Root Strings

We have shown in theorem 2.5 that if & and § are non proportional roots then
a + [ is a root whenever .5 < 0, and a — (3 is a root whenever .3 > 0. We
can use this result further to see if & +mfp or @ — nf (for m,n integers) are
roots. In this way we can obtain a set of roots forming a string. We then come
to the concept of the a-root string through (5. Let p be the largest positive
integer for which 5+ pa is a root, and let ¢ be largest positive integer for which
8 — ga is a root. We will show that the set of vectors

B+pa; f+(p—Da; ..B8+a; B; B—a; ... 0—qo (2.181)

are all roots. They constitute the a-root string through f.

B — 3« B—-—2a f[—a« B 0+ « B+ 2«




B+ sa no roots B+(r+1)a...0+pa
\—/

Suppose that § + pa and 8 — gqa are roots and that the string is broken,
let us say, on the positive side. That is, there exist positive integers r and s
with p > r > s such that

1. B+ (r+ 1)« is a root but 5+ ra is not a root
2. B+ (s+ 1) is not a root but § + s« is a root
According to theorem 2.5, since 8 4 ra is not a root then we must have
a. (f+(r+1)a) <0 (2.182)

For the same reason, since § + (s + 1)« is not a root we have

a. (B+sa)>0 (2.183)
Therefore we get that
(r+1)—5)a*<0 (2.184)
and since o? > 0
s—r>1 (2.185)

But this is a contradiction with our assumption that » > s > 0. So this proves
that the string can not be broken on the positive side. The proof that the
string is not broken on the negative side is similar.



Notice that the action of the Weyl reflection o, on a given root is to add
or subtract a multiple of the root a. Since all roots of the form 5 + na are
contained in the a-root string through £, we conclude that this root string is
invariant under o,. In fact o, reverses the a-root string. Clearly the image

of § + pa under o, has to be 5 — ga, and vice versa, since they are the roots
that are most distant from the hyperplane perpendicular to a. We then have

rulf—a0) = —go— e (2186)

and since the only possible values of Q;J‘f are 0, £1, +2 and +3 we get that
_ 2a.p

a2

q—7p =0, £1, +£2, £3 (2.187)
Denoting 5 — ga by v we see that for the a-root string through v we have
g = 0 and therefore the possible values of p are 0, 1, 2 and 3. Consequently
the number of roots in any string can not exceed 4.

For a simply laced Lie algebra the only possible values of Qg'f are 0 and
+1. Therefore the root strings, in this case, can have at most two roots.




Notice that if o and 8 are distinct simple roots, we necessarily have ¢ = 0,
since 8 — « is never a root in this case. So

(B, By) = [Eay B-5] = 0 (2.188)

If, in addition, a.f = 0 we get from (2.187) that p = 0 and consequently a+ /3
is not a root either. For a semisimple Lie algebra, since if « is a root then —«
is also a root, it follows that

[Baw Bs] = [E_a, B_5] = 0 (2.189)

for o and S simple roots and .5 = 0. We can read this result from the Dynkin
diagram since, if two points are not linked then the corresponding simple roots
are orthogonal.



Example 2.17 For the algebra of SU(3) we see from the diagram shown in
figure 2.6 that the aq-root string through oy contains only two roots namely 2
and 3= 2+1.
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Example 2.18 From the root diagram shown in figure 2.7 we see that, for
the algebra of SO(5), the ay-root string through co contains thre roots as,
a3 = a1 + a9, and oy = g + 201.




Example 2.19 The algebra G is the only simple Lie algebra which can have
root strings with four roots. From the diagram shown in figure 2.8 we see that

the ai-root string through oo contains the roots as, as = as+aq , as = ag+2a,
and g = 2009 + 30v1.




Height of a root

@:Z”a% h(a)=Zna
a=1

Highest root ¢

Y= Z Ma Ca h(v) is maximum
a=1
Coxeter Number coxeter = h(y) + 1

Curiosity dim G = (coxeter + 1)rank G



Cartan Matrix from Dynkin Diagram

OO0

1 2 3

We see that the simple root 3 (according to the rules of section 2.11 ) has a
length smaller than that of the other two. So we have Koz = —2 and K3 = —1.
Since the roots 1 and 2 have the same length we have K5 = K91 = —1. K3
and K31 are zero because there are no links between the roots 1 and 3. Therefore

2 -1 0
K=| -1 2 =2 (2.191)
0 —1 2

.

SO(7)



Roots from Cartan Matrix

1. The roots of height 1 are just the simple roots.

2. We have seen in (2.189) that if two simple roots are orthogonal then
their sum is not a root. On the other hand if they are not orthogonal
then their sum is necessarily a root. From theorem 2.6 one has o.f <0
for a and g simple, and therefore from theorem 2.5 one gets their sum
is a root (if they are not orthogonal). Consequently to obtain the roots
of height 2 one just look at the Dynkin diagram. The sum of pairs of
simple roots which corresponding points are linked, by one or more lines,
are roots. These are the only roots of height 2.

3. The procedure to obtain the roots of height 3 or greater is the following:
suppose al) = ZZ”:'"]"“Q N, is a root o height [, i.e. ZZ":'"l'kg n, = 1. Using
the Cartan matrix one evaluates

200 0, _ riko
"= Y nKa (2.192)

a=1

2
@y
where «y is a simple root. If this quantity is negative one gets from

theorem 2.5 that o) + ay, is a root of height [+ 1. If it is zero or positive
on uses (2.187) to write

rankG
P=aq— Y naKau (2.193)
a=1
where p and ¢ are the highest positive integers such that a® + pay, and
a® — qay, are roots. The integer ¢ can be determined by looking at the set
of roots of height smaller than [ (which have already been determined)
and checking what is the root of smallest height of the form o) — may,.
One then finds p from (2.193). If p does not vanish, a® + qy is a root.
Notice that if p > 2 one also determines roots of height greater than
I + 1. By applying this procedure using all simple roots and all roots of
height [ one determines all roots of height [ + 1.

4. The process finishes when no roots of a given height [ 41 is found. That
is because there can not exists roots of height [ + 2 if there are no roots
of height [ + 1.



2 3

Example 2.21 In example 2.20 we have determined the Cartan matriz of
SO(7) from its Dynkin diagram. We now determine its root system following
the procedure described above. The dimension of SO(7) is 21 and its rank is 3.
So, the number of positive roots is 9. The first three are the simple roots ay
ag and as . Looking at the Dynkin diagram in figure 2.10 we see that o + an
and as + a3 are the only roots of height 2, since oy and as are orthogonal. We
have 2(”12# = K4+ Ky, which, from (2.191), is equal to 1 for a = 1,2 and
-2 fora ~3. Therefore, from (2.193), we get that 20 + a9 and oy + 20 are
not roots but oy + g + ag and oy + as + 2a3 are roots. Analogously we have
Q(MJ;# = Ky, + K3, which is equal to —1 fora =1, 1 fora =2 and O for
a=3. Therefore the only new root we obtain is ag + 2ai3. This exhausts the
roots of height 3. One can check that the only root of height 4 is a + s + 2ai3
which we have obtained before. Now Ww = Ky + Kog + 2K, which
is equal to 1, —1 and 2 for a = 1,2,3 respectively. Since it is negative for
a = 2 we get that oy + 2as + 2a3 is a root. This is the only root of height 5,
and it is in fact the highest root of SO(7). So the Cozeter number of SO(7) is
6. Summarizing we have that the positive roots of SO(7) are

roots of height 1 «ay; as; a3

roots of height 2 (aq + ag); (e + as)

roots of height 3 (o + s + a3); (a2 + 2a3)

roots of height 4 (a1 + ag + 2a3)

roots of height 5 (a1 + 2as + 2a3)

These could also be determined starting from the simple roots and using Weyl
reflections.



Chevalley Basis

200, H
H, = 5

a

- (2.194)

where o, (a = 1,2, ... tank G) are the simple roots and «,.H = o’ H' | where
H; are the Cartan subalgebra generators in the Cartan-Weyl basis and of are
the components of the simple root «, in that basis, i.e. [H;, E,,] = ol E,, .

The generators H, are not orthonormal like the H; . From (2.134) and (2.170)

we have that 4 5
Tr(H,Hy) = =% — g (2.195)

2.2 "2
a2o; a2

The generators H, obviously commute among themselves
[Ha, Hy] = 0 (2.196)

The commutation relations between H, and step operators are given by (see

(2.124))

200,
[Ha,a Ea} = Q—?Ea = K{mEa (2197)
o

a

where we have defined K,, = 2‘;3“. Since a can be written as in (2.167) we

see that K,, is a linear combinatlon with integer coefficients, all of the same
sign, of the a-columm of the Cartan matrix

20.a rankG
Kaa = B} ¢ = Z anba (2198)
{ya b=1
where o = 3“9 nyay. Notice that the factor multiplying E, on the r.h.s

of (2.197) is an integer. In fact this is a property of the Chevalley basis. All
the structure constants of the algebra in this basis are integer numbers. The
commutation relations (2.197) are determined once one knows the root system
of the algebra.



We now consider the commutation relations between step operators. From
(2.125)

NaosFEots if a4+ 3 is a root

[Eo, Es] = H,=m,H, ifa+p=0 (2.199)
0 otherwise
where m, are integers in the expansion 25 = ZZ‘;"{“Q mySs. The structure

constants N,g, in the Chevalley basis, are integers and can be determined

from the root system of the algebra and also from the Jacobi identity . Let us
explain now how to do that.
Notice that from the antisymmetry of the Lie bracket

Nus = —Ngq (2.200)

for any pair of roots o and 3. The structure constants N,z are defined up to
rescaling of the step operators. If we make the transformation

Eo = paFa (2.201)

keeping the Cartan subalgebra generators unchanged, then from (2.199) the
structure constants N(w must transform as

Nag — L2P2 N (2.202)
Pa+p

and
Pap—a =1 (2.203)



As we have said in section 2.9, any symmetry of the root diagram can be ele-
vated to an automorphism of the corresponding Lie algebra. In any semisimple
Lie algebra the transformation @ — —a is a symmetry of the root diagram
since if « is a root so is —a. We then define the transformation ¢ : G — G as

o(Hy,) = —H,; o0(F,) =n.F 4 (2.204)

and o2 = 1. From the commutation relations (2.196), (2.197) and (2.199) one
sees that such transformation is an automorphism if

Nall-a = 1
Nog = 2LN_, (2.205)
No+p

Using the freedom to rescale the step operators as in (2.202) one sees that it is
possible to satisfy (2.205) and make (2.204) an automorphism. In particular
it is possible to choose all n, equals to —1 and therefore

Nog = —N_a_5 (2.206)



B+pa; B+p—1Na; ...B+a; f; B—a; .. [0—qo

HEB-I-noc ) E—a] ) Ea] - [[EB-HLOH Ea] ) E—a] — HEa, E—a] y Eﬁ+na]

(P +
N/B—i-pa,%—(pl)a,a :2& (ﬂaz p)

: -1
N5+(p1)a/4N5+(p2) a,a N5+(p1%7\75+pa e +O(§ o)
NB+(p—2) Q/ﬁvﬂﬂp—:%) a, o —NB+(p—2) O‘%N{BHPU @, e = 2a 8 +O(§ —2a)

Ngta,—a N3, a NBM%@HQ,Q ﬂw
(87
2.3
Nsta,—aNsa pH2(p+(p—1)+(p—2)+ .. +1)

OZQ
= plg+1)



From the fact that the Killing form is invariant under the adjoint represen-
tation (see (2.48) it follows that it is invariant under inner automorphisms, i.e.
Tr(o(T)o(T") = Tr(TT'") with o(T) = gTg'. However one can show that
the Killing form is invariant any automorphism (inner or outer). Using this
fact for the automorphism (2.204) (with 7, = —1), the invariance property
(2.46) and the normalization (2.134) one gets

2
N B
= —Tr([E o, FE 3|FEays)
= —Tr([Eats. E_o]E_p)

Tr(|Ea, B5)E—a p) =

2
R - (2.209)
B
Consequently
62
Nosp -a=———=N, 2.210
+8, (Oé + 6)2 B ( )
Substituting this into (2.208) we get
a+ [)?
NZg = ﬂp(q +1) (2.211)

Therefore, up to a sign, the structure constants N,g defined in (2.199) can be
determined from the root system of the algebra.

Using the Jacobi identity for the step operators F,, E, and Eg_,,, with n
varying from 1 to ¢ where ¢ is the highest integer such that § — qa is a root,
and doing similar calculations we obtain that

N2 .= (b);igayq(p +1) (2.212)

N,B—I—a,—aNﬂa

2003

P2+ (p—1)+(
plg+1)



The relation (2.211) can be put in a simpler form. From (2.187) we have
that (see section 25.1 of [HUM 72])

+8)? 20.3 +8)?
(q+]),p(a‘T) - 4 32 +],p%
2a.83 a? 203

= e TP

_ (f‘f ¥ 1) (1 p;i) (2.213)

We want to show the r.h.s of this relation is zero. We distinguish two cases:

1. In the case where a® > 2 we have | 222 |<| 2;—2*6 |. From table 2.2 we

«
see that the possible values of sz are —1, 0 or 1. In the first case we

get that the first factor on the r.h.s of (2.213) vanishes. On the other
two cases we have that .3 > 0 and then (a + 3)? is strictly larger than
both, a? and $2 . Since we are assuming o + 3 is a root and since, as
we have said at the end of section 2.8, there can be no more than two
different root lengths in each component of a root system, we conclude
that a®> = %2 . For the same reason 8 + 2a can not be a root since
(B + 2a)? > (B + @)? and therefore p = 1. But this implies that the
second factor on the r.h.s of (2.213) vanishes.

2. For the case of a? < 8% we have that (a+ 3)% = o? or 32, since otherwise
we would have three different root lengths. This forces .3 to be strictly
negative. Therefore we have (3—a)? > 32 > a? and consequently 3—a is

not a root and so ¢ = 0. But | 2;—2!3 <] 222 | and therefore QZ‘f =-1,0
or 1. Since a.ff < 0 we have 2;3";[3 = —1. Then from (2.187) we have

2 - 6 62 62 p= 722‘5/3 Qﬁ; = f—j Therefore the second factor on the r.h.s of (2.213)
p=— F _ K —" anishes.

ﬁZ o2 o2

Then, we have shown that

(a+p)°
and from (2.211)
N2y =(q+1) (2.215)



[H,,H] = 0 (2.216)

20.ay,
[Haa Ea] == TEQ == KaaEa (2217)
(¢q+ e, B)Eayp  if a+ [ is a root
[Ea, B3] = Hy =2l =m,H, ifa+=0 (2.218)
0 otherwise

where we have denoted e(«, 3) the sign of the structure constant N,g, i.e.
Nas = (¢g+1)e(e, B). These signs, also called cocycles, are determined through
the Jacobi identity as explained in section 2.14. As we have said before ¢ is
the highest positive integer such that § — ga is a root. However when o + (8
is a root, which is the case we are interested in (2.218), it is true that ¢ is
also the highest positive integer such that a — ¢ is a root. The reason is the
following: in a semisimple Lie algebra the roots always appear in pairs (o and
—a). Therefore if § — a is a root so is a — . In addition we have seen in
section 2.12 that the root strings are unbroken and they can have at most four
roots. Therefore, since we are assuming that o + 5 is a root, the only possible
way of not satisfying what we said before is to have, let us say, the a-root
string through g as f — 2a, 8 — a, 8, f + «; and the S-root string through «
asa—f,a,a+ fora—p,a a+f, a+ 2. But from (2.187) we have

2003
2

=1 (2.219)

and
2a.

BZ

=0 or —1 (2.220)

which are clearly incompatible.

We have said in section 2.12 that for a simply laced Lie algebra there can
be at most two roots in a root string. Therefore if o+ 3 is a root o — 3 is not,
and therefore ¢ = 0. Consequently the structure constants N,g are always 1
for a simply laced algebra.



2.14 Finding the cocycles ¢(a, )

As we have seen the Dynkin diagram of an algebra contains all the necessary
information to construct the commutation relations (2.216)-( 2.218). However
that information is not enough to determine the cocycles e(«, 3) defined in
( 2.218). For that we need the Jacobi identity. We now explain how to use
such identities to determine the cocycles. We will show that the consistency
conditions imposed on the cocycles are such that they can be split into a
number of sets equal to the number of positive non simple roots. The sign of
a cocycle in a given set completly determines the signs of all other cocycles of
that set, but has no influence in the determination of the cocycles in the other
sets. Therefore the cocycles e(a, 8) are determined by the Jacobi identities up
to such “gauge freedom” in fixing independently the signs of the cocycles of
different sets.
From the antisymmetry of the Lie bracket the cocycles have to satisfy

(0, ) = —<(5, ) (2.221)
In addition, from the choice made in (2.206) one has
e(a, B) = —e(—a, =) (2.222)
— _Ha 3 O(Ea) — naE—a Naﬁ - Teclp N—a,—ﬁ Na,B — _N—a —B

Ta+-p



Consider three roots a, 8 and 7 such that their sum vanishes. The Jacobi
identity for their corresponding step operators yields, using (2.216) - (2.218)

0 = ([Ea Esl, B+ (B, Bul, Es] + [[Es, B, Ed]

= —((gap + De(a, B) 212]{ +(tha +1)e(7,0) 2%'51

+(qgy + 1)e(B,7) QZ'f) \ B
/«(% £ 1)e(8,) - j—jw £ 1)e(a, ) 20

a2
e e D) = Sl Ve ) ) (2220
Since the integers ¢'s are non negative we get

e(a, B) =e(B,7) = (v, ) (2.224)

and also

1 1 1
;(qaﬂ 1) = (g, +1) = @(qw +1) (2.225)



Further relations are found by considering Jacobi identities for three step op-
erators corresponding to roots adding up to a fourth root. Now such identities
yield relations involving products of two cocycles. However, in many situations
there are only two non vanishing terms in the Jacobi identity. Consider three
roots «, 8 and 7y such that o + 3, 8+ v and o + 8 + «y are roots but a + v
is not a root. Then the Jacobi identity for the corresponding step operators
yields

0 = [[Ea, Egl, B, + [[Ey, Eul, Egl + [|Es, B, ], Ed
(Gap + 1)(qaspry + De(a, B)e(a+ 8,7)
+(q8y + 1)(@p17.0 T 1)e(B,7)e(B + 7, @) (2.226)

Therefore one gets

e(a, Ble(a+ B,7) = e(B,7)e(a, B +7) (2.227)

and
(qas + 1)(Gassy + 1) = (g8y + 1)(@p14,a + 1) (2.228)



There remains to consider the cases where the three terms in the Jacobi identity
for three step operators do not vanish. Such thing happens when we have three
roots «, 3 and v such that o + 8,  + 7, 8+ v and o + 3 + v are roots as
well. We now classify all cases where that happens. We shall denote long roots
by w, v, p, ... and short roots by e, f, g, ... . From the properties of roots
discussed in section 2.8 one gets that 2;‘;’, 252'6, 2§f = 0, £1. Let us consider
the possible cases:

1. All three roots are long. If y + v is a root then (“:7;’)2 =2+ 25—2” Since

it + v can not be a longer than u one gets 25—2” =—1. Sopu+visalong
root and if ; + v 4 p is also a root one gets by the same argument that

W = —1. Therefore u+ p and v+ p can not be roots simultaneously

since that would imply, by the same arguments, % = 2:—;’ = —1 which
is a contradiction with the result above.

2. Two roots are long and one short. If pu + e is a root then (“:726)2 =

l—i—sz—i— 25 €. Since p+e can not be longer than p it follows that 252'6 = —1.

Therefore p + e is a short root since (u + €)? = €% So, if u+ e+ v is
a root then (“’Li%)z =1+ (“ZQE)Q + 2(“:;26)'” and therefore 2(“:# = —1.
Consequently p+ v and v+ e can not be roots simultaneously since that

would imply, by the same arguments, 252"’ =2 = 1.

3. Two roots are short and one long. Analogously if e+ f and y+ e+ f are
roots one gets 2(82# = —1 independently of e 4+ f being shost or long.

So, it is impossible for u+ e and p + f to be both roots since one would

get%zz’;—éf:—l.

4. All three roots are short. 1f e + f is a root then ﬁ—g”)g =2+ ZETf and

there exists three possibilities:

(a) 25 = —1 and e + f is a short root.
(b) 2L =1 and (ct# = 3 (can only happen in G).

(¢) 2 =0 and (ctij)z = 2 (can only happen in B,, C,, and F}).

€



We then conclude that the only possibility for the ocurrence of three short
roots e, f and g such that the sum of any two of them and e+ f+ g are all roots
is that two of them are ortoghonal, let us say e.f = 0 and 242 = 259 — 1.

g
This can only happen in the algebras C), or F). Therefore none of the three

terms in the Jacobi identity for the corresponding step operators will vanish.
We have

([Ee, Ey], Eg| + [[Ey, Ecl, Ef] + [[Ef, Ey), Ee]
= (%f+')@wfg+1)( fele+f.9)
+(qge + 1)(dgte,r + 1)e(g,€)e(g + e, f)
+(arg + 1) (@prge + De(f, 9)e(f +g.€) (2.229)

According to the discussion in section 2.12 any root string in an algebra where
the ratio of the squared lengths of roots is 1 or 2 can have at most 3 roots.
From (2.187) we see that ¢.y = 1 and ¢ge = ¢rg = Qetf.g = Ggt+e.f = Qf+g.e = 0.
Therefore

ele, fle(e+ f,9) = (g, e)e(f,g +e) =e(f,g)ele, f+9) (2.230)



We can then determine the cocycles using the following algorithm:

1. The cocycles involving two negative roots, e(—a, —f) with o and 5 both
positive, is determined from those involving two positive roots through
the relation (2.222).

2. The cocycles involving one positive and one negative root, e(—a«, ) with
both a and 8 both positive, are also determined from those involving
two positive roots through the relations (2.224) and (2.222). Indeed, if
—a + (8 is a positive root we write —a + = v and if it is negative we
write —a+ 3 = —v with v positive in both cases. Therefore from (2.224)
and (2.222) it follows e(—a, §) = e(—7, —a) = —¢(7, ) in the first case,
and e(—a, ) = €(B,7) in the second case.

3. Let p be a positive non simple root which can be written as p = a+ 3 =
v+ 0 with a, 8, v and ¢ all positive roots. Then the cocycles («, )
and e(y,0) can be related to each other by using combinations of the
relations (2.227)

Using such algorithm one can then verify that there will be one cocycle to
be chosen freely, for each positive non-simple root of the algebra. Once those
cocycles are chosen, all the other are uniquely determined.



[Hl ? HQ] =0
Hy, E,,|]=2F,,
[Hlv EOé2] — _EQQ
[H]-? Eag] — EC\{g

Example SU (3)

2001 - Q9 2001 + Q9
2 — =1
o5 o
200 ra3 200 - (3 _
o2 a2
200, - Ol
[Haa Eozb] — OZC% Eab
[H27 Eal] — _Eal
:Hg, EOQ: =2 F,,
:H27 EOég: — EC\{g




h b :EOQ ) Ea2] — 5(17 2) EO&:S
\/ :EC’él ) E—Oés] — 8(17 _3) E—Oé2
A By Bag] =22, =3) B_a,

R 1 _9) — _ 9
e(a,b) =—e(—a, —b) - (=1, =2) e(1, 2)

e(—1,3)=—¢e(1, —3)
e(—2,3) =—¢(2, -3)

a1 + o + (—043) = (

e(1,2)=¢€(2, -3)=¢(-3,1)












