


determinar seu genótipo;

Prof. José Baldin Pinheiro

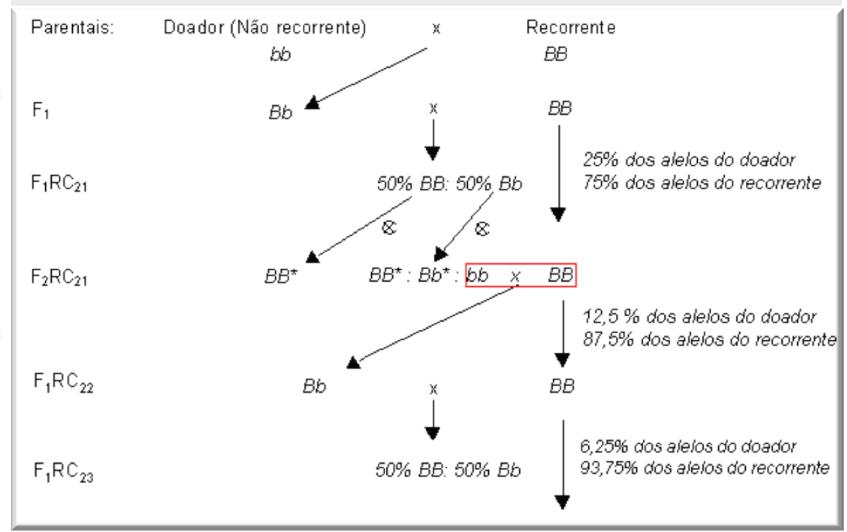
Alelo dominante

Prof. José Baldin Pinheiro

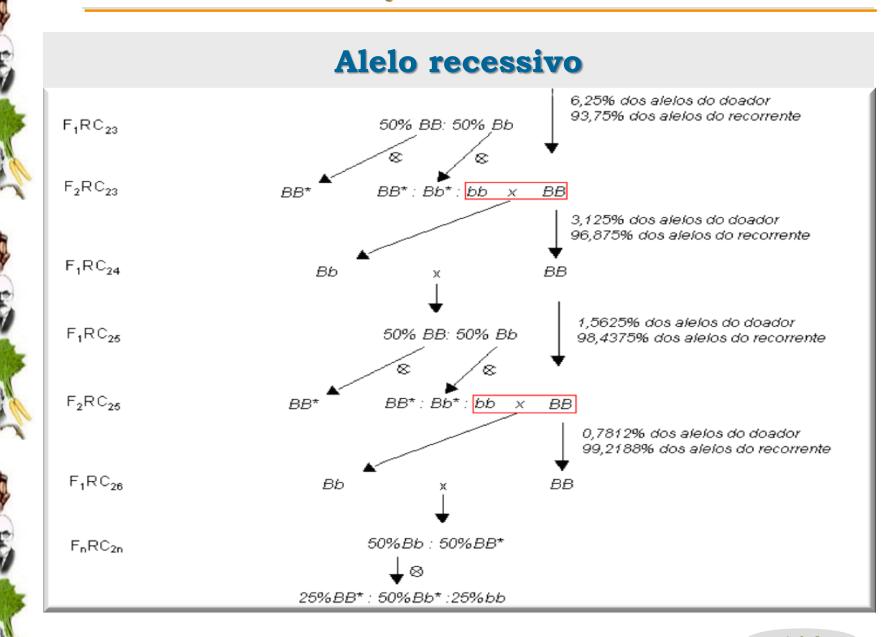


 F_1RC_{2n}

Alelo dominante



segregante segregante


Prof. José Baldin Pinheiro

Alelo recessivo

Prof. José Baldin Pinheiro

2. Seleção do progenitor recorrente

Genitor recorrente com boas características agronômicas.

3. Manutenção do caráter em transferência

► A herdabilidade não tem qualquer conseqüência especial para o progresso do programa, exceto para o caráter em transferência;

Maior facilidade de aplicação, quando o caráter a ser transferido pode ser facilmente identificado por inspeção visual ou por testes simples;

► Um caráter de alta herdabilidade governado por vários genes pode ser mais facilmente transferido por retrocruzamento, do que um caráter de baixa herdabilidade.

4. Influência das condições ambientais

- O retrocruzamento pode ser conduzido em qualquer ambiente que permita o desenvolvimento do caráter em transferência;
- Cultivo em várias gerações por ano.

5. Uso de marcadores moleculares em programas de retrocruzamento

- Sem marcador:
 - 6 gerações para recuperar 99% do genoma recorrente.

Com marcador:

 2 a 3 gerações para introgressão da característica e recuperação do genótipo recorrente - baixo "linkage drag".

Vantagens

- Pode dispensar os testes finais dos novos cultivares obtidos;
- O cultivar já é conhecido tendo passado o período de testes pelo agricultor;
- O programa de retrocruzamento pode ser conduzido fora da região onde o cultivar é utilizado;

Vantagens

- É um método com alto nível de previsibilidade de resultado, pois apenas o caráter em transferência precisa ter herdabilidade alta;
- Confere características de excelência a genótipos já excepcionais.

Desvantagens

- A liberação de genótipos excepcionais, obtidos por outros métodos de melhoramento, pode tornar o parental recorrente ultrapassado;
- O tempo gasto para obter o novo genótipo pode tornar produtivamente obsoleto este cultivar;
- É um método muito trabalhoso e mais adequado para transferência de um ou poucos genes.

6. Observações gerais sobre o método do retrocruzamento

- Maioria dos exemplos referentes a resistência à doenças;
- ► Adequado também para melhoramento de caracteres morfológicos, características de cor e caracteres quantitativos e de herança simples, tais como precocidade, altura da planta, tamanho e forma da semente, dentre outros ⇒ qualquer caracter de média a alta herdabilidade.

BIBLIOGRAFIA

- 1. ALLARD, R.W. Princípios do melhoramento genético das plantas, 1971. Cap. 14.
- 2. BORÉM, A. Melhoramento de plantas. Viçosa: UFV. 1997. Cap. 17 e 20.
- 3. DESTRO, D. & MONTALVÁN, R. Melhoramento genético de plantas. Londrina: Ed. UEL, 1999. Cap. 18 e 19.

ESALQ/USP - LGN-313 MELHORAMENTO GENÉTICO Prof. José Baldin Pinheiro

Aula 08

