Desenvolvimento do Potencial em Multipolos II

[J. D. Jackson; Classical Electrodynamics; Cap. 4][J. Frenkel; Princípios de Eletrodinâmica Clássica, Cap. 2][A. Zangwill; Modern Electrodynamics; Cap. 4]

Observações importantes

• Os momentos de dipolo, em geral, dependem da escolha da origem. Exemplo: dipolo

$$\vec{p} = \int \vec{r} \rho(\vec{r}) dV$$

Considere um deslocamento da origem de um vetor \vec{d} , definindo um novo sistema de coordenadas (*), tal que $\vec{r} = \vec{r}^* + \vec{d}$. O momento de dipolo no novo sistema é

$$\vec{p}^* = \int \vec{r}^* \rho(\vec{r}^*) dV^*$$

Mas, $dV^* = dV$; $\rho(\vec{r}^*) = \rho(\vec{r})$, portanto

$$\vec{p}^* = \int \left(\vec{r} - \vec{d}\right) \rho(\vec{r}) dV = \int \vec{r} \rho(\vec{r}) dV - \vec{d} \int \rho(\vec{r}) dV = \vec{p} - q\vec{d}$$

onde $q = \int \rho(\vec{r}) dV$ é a carga total do sistema, ou seja, o momento de ordem zero. Portanto, o momento de dipolo só será o mesmo se a carga total for nula.

Essa questão é discutida no Prob. 4.4 do Jackson, onde é mostrado que somente o momento $q_{\ell m}$ de ordem mais baixa, para uma dada distribuição de cargas, independe da escolha da origem; todos os momentos de ordem mais alta em geral dependem.

• Os momentos podem ser calculados diretamente em coordenadas cartesianas, fazendo o desenvolvimento em série de Taylor do fator $1/|\vec{r} - \vec{r}'|$ (Frenkel e Zangwil).

Para um momento de ordem ℓ , em coordenadas esféricas temos $(2\ell + 1)$ momentos de multipolo, enquanto que, em coordenadas cartesianas são $(\ell + 1)(\ell + 2)/2$. A razão básica é que, em coordenadas esféricas, os momentos multipolares são irredutíveis sob uma rotação de eixos, mas, em coordenadas cartesianas, eles são redutíveis. Isso é discutido no Prob. 4.3 do Jackson.

Resultados importantes momento de dipolo

1. Praticamente todos os resultados envolvendo dipolos podem ser obtidos utilizando sua versão simples de duas cargas, vista na graduação.

$$\rho(\vec{r}) = q\delta\left(\vec{r} - \frac{\vec{d}}{2}\right) - q\delta\left(\vec{r} + \frac{\vec{d}}{2}\right) \to \vec{p} = q\int \vec{r}\left[\delta\left(\vec{r} - \frac{\vec{d}}{2}\right) - \delta\left(\vec{r} + \frac{\vec{d}}{2}\right)\right]dV = q\vec{d}$$

2. Linhas de força do campo elétrico

$$\vec{E}_{\ell=1} = \frac{1}{4\pi\epsilon_0} \frac{3(\vec{p}\cdot\hat{n})\hat{n}-\vec{p}}{|\vec{r}-\vec{r}_0|^3}; \quad \vec{p} = p\hat{e}_z; \quad \vec{r}_0 = 0 \quad \rightarrow \hat{n} = \hat{e}_r$$
$$\vec{E}_{\ell=1} = \frac{1}{4\pi\epsilon_0} \frac{3p\cos\theta\,\hat{e}_r - p(\cos\theta\,\hat{e}_r - \sin\theta\,\hat{e}_\theta)}{r^3} = \frac{p}{4\pi\epsilon_0 r^3} (2\cos\theta\hat{e}_r + \sin\theta\,\hat{e}_\theta)$$
$$\frac{dr}{E_r} = \frac{rd\theta}{E_\theta} \rightarrow \frac{1}{r} \frac{dr}{d\theta} = 2\cot\theta \rightarrow r = k(\sin\theta)^2$$

3. Dipolo em um campo elétrico externo

<u>Força</u>

$$\vec{F} = q\vec{E}\left(\vec{r} + \frac{\vec{d}}{2}\right) - q\vec{E}\left(\vec{r} - \frac{\vec{d}}{2}\right) = q\left[\vec{E}(\vec{r}) + \left(\frac{\vec{d}}{2} \cdot \nabla\right)\vec{E} - \left(\vec{E}(\vec{r}) - \left(\frac{\vec{d}}{2} \cdot \nabla\right)\vec{E}\right)\right]$$
$$\vec{F} = q\left(\vec{d} \cdot \nabla\right)\vec{E}(\vec{r}) \rightarrow \vec{F} = (\vec{p} \cdot \nabla)\vec{E}(\vec{r})$$

<u>Torque em torno da origem</u>

$$\vec{\tau} = \left(\vec{r} + \frac{\vec{d}}{2}\right) \times q\vec{E}\left(\vec{r} + \frac{\vec{d}}{2}\right) - \left(\vec{r} - \frac{\vec{d}}{2}\right) \times q\vec{E}\left(\vec{r} - \frac{\vec{d}}{2}\right)$$
$$\therefore \vec{\tau} = q\vec{d} \times \vec{E}(\vec{r}) + q\vec{r} \times \left(\vec{d} \cdot \nabla\right)\vec{E}(\vec{r})$$
$$\rightarrow \vec{\tau} = \vec{p} \times \vec{E}(\vec{r}) + \vec{r} \times (\vec{p} \cdot \nabla)\vec{E}(\vec{r})$$

<u>Primeiro termo</u>: faz \vec{p} girar em torno de seu centro de massa na direção de \vec{E} ; mecanismo de polarização em dielétricos. <u>Segundo termo</u>: faz \vec{p} girar em torno da origem do vetor \vec{r} .

- 4. Importância em Física Atômica
 - Dipolos permanentes de algumas moléculas → Molécula d'água

• Interação radiação matéria: momento de dipolo da transição entre dois estados

<u>Mecânica clássica</u>: interação entre um sistema e um campo eletromagnético só ocorre se o sistema tiver um dipolo elétrico oscilando na frequência do campo.

<u>Mecânica quântica</u>: probabilidade de o sistema mudar de estado pela interação com o campo eletromagnético é calculada pela teoria de perturbação.

Regra de seleção: $\Delta \ell = \pm 1 \rightarrow \text{emissão}$ de radiação de dipolo decorre de uma oscilação do momento de dipolo elétrico da distribuição de carga quando o átomo se encontra num estado que é uma combinação do estado inicial e final $\vec{\mu} = \langle \psi_b | q \vec{r} | \psi_a \rangle$ Momentos de Quadrupolo Nuclear

- Frenkel: discussão a partir da página 54
- Zangwill: aplicação 4.2 e exemplo 4.2

A maioria dos núcleos tem simetria azimutal; $\partial/\partial \varphi = 0$

$$Q_{ij} = \int (3x_i x_j - r^2 \delta_{ij}) \rho(\vec{r}) dV$$

Spin-1/2 nucleus $Q_{zz} = \int (3z^2 - r^2)\rho(r,\theta)dV = 2\pi \int r^2 [3(\cos\theta)^2 - 1]\rho(r,\theta)r^2dr\sin\theta \,d\theta$

$$Q_{xx} = \int (3x^2 - r^2)\rho(r,\theta)dV = \int r^2 \left[3(\sin\theta)^2 \int_0^{2\pi} (\cos\varphi)^2 d\varphi - \int_0^{2\pi} d\varphi \right] \rho r^2 dr \sin\theta d\theta$$

$$\therefore \ Q_{xx} = 2\pi \int \frac{r^2}{2} \left[3(\sin\theta)^2 - 2 \right] \rho(r,\theta) \ r^2 dr \sin\theta \ d\theta = -Q_{zz}/2 = Q_{yy}$$

Resonância Nuclear Quadrupolar: http://www.anilmishra.name/notes/ngr1.pdf

Energia de uma distribuição de cargas em um campo externo

Frenkel Seção 2.3

Jackson Seção 4.2

$$W = q\phi(0) - \vec{p} \cdot \vec{E}(0) - \frac{1}{6} \sum_{i} \sum_{j} Q_{ij} \frac{\partial E_j(0)}{\partial x_i} + \cdots$$

quadrupolo interage com gradiente do campo
dipolo interage com gradiente do potencial
carga interage com potencial

<u>Física Atômica</u>: U. Schüler and Th. Schmidt; *Z. Phys*. <u>94</u>, 457 (1935) Estrutura hiperfina do Europium

Compostos contendo Europium

Discussão sobre as seções 4.2.1, 4.2.3 3 4.2.4 do Zangwill

Intermezzo matemático

Teorema de Gauss:
$$\int (\nabla \cdot \vec{V}) dV = \int \vec{V} \cdot d\vec{S}$$

Não é necessário ter a divergência na integral de volume; este teorema pode ser expresso na forma de uma regra operacional (R. H. Good and T. J. Nelson; *Classical Theory of Electric and Magnetic Fields*):

$$\int dV \nabla = \int d\vec{S}$$

Assim, se \vec{b} for um vetor constante e $f(\vec{r})$ uma função escalar, segue que

$$\int dV \nabla \cdot \left(\vec{b}f\right) = \int d\vec{S} \cdot \left(\vec{b}f\right); \ \vec{b} \cdot \int dV \nabla f = \vec{b} \cdot \int d\vec{s}f; \ \int dV \nabla f = \int d\vec{S}f;$$
$$\int dV \nabla \cdot \left(\vec{b} \times \vec{v}\right) = \int d\vec{S} \cdot \left(\vec{b} \times \vec{v}\right); \ \vec{b} \cdot \int dV (\nabla \times \vec{v}) = \vec{b} \cdot \int d\vec{S} \times \vec{v}; \ \int dV (\nabla \times \vec{v}) = \int d\vec{S} \times \vec{v}$$

Conceito de "dipolo pontual"

$$\frac{\vec{r} - s\vec{d} - \vec{r}_{0}}{\vec{r}_{0} + s\vec{d}} \phi(\vec{r}) = \lim_{s \to 0} \frac{1}{4\pi\epsilon_{0}} \left[\frac{q/s}{|\vec{r} - \vec{r}_{0} - s\vec{d}|} - \frac{q/s}{|\vec{r} - \vec{r}_{0}|} \right]
= \frac{1}{4\pi\epsilon_{0}} \lim_{s \to 0} \frac{q}{s} \left[\frac{1}{|\vec{r} - \vec{r}_{0}|} - s\vec{d} \cdot \nabla \frac{1}{|\vec{r} - \vec{r}_{0}|} - \frac{1}{|\vec{r} - \vec{r}_{0}|} \right]
\therefore \phi(\vec{r}) = -\frac{1}{4\pi\epsilon_{0}} \vec{p} \cdot \nabla \frac{1}{|\vec{r} - \vec{r}_{0}|}$$

"Densidade de carga aparente" que cria este potencial:

$$\begin{aligned} -\frac{\rho_D}{\epsilon_0} &= \nabla^2 \phi = -\frac{1}{4\pi\epsilon_0} \vec{p} \cdot \nabla \left[\nabla^2 \frac{1}{|\vec{r} - \vec{r}_0|} \right] = \frac{1}{\epsilon_0} \vec{p} \cdot \nabla \delta(\vec{r} - \vec{r}_0) \\ &\therefore \quad \rho_D = -\vec{p} \cdot \nabla \delta(\vec{r} - \vec{r}_0) \end{aligned}$$

Não existe na Natureza esta densidade singular de carga. Mas seu uso é conveniente para cálculos em que o volume da densidade de carga é muito menor que as dimensões características do sistema.

Cálculo da força e torque sobre um dipolo em um campo elétrico externo

- Força: $\vec{F} = (\vec{p} \cdot \nabla)\vec{E}(\vec{r}) \rightarrow \text{seguir derivação do Zangwill, seção 4.2.3}$
- Torque

$$\vec{\tau} = \int dV' \, \vec{r}' \times \left[\rho_D(\vec{r}') \vec{E}(\vec{r}') \right] = -\int dV' \, \vec{r}' \times \left[\left(\vec{p} \cdot \nabla \delta(\vec{r} - \vec{r}') \right) \vec{E}(\vec{r}') \right]$$

$$= -\int dV' \vec{p} \cdot \nabla \left[\delta(\vec{r} - \vec{r}') \left(\vec{r}' \times \vec{E}(\vec{r}') \right) \right] + \int dV' \delta(\vec{r} - \vec{r}') \vec{p} \cdot \nabla \left(\vec{r}' \times \vec{E} \right)$$

$$= -\vec{p} \cdot \int d\vec{S} \delta(\vec{r} - \vec{r}') (\vec{r}' \times \vec{E}) + \vec{p} \cdot \nabla (\vec{r} \times \vec{E})$$

$$\tau_{i} = (\vec{p} \cdot \nabla) (x_{j} E_{k} - x_{k} E_{j}) = p_{j} E_{k} + x_{j} \vec{p} \cdot \nabla E_{k} - p_{k} E_{j} - x_{k} \vec{p} \cdot \nabla E_{j}$$

$$\therefore \quad \tau_{i} = (\vec{p} \times \vec{E})_{i} + [\vec{r} \times (\vec{p} \cdot \nabla) \vec{E}]_{i} \rightarrow \vec{\tau} = \vec{p} \times \vec{E}(\vec{r}) + \vec{r} \times (\vec{p} \cdot \nabla) \vec{E}(\vec{r})$$