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In the face of inadequate data or unclear theories, is a
hypothesis confirmed or falsified? Is a potential scientific
threat innocent till proved guilty or guilty till proved innocent? When potential
harm is unknown, does one assume that an average level of danger will occur
or that a worst case is possible? All of these questions raise the issue of how to
deal with scientific uncertainty, particularly in cases that could have serious
consequences.

Among the many classes of cases of scientific uncertainty that confront
contemporary problem solvers, at least four stand out because of their special
relevance to environmental decision making. The four classes involve (1) fram-
ing uncertainty, (2) modeling uncertainty, (3) statistical uncertainty, and
(4) decision-theoretic uncertainty. Using examples from quantitative risk assess-
ment, especially hazards associated with nuclear wastes, this essay argues that
there are a number of epistemologic and ethical rules that scientists ought to
follow in each of these cases of uncertainty and that, indeed, many of the
preferred rules are contrary to established principles that members of the sci-
entific community actually follow. Consider first the uncertainties surrounding
how scientists frame their questions.

Framing Uncertainty and Using Science for Policy'

12

How scientists frame their questions often controls their answers. Newton, for
example, framed his questions about mechanics in terms of the assumption that
he needed to explain what caused uniform rectilinear motion fo stop. As a con-
sequence, he affirmed the first law of motion (1). Aristotle, however, framed
his questions about mechanics in terms of the assumption that he needed to
explain what caused uniform rectilinear motion fo begin. As a result, he denied

'Much of the discussion ol framing uncertainty is based on Shrader-Frechette (15, 18).
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that bodies remain either at rest or in motion, unless compelled by impressed
forces to change their state (2).

Like Newton and Aristotle, different scientists frequently have alternative
“frames,”” different sets of theoretical assumptions for structuring their data and
their problem solving (3, 4). Some of the most basic scientific uncertainties
concern how to frame a particular question, for example, when and how to
interpret data as providing grounds for accepting particular hypotheses. In fram-
ing their questionis, scientists frequently use a two-value frame (falsification/
provisional acceptance) specifying that, in a situation of uncertainty, when rig-
orous testing fails to falsify some testable hypothesis (such as ‘‘organic molecules
can come in right- and left-handed mirror-image versions’”’), then it is reason-
able to accept the hypothesis provisionally.

Why Scientists Often Use the Two-Value Frame

Scientists sometimes employ the two-v-iue frame because, from an empirical
point of view, rigorously attempting (and failing) to falsify a precise testable
hypothesis provides one of the strongest criteria for accepting it (5). Scientists
often attempt to devise “‘crucial experiments,” tests for which two mutually
exclusive, exhaustive hypotheses predict conflicting outcomes. Classic examples
of ““crucial experiments” are Millikan’s (6} attempt, in the early 1900s, to show
whether electric charges are integral multiples of the charge of the electron and
Lenard’s 1903 test of two conflicting implications concerning the light energy
that a radiating point can transmit (7). A second reason that scientists some-
times use the two-value frame is pragmatic. As Duhem (8) recognized, they
provisionally accept a precise hypothesis (that has survived rigorous attempts
to falsify it), even one with obvious deficiencies, if there is no better (more
probable) hypothesis available. Because hypotheses have an infinite number of
observational consequences that can never be ‘‘verified” conclusively (9), sci-
entists sometimes opt—in a situation of uncertainty—for provisional acceptance
of the best available nonfalsified hypothesis.

A third situation in which scientists use the two-value frame is when they
give provisional acceptance to null (no-effect) hypotheses that survive rigorous
attempts at falsification. Because they are more interested in avoiding false pos-
itives (type I errors) rather than false negatives (type II errors) in situations of
uncertainty, scientists place the greater burden of proof on the person who
postulates some, rather than no, effect. For example, a geologist might postulate
the effect that, because of tectonic activiiy, the water table will rise at a given
location by at least 500 meters over the next 10,000 years. Although “‘no-effect”
results run the risk of type II errors, scientists usually assume, as in criminal
law, that null hypotheses are provisionally acceptable (innocent) until they are
rigorously falsified (proved guilty). In the third section, on statistical uncer-
tainty, we discuss type I and type 1I errors in more detail.
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The Two-Value Frame in Quantitative Risk Assessment

Because policy makers often need immediate decisions about particular risks,
scientists have used the two-value frame in many risk assessments, from studies
of hazardous landfills to childhood exposure to lead (10). To illustrate potential
problems with assessors using the two-value frame, consider the 1992 Early Site
Suitability Evaluation (ESSE) completed by the U.S. Department of Energy (DOE)
for the proposed Yucca Mountain (Nevada) nuclear waste repository (11).
Reporting site-suitability findings for every condition specified, the 1992 ESSE
used a two-value frame to assess the site: “‘conclusions about the site can be
either that current information supports an unsuitability finding or that current
information supports a suitability finding. ... If ... current information does
not indicate that the site is unsuitable, then the consensus position was that at
least a lower-level suitability finding could be supported”” (11, pp. E-5, E-11).
To understand why the two-value frame may be problematic here, recall that
scientists typically use it for at least one of three reasons: (1) The attempted
falsification is rigorous and precise. {2) The hypothesis that has survived precise,
rigorous attempts at falsification is the “best’” of candidate hypotheses. (3) The
surviving hypothesis is a null hypothesis.

Sometimes societal risk assessments meet none of these three conditions
for use of the two-value frame. At Yucca Mountain, for example, the long time
period (10,000 years of site suitability) precludes the precise predictions, spec-
ified in condition (1), necessary for rigorous attempts at falsification. Indeed,
the ESSE peer reviewers unanimously warned: ‘‘many aspects of site suitability
are not well suited for quantitative risk assessment. . .. Any projections of the
rates of tectonic activity and volcanism, as well as natural resource occurrence
and value, will be fraught with substantial uncertainties that cannot be quan-
tified” (12, p. B-2). They cautioned that although “there is . .. currently not
enough defensible, site-specific information available to warrant acceptance or
rejection of this site”” (12, pp. 460, 257, 40-51), nevertheless they used the two-
value frame (site suitable/site unsuitable) that they “were given” and agreed
with the ‘“site-suitable’”” conclusions of the ESSE: “The DOE General Siting
Guidelines (10 CFR Part 960) do not allow a ‘no decision’ finding. . . . Thus the
ESSE Core Team followed the intent of the guidelines” (12, p. 460). The peer
reviewers’ warnings suggest that, when rigorous and precise testing is impos-
sible, using a two-value frame might beg some questions of risk evaluation and
that, in such situations, a three-value frame (site suitable/site unsuitable/site
suitability uncertain at present) might be preferable.

Condition (2), that the nonfalsified hypothesis be the best available, like-
wise appears problematic for assessments that compare neither alternative risk
sites nor different risk hypotheses. Complete comparative analyses of proposed
repository sites, for example, were precluded by the 1987 amendment to the
Nuclear Waste Policy Act that named Yucca Mountain, Nevada, as the only
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candidate location for the nation’s first permanent repository for commercial
nuclear waste and spent fuel. Using the two-value frame to give provisional
acceptance to a particular site-suitability hypothesis as “best,”” however, appears
problematic to the degree that alternative sites are not compared and to the
degree that different hypotheses have “’substantial uncertainties that cannot be
quantified”” (12, p. B-12).

Another justification for use of the two-value frame—that (3) surviving
hypotheses be provisionally accepted if they are null—likewise seems inappli-
cable in many societal risk assessments. Theoretical science, of course, often
places the burden of proof on those arguing against the null hypothesis because
science must be epistemologically conservative (avoid false positives). Science
applied to risk assessment, however, also must be ethically conservative, as the
National Academy of Sciences points out (13, 14), in the sense of taking account
of social consequences affecting the needs, rights, and welfare of the public. To
the extent that the public has limited financial resources and information or
bears inequitable or involuntary risk impositions, it may need more risk pro-
tection than the proponents of a particular null hypothesis regarding risk (15).
For example, because more than 80% of Nevadans say they would vote against
the Yucca Mountain repository proposed for their state (16), they may need
greater risk protection. Future generations, in particular, may have special needs
regarding Yucca Mountain both because they cannot exercise their consent and
because current regulations require no monitoring beyond the first 50 years,
after which waste migration is more likely. Likewise, in cancer risk assessment,
potential victims of a false null hypothesis may need special protection because
many epidemiologic studies are too insensitive—owing to small samples and
their dealing with rare diseases—to detect positive effects. Also, field studies of
populations exposed to hazardous substances often involve more uncertainties
than those based on theoretical models (10).

Framing Uncertainties: Hypotheses Versus Decisions

Other disanalogies between theoretical science and science applied to risk
assessment also argue against using the two-value frame for evaluating societal
risk in a situation of uncertainty. Theoretical scientists usually evaluate the truth
or falsity of hypotheses (such as “convection currents have moved this geological
plate”). Risk assessors, however, also evaluate the acceptability of risk decisions
{such as “this site is suitable for permanent waste disposal”’). As the National
Academy of Sciences put it: ““risk assessment must always include policy as well
as science” (13, p. 76). Because the acceptability of risk decisions includes non-
epistemic factors—such as decision-theoretic, social, economic, and ethical con-
siderations—risk assessment may be more suited to a three-value frame that
explicitly takes account of uncertainty. For example, classical methods of
Bayesian decision making typically employ a three-value frame, in the sense of
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including a category for events that are “‘uncertain” or about which we have
inadequate information to make a decision (17). Decision theorists also recog-
nize that even a high probability that a site is suitable for some activity may not
be “high enough” if the activity could pose serious consequences for public
welfare.

Because of the disanalogies between theoretical science and science applied
to societal risk evaluation, assessors confronting framing uncertainties may need
to consider using three-value, rather than two-value, frames for scientific deci-
sions involving both significant uncertainty and potentially serious public con-
sequences. Regardless of the frames they choose, however, scientists and policy
makers may need to recognize that uncertainty gives framers significant power.
As happened with Newton, Aristotle, and risk assessors, whoever frames the
questions may control the answers (18).

Modeling Uncertainty, Verification, and Validation®

Another type of uncertainty that occurs frequently in science arises when mod-
elers assume that their constructs have been verified or validated because they
are consistent with other computer models. This second section of the chapter
argues that, in cases of modeling uncertainty created by incomplete data or
failure to employ the available data, scientists ought not claim that their models
have been verified or validated.

Modeling Uncertainty and Affirming the Consequent

Problems with verification and validation of models are part of a larger set of
difficulties associated with the inference known as “affirming the consequent.”
This inference occurs whenever one postulates that a hypothesis is true or accu-
rate merely because some test result, predicted to follow from the hypothesis,
actually occurs. In fact, however, failure of predictions can only falsify theories,
but success of predictions can only confirm (but not verify) theories. All that
can be validly inferred from a test is that the results are consistent with the
hypothesis or that the results have falsified the hypothesis. In other words, from
“h entails r’’ one can infer “/not r entails not A.” To assume that one can infer
“r entails A" from "k entails r*’ is to affirm the consequent. Of course, it is very
important to test one’s hypotheses in order to determine whether the data
falsify them or tend to confirm them. Moreover, the greater the number of
tests, and the more representative they are, the greater is the assurance that
the data are consistent with the hypotheses. Indeed, one of the repeatedly
acknowledged failures of the assessments of the proposed Yucca Mountain
nuclear waste repository is that the models often are not tested (19). It is impor-

*Much of the discussion of modeling uncertainty is based on Shrader-Frechette (15) and Ores-
kes, Shrader-Frechette, and Belitz (1994).
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tant to test the models, to atterpt to falsi‘y them and to determine the degree
to which they are consistent with the data. If the models turn out to be con-
sistent with the data, however, it is wrong to assume that they have been
absolutely “verified” or “validated”” because, short of affirming the consequent,
it is impossible to verify or validate any model. It is possible merely to know—
through testing—that the hypothesis or model has been confirmed to this or
that degree.

At the proposed Yucca Mountain repository, risk assessors have repeatedly
proposed to test some k, some hypothesis, such as that the number of calculated
groundwater travel times is less than 10,000 years. When the calculations, data,
and models are shown to be consistent with the hypothesis, then the assessors
have erroneously assumed, in the face of modeling uncertainties, that the
hypothesis has predictive power or has been “‘verified.” For example, one group
of assessors, studying groundwater travel time, concluded: ““this evidence indi-
cates that the Yucca Mountain repository site would be in compliance with
regulatory requirements’” (20). Many other risk assessors speak of “verifying”’
their models and ‘““validating” them. For instance, one group of assessors con-
cluded that the tools they used demonstrated “verification of engineering soft-
ware used to solve thermomechanical problems” (21, p. i) at Yucca Mountain
(22).

Admittedly, software and systems engineers speak of computer models
being “‘validated’”” and “verified.” Yet, such ‘‘validation” language obscures the
fact that the alleged validation really only guarantees that certain test results
are consistent with a model or hypothesis; it does not validate or verify the
model or hypothesis because affirming the consequent prevents legitimate val-
idation or verification. Hence, when computer scientists speak of “program ver-
ification’” (23-25), at best they are making a problematic inference by affirming
the consequent in the face of modeling uncertainty. At worst, they are trading
on an equivocation between ‘‘algorithms”” and ‘“‘programs.” As Petzer argues
(26, 27), algorithms, as logical structures, are appropriate subjects for deductive
verification. As such, algorithms occur in pure mathematics and pure logic. They
are subject to demonstration or verification because they characterize claims
that are always true as a function of the meanings assigned to the specific
symbols used to express them. Programs, however, as causal models of logical
structures, are not verifiable because the premises are not true merely as a
function of their meaning. As Einstein put it, insofar as the laws of mathematics
refer to reality, they are not certain; insofar as they are certain, they do not
refer to reality.

Modeling Uncertainties and Misleading Language

In using “verification’” and “‘validation” language, both official U.S. Department
of Energy (DOE) documents and individual risk assessments for repositories like
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Yucca Mountain are systematicilly misleading both about the modeling uncer-
tainties and about whether the studies are reliable. Por example, explicitly
affirming the consequent, the DOE affirmed (28, p. 3-11)

validation . . . is a demonstration that a model as embodied in a com-
puter code is an adequate representation of the process or system for
which it is intended. The most common method of validation involves
a comparison of the measured response from in-situ testing, lab testing,
or natural analogs with the results of computational models that
embody the model assumptions that are being tested.

Authors of the same official DOE document, used to provide standards for Yucca
Mountain risk assessments, also talk about the need to verify computational
models of the waste site. They say (28, p. 3-7)

Verification, according to the guidelines in NUREG-0856 . . . is the pro-
vision of assurance that a code correctly performs the operations it
specifies. A common method of verification is the comparison of a
code’s results with solutions obtained analytically. . . . Benchmarking is
a useful method that consists of using two or more codes to solve
related problems and then comparing the results.

Although the term ‘““verification,” as used by DOE assessors, suggests that the
computer models or codes accuiately represent the phenomena they seek to
predict, it is merely a misleading euphemism for “‘benchmarking,” comparing
the results of two different codes (computer models) for simulating an identical
problem. Uu this scheme, one “‘verifies” a model of Yucca Mountain against
another model. What is required in the real world, however, is validating a
model against reality. This validation or confirmation can be accomplished only
by repeated testing of the code or model against the real world, against field
conditions.

Even with repeated field testing, however, modeling uncertainties remain.
Compliance can never be confirmed, short of full testing of all cases throughout
all time periods. Classic studies of the problem of induction show that complete
testing is impossible. Therefore, the shorter the time of testing and the fewer
the cases considered, the less reliable and the less confirmed are allegedly ““val-
idated” computer models or codes. The tests can only falsify or confirm a
hypothesis, not validate it. To assume otherwise is to affirm the consequent.
Hence, every conclusion of compliance with government regulations, or every
conclusion of repository safety, s the basis of ““verified”” or ““validated” test or
simulation results, is an examy:: of affirming the consequent. Program verifi-
cation, in other words, “is not 1 =n a theoretical possibility”’ (29). One cannot
prove safety. One can only demonstrate that one has attempted to falsify one’s
results and either has failed to do so or has done so.
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Responses to Modeling Uncertainties

Because of the problems associated with modeling uncertainties, scientists need
to be wary of claiming that they have verified or validated a model on the basis
of limited data. As both the DOE risk documents and the risk assessors at Yucca
Mountain illustrate, they are misleading in speaking of “‘validation’” and “‘ver-
ification”” of models used at Yucca Mountain. First, real validation and verifi-
cation are impossible because of the problems of induction and affirming the
consequent. Only falsification of a hypothesis, or determining that the data are
consistent with it, is possible. In the latter case, when one obtains repeated
results indicating that the data are consistent with the model or hypothesis, one
is able merely to increase the probability that the model or hypothesis has been
confirmed. Second, the DOE’s and assessors’ use of the terms “verification”” and
“validation”” misleads the public about the reliability of models allegedly guar-
anteeing repository safety. Third, use of the term “‘verification’” by DOE assessors
is, in particular, misleading because they typically only compare different com-
puter codes or models, with no reference to the real world, and because any
model can be tuned or calibrated to fit any pattern of data, even when the
model is not well confirmed. Fourth, it is arguable that most useful programs
are not merely unverifiable but incorrect, that even programs that function
correctly in isolation may not do so in combination, and that most of the impor-
tant requirements of real programs are not formalizable (30).

Given these four difficulties with ‘’verifying”” programs used in real-world
situations, such as repository modeling, there are both prudential and ethical
problems with risk assessors’ continuing to use the language of “‘program ver-
ification” in connection with modeling causal relationships in situations of
uncertainty. The prudential problem is that aiming at “’verification’”” does not tell
us what we most want to know—something about complex relationships in the
physical world. The more complex the system, the less likely it is to perform as
desired and the less reliable is inductive testing of it. Moreover, by emphasizing
verification, theorists have increased the expense of achieving “‘transparent soft-
ware upgrades,” and they have decreased software reliability because of their
emphasis on “misplaced advocacy of formal analysis” (31, p. 792). The ethical
problem is that, by encouraging confidence in the operational performance of
a complex causal system, claims of ““verification”” oversell the reliability of soft-
ware and undersell the importance of design failures in safety-critical applica-
tions like waste repositories. Such overselling and underselling not only expose
the safety of the public to the dangerous consequences of risk assessors’ “group-
think™ (32, p. 422), but also risk misunderstanding of software in cases where
the risks are greatest. To avoid affirming the consequent, invalid inferences such
as that repository safety models can be “‘verified,” scientists need to refrain from
the claim that their results “indicate” or “show’” or “prove” compliance with
government regulations or with some standard of safety. Scientists also would
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do well, when they face modeling uncertainties and have not checked the mod-
els against field data, to avoid misleading claims that they have “verified” or
“ryalidated”” mathematical models at Yucca Mountain or anywhere else (33).
Such terms suggest a level of reliability and predictive power which, in the face
of many cases of modeling uncertainty, is impossible in practice. Instead, asses-
sors might do better to speak in terms of probabilities that a given model or
hypothesis has been confirmed and to avoid misleading claims about verification.

Statistical Uncertainty, False Positives, and False Negatives®

Yet another class of uncertainties scientists face is statistical. In the face of such
uncertainties, they often must decide whether to limit false positives or false
negatives, because they cannot do both. For example, such decisions arise
because scientists performing environmental risk assessments typically face
uncertainties of six orders of magnitude (34, 35). These uncertainties mean that
typically we do not know, for example, whether an Indian’s chance of dying in
a Bhopal accident is 1 in 1 million per year or 1 in 1 per year. Our ignorance
of such events is astounding and potentially catastrophic.

How ought scientists make environment-related dedisions when they are
ignorant of basic data and probabilities? How should they behave in a situation
of statistical uncertainty? Should they assume that a particular environmental
condition is safe or acceptable until it is proved unsafe or unacceptable? Or
should they assume that it is unsafe or unacceptable until it is proved safe or
acceptable? Where ought they to place the burden of proof? Do they place the
burden of proof on polluters or on potential victims of polluters? Do they place
the burden of proof on developers of the rain forest or on environmentalists
who protest such development? Where they decide to place the burden of proof
will determine who bears enormous risks and who receives great benefits. What
is fair, equitable, and ethical in a situation of statistical uncertainty?

In this section we argue that the typical scientific norm dictating behavior
under uncertainty is wrong. It is wrong to be reluctant to posit effects such as
serious environmental consequences in a situation of uncertainty. Therefore, it
is wrong, in a situation of uncertainty in which we cannot adequately assess
effects, to place the burden of proof on possible victims of pollution or devel-
opment. Instead we argue that, in situations of statistical uncertainty affecting
human and environmental well-being, we should be reluctant not to posit
effects such as serious harm. Therefore, in a situation of statistical uncertainty
in which we cannot adequately assess effects, we should place the burden of
proof on the persons who create these potentially adverse effects—that is, on
polluters and developers.

‘This discussion of statistical uncertainty is based on Shrader-Frechette (35, 15, 18) and
Shrader-Frechette and McCoy (1992).
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Statistical Uncertainty and the Burden of Proof

In a situation of uncertainty, errors of type I occur when one posits some pos-
sible effect and thereby rejects a null hypothesis that is true; errors of type II
occur when one decides not to posit some possible effect and thereby fails to
reject a null hypothesis that is false. (One null hypothesis might be, for example,
“the pesticide benzene hexachloride will cause no deaths among pesticide appli-
cators during 5 years of using 100,000 pounds per year of the chemical, pro-
vided that the applicators follow the manufacturer’s instructions.”) Given a
situation of uncertainty about the pesticide, which is the more serious error,
type I or type II? An analogous issue arises in law. Is the more serious error to
acquit a guilty person or to convict an innocent person? In a situation of uncer-
tainty, ought one to run the risk of rejecting a true null hypothesis, of not using
the benzene hexachloride technology that is really acceptable and safe? Or, in
a situation of uncertainty, ought one to run the risk of not rejecting a false null
hypothesis, of employing the benzene hexachloride pesticide technology that is
really unacceptable and unsafe? The basic problem is that to decrease type I
risk might hurt the public, especially workers in developing nations where
approximately 50,000 persons per year are killed by pesticides (36, 37). Yet, to
decrease type II risk might hurt those who are economically dependent on this
particular pesticide industry.

Pure Science, Applied Science, and Statistical Uncertainty

In the area of pure science and statistics, most persons believe that in a situation
of uncertainty one ought to minimize type-I risks so as to limit false positives,
assertions of effects where there are none. Pure scientists often attach a greater
loss to accepting a falsehood than to failing to acknowledge a truth (35, 38).
Societal decision making under uncertainty, as in cases involving sustainable
energy or agricultural technologies, however, is arguably not analogous to deci-
sion making in pure science. Societal decision making involves rights, duties,
and ethical consequences that affect the welfare of persons, whereas purely
scientific decision making involves largely epistemologic consequences. For this
reason, it is not clear that in societal cases under uncertainty, one ought to
minimize type I risks. Instead, there are a number of in-principle reasons for
minimizing type II errors. For one thing, it is arguably more important to protect
the public from harm (from dangerous pesticides, for example) than to provide,
in some positive sense, for welfare (creating jobs as pesticide applicators, for
example), because protecting from harm seems to be a necessary condition for
enjoying other freedoms (39, 40). Admittedly, it is difficult to draw the line
between providing benefits and protecting from harm, between positive and
negative laws or duties. Nevertheless, just as there is a basic distinction between
welfare rights and negative rights (41), so there is an analogous distinction

3
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between welfare policies (that provide some good) and protective policies (that
prohibit some infringement). Moral philosophers continue to honor related dis-
tinctions, such as that between letting a person die and killing someone. It
therefore seems more important to protect citizens from public hazards, like
those created by particular pesticides, than to attempt to enhance their welfare,
over the short term, by implementing a potentially dangerous technology such
as use of benzene hexachloride (35).

A second reason for minimizing type-II errors under uncertainty is that the
public typically needs more risk protection than do the industry or government
proponents of the risky technology, like particular pesticides. The public usually
has fewer financial resources and less information to deal with societal hazards
that affect it, and laypersons are often faced with bureaucratic denials of public
danger, as in the 1973 case of the Michigan PBB contamination of cattle feed,
or the 1976 dioxin poisoning at Seveso, Italy, or the 1953 Minimata poisoning
in Japan. As these and other cases illustrate, public needs for protection seem
larger than those of develor. rs or manufacturers, and the importance of min-
imizing type-II errors appean’é greater than that of minimizing type-I errors (35).

Third, it is more imporant to minimize type-1I error, especially in cases of
great uncertainty, because laypersons ought to be accorded legal rights to pro-
tection against technological decisions that could threaten their health and
physical security. These legal rights arise out of the considerations that everyone
has both due-process rights and rights to bodily security. In cases where those
responsible or liable cannot redress the harm done to others by their faulty
decisions—as they often cannot in the case of dangerous technologies—there
are strong arguments for minimizing the public risk. Industrial and technolog-
ical decision makers cannot adequately compensate their potential victims for
the bad consequences of many pesticides, for example, because the risks involve
death. Therefore, the risks are what Judith Jarvis Thomson calls “incompen-
sable”’ (42, p. 158). Surely incompensable risks ought to be minimized for those
who fail to give free, informed consent to them. Whenever risks are incom-
pensable (that is, imposing a significant probability of death on another), fail-
ure to minimize the risks is typically morally unjustifiable without the free,
informed consent of the victim (35). And, in cases of uncertainty, it is impossible
to obtain free, informed consent of potential victims because, by definition, the
risks are uncertain and we have inadequate information about them.

A final reason for minimizing type II error in cases of uncertainty is that
failure to do so would result in using some persons (such as pesticide applica-
tors) as means to the ends oi uther persons (such as pesticide manufacturers).
It would result in their bearing a significantly higher risk from toxic chemicals
than other persons, despite the fact that some of those other persons (the pes-
ticide manufacturers) have received most of the benefits associated with ben-
zene hexachloride, for example. Such discrimination (in this case, against
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pesticide applicators, particularly those in developing nations), as Frankena has
pointed out, is justified only if it would work to the advantage of everyone,
including those discriminated against. Any other attempt to justify discrimina-
tion fails because it would amount to sanctioning the use of some humans as
means to the ends of other humans (43). Hence, in situations of uncertainty,
the morally desirable position is to place the burden of proof on those who can
most bear it, developers and manufacturers, rather than on the persons who
are potential victims of either development or some technology.

Dealing with Statistical Uncertainty

If the arguments in this section are correct, then, in situations of statistical
uncertainty, one ought not assume that potential environmental hazards are
“innocent until proved guilty.” Although this is the typical position adopted by
most scientists and courts of law, it does not presuppose innocence. In matters
of potential global harm and human catastrophe, this position places the burden
of proof on those who are least able to bear it. To change this burden of proof,
in cases of statistical uncertainty, environmental effects should be assumed
“guilty until proved innocent.” The burden of proof ought not be on the most
vulnerable—potential victims of environmental hazards. Bven, and especially,
victims ought not bear the burden of proof.

Decision-Theoretic Uncertainty and the Maximin Rule?

In addition to statistical uncertainty, many scientists, especially those who work
in applied areas, face decision-theoretic uncertainty. One .of the crucial ques-
tions they must address is when to use a maximin decision rule in a situation
of probabilistic uncertainty and when to use an expected-utility rule. This sec-
tion argues that there are a number of criteria for using maximin, versus
expected utility, rules in situations of scientific and decision-theoretic uncer-
tainty. The criteria for using maximin focus on potentially catastrophic conse-
quences and probabilistic uncertainty.

What are the consequences of using different decision-theoretic rules in
situations of uncertainty? A recent U.S. government study pointed out that
estimates of saccharin-caused increase in bladder cancer differed by seven orders
of magnitude. Despite these uncertainties, U.S. officials have sanctioned use of
saccharin, justifying their decision on the basis of a liberal risk assessment. As
a result of a very conservative risk analysis, however, they banned cyclamates.
Were the two risk-assessment methodologies consistent, experts have argued
that cyclamates could easily have been shown to present a lower relative risk
than saccharin. In Canada, for example, cyclamates are permitted and saccharin

*The discussion of decision-theoretic unceriainty, in this section of the chapter, relies heavily
on Shrader-Frechertte (35).
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is banned, making Canadian regulations in this area exactly the reverse of those
in the United States (35, 44-46). As the saccharin-cyclamates controversy illus-
trates, scientific conclusions may be uncertain, not only because of the wide
range of predicted hazard values, but also because scientists use different deci-
sion-theoretic rules of evaluation. This section of the chapter will assess several
of the prominent decision-theoretic rules for evaluating situations of uncer-
tainty. To see how alternative rules can generate different conclusions consider
the following case.

For U.S. reactors, the core-melt probability is about one in four for their
lifetimes (47, 48). Risk assessments done by both the Ford Foundation-Mitre
Corporation and by the Union of Concerned Scientists (UCS) agree on the prob-
ability and consequence estimates associated with the risk from commercial
nudear fission, but disagree in their recommendations regarding the advisability
of using atomic energy to generate electricity. The UCS risk analysis decided
against use of the technology; the Ford-Mitre study advised in favor of it (49—
51). The two studies reached different conclusions because they used quite dif-
ferent decision-theoretic rules to evaluate the same data. The Ford-Mitre
research was based on the widely accepted Bayesian decision criterion that it
is rational to choose the action with the best expected value or utility, where
“expected value”” or “expected utility” is defined as the weighted sum of all
possible consequences of the action and where the weights are given by the
probability associated with each consequence. The UCS recommendation fol-
lowed the maximin decision rule that it is rational to choose the action that
avoids the worst possible consequence of all options (51). Ought we to be
technocratic liberals and choose a Bayesian rule? Or ought we to be cautious
conservatives and follow a maximin strategy (52)? The “‘prevailing opinion”
among scholars, according to John Harsanyij, is to use the Bayesian rule (53,
54) even in conditions of uncertainty (55-57). This last section argues that
scientists have compelling reasons for rejecting the Bayesian or utilitarian
strategy when they face a situation of decision-theoretic uncertainty having
potentially catastrophic consequences, and that it is often more rational to
prefer the maximin strategy.

Utilitarians Versus Egalitarians
Perhaps the most famous contemporary debate over which decision rules ought
to be followed in situations of risk and uncertainty is that between Harvard
philosopher Rawls and Berkeley economist Harsanyi {53, 56, 57). Harsanyi
believes that under conditions of uncertainty, we should maximize expected
utility, where the expected utility of an act for a two-state problem is

up + uy(l — p)
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where 4, and u, are outcome utilities, p is the probability of §,, 1 — p is the
probability of S,, and p represents the decision maker’s own subjective proba-
bility estimate (54, 56, 58). More generally, members of the dominant Bayesian
school claim that expected-utility maximization is the appropriate decision rule
under uncertainty (53, 59-64). They claim that we should value outcomes, or
societies, in terms of the average amounts of utility (subjective determinations
of welfare) realized in them (52, 54, 56, 66-67).

Proponents of using the maximin rule (like Rawls) maintain that one ought
to maximize the minimum—that is, avoid the policy having the worst possible
consequences (17, 53, 54), which harms the worst-off persons (68). The obvious
problem is that often the maximin and the Bayesian/utilitarian principles
recommend different responses to uncertainty. To illustrate these different
responses, consider an easy case involving two societies. The first consists of
1000 people, with 100 being workers (workers who are exposed to numerous
occupational risks) and the rest being free to do whatever they wish. We can
assume that, because of technology, the workers are easily able to provide for
the needs of the rest of society. Also assume that the workers are miserable and
unhappy, in part because of the work and in part because of the great risks that
they face. Likewise, assume that the rest of society is quite happy, in part
because they are free not to work, because they face none of the great occu-
pational risks imposed on the 100 workers and because the nonworkers’ hap-
piness is not disturbed by any feeling of responsibility for the workers. With all
these (perhaps implausible) assumptions in mind, let us suppose that, using a
utility scale of 1 to 100, the workers each receive 1 unit of utility, whereas the
others in society each receive 90 units each. Thus the average utility in this first
society is 81.1. Now consider a second society, similar to the first, but in which,
under some reasonable rotation scheme, everyone takes a turn at being a
worker. In this society everyone has a utility of 35 units. Bayesian utilitarians
would count the first society as more just and rational, whereas proponents of
maximin and the difference principle would count the second society as more
just and rational (17, 54).

Although this simplistic example is meant merely to illustrate how pro-
ponents of Bayesian utilitarianism and maximin would sanction different
responses to decision-theoretic uncertainty, its specific assumptions make max-
imin (in this case) appear the more reasonable position. Often, however, the
reverse is true. In this section we attempt to determine the better decision rule
for cases of scientific decision making involving both uncertainty and great
consequences to welfare (69). A reasonable way to determine whether the
Bayesian/utilitarian or maximin position is superior in such cases of decision-
theoretic uncertainty is to examine carefully the best contemporary defenses,
respectively, of these rules. The best defenses are probably provided by Harsanyi,
a utilitarian, and Rawls, an egalitarian.
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Utilitarian Arguments

Harsanyi’s main arguments in favor of the utilitarian, and against the maximin,
strategy under decision-theoretic uncertainty are as follows: (1) Those who
do not follow the utilitarian strategy are irrational and ignore probabilities.
(2) They cause unacceptable ethical consequences. (3) Using the utilitarian
rule, with the equiprobability assumption, promotes equal treatment,

Do Nonutilitarians Ignore Probabilities?

Choosing the maximin strategy, claims Harsanyi, is wrong because “it is
extremely irrational to make your behavior wholly dependent on some highly
unlikely unfavorable contingencies, regardless of how little probability you are
willing to assign to them” (45, 53, p. 595). To substantiate his argument, Har-
sanyi gives an example of maximin decision making and alleges that it leads to
paradoxes. The example is this. Suppose you live in New York City and are
offered two jobs, in different cities, at the same time. The New York City job is
tedious and badly paid, but the Chicago job is interesting and well paid. How-
ever, to take the Chicago job, which begins immediately, you have to take a
plane, and the plane travel has a small, positive, associated probability of fatality.
This means, says Harsanyi, that following the maximin principle would cause
you to accept the New York job. In this example, Harsanyi assumes that your
chances of dying in the near future from reasons other than a plane crash are
zero. Hence, he concludes that maximin, because it directs choosing so as to
avoid the worst possibility, forces one to ignore both the low probability of the
plane crash and the desirability of the Chicago job and to choose the New York
job. However, Harsanyi claims that a rational person, using the expected-utility
criterion, would choose the Chicago job for those very reasons—its desirability
and the low probability of a plane crash on the way to Chicago.

How successful is Harsanyi’s first argument in employing the counterex-
ample of the New York and Chicago jobs? For one thing, the example is highly
counterintuitive; even if the example were plausible, it would prove nothing
about the undesirability of using maximin in situations of societal risk under
uncertainty, such as deciding "~hether to open a liquefied natural gas facility.
Harsanyi makes the questiona:e assumption in this example that the situation
of uncertainty regarding one ‘nilividual’s death, caused by the same person’s
decision to fly to Chicago, is no different than a situation of uncertainty regard-
ing many individuals’ deaths, caused by a societal decision to employ a hazard-
ous technology.

Objecting to Harsanyi's example, John Rawls claimed that the example
failed because it was of a small-scale, rather than a large-scale, situation (46,
70). My claim is similar, but more specific: situations of individual risk caused
by scientific or technological decisions are voluntarily chosen, whereas situations
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of societal risk are typically involuntarily imposed; hence they are not analogous.
This means that, to convince us that societal decisions in situations of uncer-
tainty are best made by following a utilitarian rule, Harsanyi cannot merely
provide an example of an individual decision. In the individual case, one has
the right to use expected utility so as to make efficient, economic decisions
regarding oneself. In the societal case, scientists and policy makers do not always
have the right to use expected utility so as to make efficient, economic decisions
regarding others in society, since maximizing utility or even average utility
might violate rights or duties. On the individual level, scientists’ rules under
uncertainty must be theoretically justifiable. On the societal level, because the
rules have consequences for welfare, they must be democratically justifiable in
terms of ethical procedure. Decision-theoretic rules under uncertainty require
scientists to take account of the fairness of the allocational process, not merely
the outcomes (71). Democratic process is probably more important in cases where
probabilities are unknown than in cases of scientific uncertainty where they
are certain, since it would be more difficult to ensure informed consent in the
former cases. This, in turn, suggests that the individual case of decision making
under uncertainty, involving pure science, requires merely a substantive concept
of rationality. However, the societal case of decision making under uncertainty,
involving applied science, requires a procedural or ““process” concept of ratio-
nality (72, 73), because it must take account of conflicting points of view, pos-
sible consequences to welfare, as well as various ethical and legal obligations,
such as those involving free, informed consent and due process. For example,
if T use a decision-theoretic rule affecting my own risk, I can ask “how safe is
rational enough?” and I can be termed “irrational” if I have a fear of flying.
But if I use a decision-theoretic rule affecting risks to others in society, I do not
have the right to ask, where their interests are concerned, ““how safe is rational
enough?” In the societal case, I must ask, because I am bound by moral obli-
gation to others, “how safe is free enough?”’ or “how sale is fair enough?”’ or
“how safe is voluntary enough?” (53, 55, 65, 66, 74).

When they discuss decision-theoretic uncertainty, many risk assessors, like
Bruce Ames, assume that risk aversion ought to be a linear function of proba-
bility, and they criticize laypersons for being more averse to industrial chemicals
than to natural toxins (like the mold in foods) that have a higher probability
of causing injury or death, Invoking the concept of “relative risk,” they fault
laypersons for their ‘“chemophobia,” for greater aversion 1o lower-probability
risks than to higher ones (76, 77). Probability, however, is neither the only, nor
the most important, factor determining risk aversion. Risks that threaten con-
sent, equity, or other values might also cause extreme aversion. Moreover, if
subjective probabilities are frequently prone to error (78-81), then, contrary to
Harsanyi’s first argument, rational people might well avoid them in deciding
how to handle uncertainty.




DPOCGOOOC0CO0000000000000000OOCGOOIOGIOIONQNNGOTS

28 Scientific Uncertainty and Environmental Problem Solving

Harsanyi’s first argument is also problematic because he assumes that it is
irrational to base decisions on consequences and to ignore either a small or uncer-
tain probability associated with them (45, 53). However, it is not irrational to
avoid a possibly catastrophic risk (e.g., nuclear winter) even if it is small.

Does Maximin Lead to Unethical Consequences?

Harsanyi next claims that following maximin rules in situations of decision-
theoretic uncertainty would lead to unacceptable moral consequences: benefit-
ing the least-well-off individuals, even when they do not deserve it and even
when doing so will not help society. To establish this point, Harsanyi gives two
examples (53). In the first example, there are two patients, critically ill with
pneumonia, but there is only enough antibiotic to treat one of them, one of
whom has terminal cancer. Harsanyi says that Bayesians or utilitarians would
give the antibiotic to the victim who did not have cancer, whereas maximin
strategists would give it to the cancer victim, since he is the worse off. In the
second example, there are only two citizens, one severely retarded and the
other with superior mathematical ability. The problem is whether to use soci-
ety’s surplus money to help educate the mathematician or provide remedial
training for the retarded person. The Bayesian utilitarian would spend the sur-
plus money on the mathematician, says Harsanyi, whereas the maximin strat-
egist would spend it on the retarded person, since he is the less well off.

The problem with Harsanyi’s examples is that they are not cases of societal
decision making under uncertainty. The risk is of fatality, in the pneumonia
example, but one knows, with certainty, that the cancer victim is soon to die,
since Harsanyi defines his state as “‘terminal.” Likewise, in the second case, the
risk is of improving the lot of two persons, one retarded and one gifted math-
ematically. Hence, one is not in a state of uncertainty about the probability of
success in spending the monies for education in the two cases. But if so, then
Harsanyi has not argued for using Bayesian/utilitarian rules under uncertainty.

A second difficulty with these examples is that Harsanyi defines the
retarded person as “less well off” and therefore deserving of funds for remedial
education under the maximin strategy. However, being “less well off” is not
merely a matter of intelligence. It is also a matter of financial well-being and
ol having equal political and social opportunities. If society has given equal
consideration to the needs and interests of both the mathematician and the
retarded person, if the retarded person is happy and incapable of being made
better off, regardless of what society spends on him, then it is not clear that he
is less well off than the mathematician. If the mathematician could be made
better off, with greater societal expenditures, then he may be less well off than
the retarded person who has reached his potential, who is as happy as he is
capable of being.
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Does Using Expected Utility Treat People Equally?

Having given general, utilitarian justiﬁcaﬁbns for his position, Harsanyi provides
a final argument for using expected-utility rules in situations of decision-
theoretic uncertainty. It focuses on what Harsanyi calls “the equiprobability
assumption” (53, p. 598). Decision makers ought to subscribe to this assumption
as part of the expected-utility rule, says Harsanyi, because doing so enables
them to treat all individuals’ a priori interests as equal (34, 53, 81) to give
everyone an equal chance of being better off or worse off. In a situation of
decision-theoretic uncertainty, Harsanyi claims that the rational person would
always make the decision that assumes everyone’s interests are equal and that
yields the highest ““average utility level” (52, 53, pp. 598, 67).

The most basic difficulty with the equiprobability assumption is that if there
is no justification for assigning a set of probabilities, because one is in a situation
of uncertainty, then there is no justification for assuming that the states are
equally probable (82-84). Other difficulties are that to assign the states equal
probabilities is to contradict the stipulation that the situation is one of uncer-
tainty (54), that it is often impossible to specify a list of possible states that are
mutually exclusive and exhaustive (17), and hence that different ways of defin-
ing states could conceivably result in different decision results, different
accounts of how best to maximize average utility (17). The equiprobability
assumption is also ethically questionable because using it does not assign equal
a priori weight to every individual’s interests, as Harsanyi claims. It merely
postulates that in a situation of uncertainty, in different social systems or states
of affairs, every individual has the same probability of being the best-off indi-
vidual, or the second-best-off, and so on. Reality, however, is quite different
from this postulate. Different states of affairs are rarely equally probable. To
assume that they are, when one is in a situation of uncertainty, is problematic
in part because equally probable states often affect different individuals’ inter-
ests unequally.

Using averages also affects individuals unequally. This is why, even if one
granted that it is rational to maximize expected utility in individual decisions,
it would not necessarily be rational to choose the average of the expected util-
ities of different persons. Such a procedure would not maximize my expected
utility, but only the average of the expected utilities of members of society (52,
67, 85). This means that the concepts of ‘“average utility’ and ““equiprobability”
could hide the very problems of discrimination and inequality that most need
addressing. Moreover, even though the equiprobability assumption assigns
every individual the same probability (in every state of affairs) of being the best
off, second best off, and so forth, this does not guarantee that every individual’s
interests receive equal weight. Because BaYesian utilitarianism focuses on aver-
age utility, it dictates that decisions be made on the basis of highest average
utility. This rule guarantees that the minority, with less-than-average utility,
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can receive a disproportionate risk burden. In such cases, one would not be
treating the interests of each person in the minority as equal to those of each
person in the majority. Thus, in at least one important sense, Harsanyi does not
treat people the same, as he claims to do through his equiprobability assumption
(53). Genuinely equal treatment requires that we treat people differently, so as
to take account of different degrees of merit, need, rights to compensation or
reparation, and so on. Treating people the same, in a situation in which existing
relationships of economic and political power are already established, merely
reinforces those relationships, apart from whether they are ethically defensible.
Treating people the same, as most persons wish to do in situations of uncer-
tainty, also ignores the fact that duties and obligations almost always require
that people’s interests not be tieated the same. For example, suppose that Mr.
X builds a pesticide manufacturing plant in Houston. Also suppose that Mr. Y,
who lives next door, has demonstrably damaging health effects from the emis-
sions of the pesticide facility. To say that Mr. X’s and Mr. Y's interests in stopping
the harmful emissions ought to be given the same weight is to skew the relevant
ethical obligations. It would give license to anyone wishing to put others at risk
for his own financial gain (67, 86, 87). Hence, there are rarely grounds for
treating persons’ interests the same, since they are almost always structured by
preexisting obligations that determine whose interests ought to have more
weight. This means that equity of treatment can only be achieved after ethical
analysis, not after an appeal to treating everyone the same, in the name of the
“equiprobability assumption.”

Egalitarian Arguments

Admittedly, discovering difficulties with Harsanyi’s arguments for Bayesian and
utilitarian rules is not a sufficient condition for rejecting them. We also need to
assess maximin, perhaps the best alternative rule for certain classes of cases
under uncertainty. To assess this option, we evaluate Rawls’ analysis. He has
two main arguments to support the maximin strategy in situations of uncer-
tainty: (1) It would lead to giving the interests of the least advantaged the
highest priority. (2) The maximiu strategy would avoid using a utility function,
designed for risk taking, in the area of morals, where it does not belong.

Giving Priority to the Least Advantaged

Consider the first argument in favor of using maximin rules in situations of
decision-theoretic uncertainty: it would lead to a concept of justice based on
“the difference principle,” which evaluates every possible societal or policy
arrangement in terms of the interests of the least-advantaged or worst-off per-
sons (52, 68). Rawls believes that this is an advantage of maximin, because he
argues that the “first virtue” of social institutions is justice or fairness. We could
arrive at just or fair social institutions, according to Rawls, if we were all rational
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individuals caring only about our own interests, and if we negotiated with each
other (about the nature of these institutions) behind the ““veil of ignorance”
{i.e., without anyone knowing her own social or economic positions, special
interests, talents, or abilities). Not knowing what our own situation would be,
Rawls claims that we would arrange society so that even the least-well-off per-
sons would not be seriously disadvantaged (68). This means choosing the risk
distribution where the least well off are least disadvantaged (85, 88, 89).

The main objection to this argument is that we ought not use maximin
because it might not increase the average utility of society, and average utility
is more important than helping a subset of persons. Therefore, goes the argu-
ment, in the situation of scientific or technological decision making under
uncertainty, one ought not try to protect those who are most at risk, since this

- would take away resources from society. Instead, one ought to use a Bayesian/

utilitarian strategy to employ expected utility so as to maximize the average
well-being of each member of the group (53, 90).

The main problem with this objection is that it could sanction using mem-
bers of a minority who are most at risk so as to benefit the majority, namely,
using some persons as means to the ends of other persons, something con-
demned by most moral philosophers. Presumably, however, every person ought
to be treated as an end in her own right, not merely as a way to satisfy the
desires of someone else, not merely as an object. Moreover, there are good
grounds for believing that everyone ought to receive equal ireatment, equal
consideration of interests: (1) The comparison class is all humans, and all
humans have the same capacity for a happy life (91). (2) Free, informed rational
people would likely agree to principles of equal rights or equal protection (92,
93). (3) These principles provide the basic justifications for other important
concepts of ethics and are presuppositions of all schemes involving consistency,
justice, fairness, rights, and autonomy (93-98). (4) Equality of rights is presup-
posed by the idea of law; “law itself embodies an ideal of equal treatment for
persons similarly situated” (99). If all members of society have an equal, prima
facie right to life, and therefore to bodily security, as the most basic of human
rights, then allowing one group of persons to be put at greater risk, without
compensation and for no good reason, amounts to violating their rights to life
and to bodily security. Indeed, if there were no obligation to equalize the burden
of technological risk imposed on one segment of the population for the benefit
of another segment, then there could be no authentic bodily security and no
legal rights at all. The majority could simply do whatever they wished to any
victimized minority. This is why John Rawls called his notion of justice “fair-
ness’”” and why he spoke about maximin under the rubric of fairness (68, 100).
Of course, sanctioning equal treatment, in the name of fairness, does not mean
guaranteeing the same treatment (101). Establishing the prima facie duty to treat
persons equally, so far as possible, does require that we use maximin in situa-
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tions of societal risk under uncertainty (68, 102) unless we have relevant moral
reasons for treating people differently (43, 103).

Efficiency, or increasing overall average utility, does not appear to provide
relevant moral grounds for discrimination, especially discrimination against the
least well off, for several reasons. First, discrimination against persons on
grounds of efficiency is something that would have to be justified for each
situation in which it occurs. The reason is that to argue (as we just have) that
a principle of equal rights and equal treatment under the law is desirable, but
that there may be morally relevant grounds for discrimination, is to argue for
a principle of prima facie political equality (101). On this view, sameness of
treatment of persons and communities needs no justification; it is presumed
defensible, whereas only unequal (different) treatment requires defense (34,
96, 101). This means that the burden of proof is on the person who wishes to
discriminate, who wishes not to give equal protection to some minority that is
exposed to societal risk. But if the burden of proof is on the discriminator and
if, by definition, we are dealing with a situation of decision making under
uncertainty, then it is difficult to believe that the discriminator (the person who
does not want to use maximin) could argue that efficiency provides morally
relevant grounds for discrimination {43, 103). The reason is that the potential
grounds justifying the discrimination (e.g., empirical factors about merit, com-
pensation, or efficiency) would be, by definition, unknown in a situation of
uncertainty.

Efficiency also does not appear to serve any higher interest (68, 104-108).
Admittedly many risk assessors and policy makers claim that efficiency (i.e.,
disregarding maximin) serves the interests of everyone; they say that “’the econ-
omy needs” particular hazardous technologies (75, 90, 109). They also claim
that certain scientific or technological decisions (made in situations of decision-
theoretic uncertainty) are not cost-effective and efficient and therefore bene-
ficial to our national well-being (34, 48, 90, 100, 111, 112). However, for
efficiency to serve the overall interest of everyone would mean that it was
“required for the promotion of equality in the long run”; any other interpre-
tation of “’serving the overall interest” would be open to the charge that it was
built upon using humans as means to the ends of other persons rather than
treating them as ends in themselves (43, p. 15). But does efficiency per se (e.g.,
avoiding pollution controls and therefore equal distribution of risk) lead to the
‘promotion of equality in the long run? The problem with answering this ques-
tion in the affirmative, as Harsanyi would do, is that such an answer would
contain a highly questionable factual assumption, that promoting technology,
without also seeking equal risk distribution, will lead to greater equality of treat-
ment in the long run. This is false. Historically, there is little basis for believing
that efficiency wilt help promote a more equitable distribution of wealth and,
therefore, more political equality (97, 107, 113, 114). In the United States, for
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example, in the past 35 years, although there has been an absolute increase in
the standard of living, the relative shares of U.S. wealth held by various groups
have not changed. The poorest 20% of persons still receive 5% of the wealth,
while the richest 20% still hold 41%; the share of the middle three quintiles
has remained just as constant (105, 107, 115, 116). These data suggest that
economic and technological growth, coupled with efficiency in the form of ineq-
uity of risk abatement, have not promoted economic equality. Because of the
close relationship between wealth and the ability to use equal opportunities
(101, 105, 106, 117-119), it is unlikely that this efficiency and economic expan-
sion has promoted equal political treatment (48, 120, 121). If anything, it has
probably made inequities even wider (107, 115, 117, 121).

Technological expansion (achieved through economic efficiency and
through failure to abate technological risks) also does not ordinarily help to
create a more egalitarian society because technology generally eliminates jobs;
it does not create them (122). But if so, then there are not necessarily grounds
for arguing that efficiency and Bayesian/utilitarian risk strategies help to equal-
ize opportunities (101, 120). If anything, the plight of the least advantaged,
whether the poor or those who bear a heavier burden of technological risk, is
exacerbated by technological progress because they must compete more fran-
tically for scarcer jobs. Moreover, because a larger portion of the indigent are
unemployable, progress makes little immediate impact on the problem of hard-
core poverty (121). Scientific and technological progress, without a commit-
ment to equal distribution of societal risks, typically fails to remove distributive
inequities because the poor usually bear the brunt of technological hazards.
Most environmental policies, including risk policies, ‘“distribute the costs of con-
trols in a regressive pattern while providing disproportionate benefits for the
educated and wealthy, who can better afford to indulge an acquired taste for
environmental quality [and risk mitigation]” (123, p. 274; 124, 125). This
means that, for the poor, whatever risk abatement and environmental quality
cannot be paid for cannot be had. For example, a number of studies have shown
that ““those square miles populated by nonwhites and by all low socioeconomic
groups were the areas of highest pollution levels” (126-132). In fact, various
adverse environmental impacts, like higher risk burdens, are visited dispropor-
tionately upon the poor, while the rich receive the bulk of the benefits (52,
120, 123, 133). This all suggests that Bayesian/utilitarian strategies, in allowing
the poor (persons who are least advantaged economically and therefore most
helpless politically) to be further burdened with disproportionate technological
risks, are especially questionable.

Do Egalitarians Avoid Utility Functions?
What about another argument of maximin proponents, that maximin would
avoid using a von Neumann-Morgenstern utility function, designed for risk




34  Scientific Uncertainty and Environmental Problem Solving

taking, in the area of morals, where it does not belong? This argument is that
utility functions express the subjective importance people do aftribute to their
needs and interests, not the importance that they ought to attribute. Harsanyi
wishes to make moral judgments on the basis of subjective utility functions
rather than on the basis of unchanging moral principles, such as ‘‘grant equal
justice to equal beings.” For him, weighting the subjective importance attached
to things is more important than guaranteeing adherence to moral principles,
because people’s preferences are different. But if people’s preferences are differ-
ent, then their utility functions may operate according to different psychological
laws. But this conclusion contradicts two of Harsanyi’s claims: (1) that “pref-
erences and utility functions of all human individuals are governed by the same
basic psychological laws’* (53, p. 602); (2) that interpersonal utility comparisons
are theoretically capable of being specified completely because they ““have a
completely specific theoretical meaning’’ (53, p. 602).

If the reasoning in the previous arguments is correct, then Harsanyi cannot
coherently claim both that (A) meferences are needed as measures of welfare,
because people’s preferences/u'ility functions are different, and that (B) inter-
personal comparisons of utility are possible because people’s utility functions
“‘are governed by the same basic psychological laws” (53, p. 602).

Conclusion

Because all four classes of uncertainty—framing uncertainty, modeling uncer-
tainty, statistical uncertainty, and decision-theoretic uncertainty—are common
to many environmental sciences, arriving at our four sets of rules for dealing
with these cases should be useful to a variety of scientists. (1) In cases of framing
uncertainty, scientists ought not make question-begging use of two-valued
frames for assessing hypothesis suitability in cases of radically incomplete data.
(2) In cases of modeling uncertainty, scientists ought not claim to have verified
or validated their results when they have merely determined their consistency
with computer models. (3) In cases of statistical uncertainty in which they are
forced to choose between maximizing false positives (type I errors) or false
negatives (type II errors), when scientists are faced with potentially catastrophic
consequences affecting welfare, they ought to maximize false positives. (4) In
cases of decision-theoretic uncertainty involving potentially catastrophic con-
sequences, scientists ought to use maximin rather than expected-utility rules.

This chapter has argued that many decisions in situations of scientific
uncertainty have been inappropriate in precisely the four ways just outlined.
They have overestimated the epistemologic errors likely to result in bad science
and underestimated the ethical errors likely to result in bad science policy.
Doing science well thus requires us to understand the environmental contexts
of its applications.
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