
FÓSFORO NO SOLO

Fonte: Roberto F. Novais

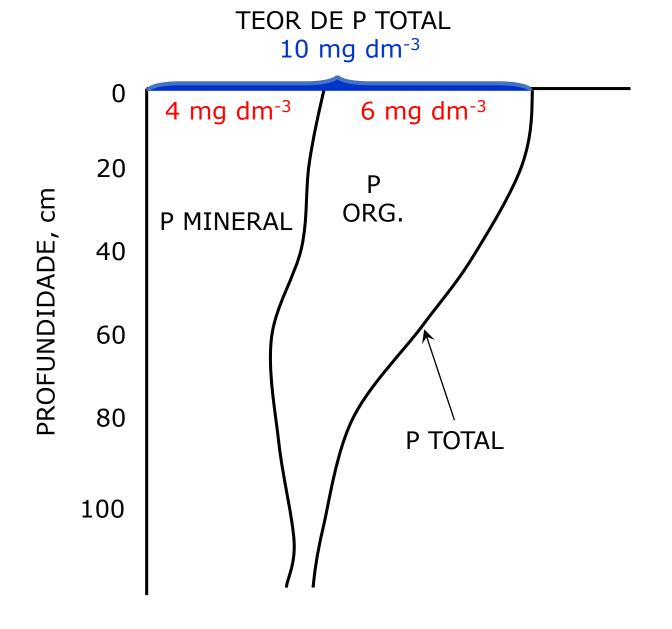
Fonte: Roberto F. Novais

Fonte: Roberto F. Novais

FÓSFORO NO SOLO

1. Características do P:

- Menos exigido pelas plantas que o N e o K
- Muito deficiente na maioria dos solos no Brasil
- Sofre forte interação com a fase sólida
- Baixa mobilidade no solo
- <u>Forma inúmeros compostos minerais</u>, principalmente com Fe, Al, Ca, Mg e K


COMPOSTOS FORMADOS PELA REAÇÃO DE FERTILIZANTES FOSFATADOS COM OS CONSTITUINTES DO SOLO (Tisdale e outros, 1985- "Soil Fertility and Fertilizers")

Compound	Mineral Name	Compound	Mineral Name	
$AIPO_4 \cdot 2H_2O$	Variscite	FePC₁·2H₂O	Metastrengite	
		$Fe_3(PO_4)_2 \cdot 8H_2O$	Vivianite	
JPO ∙2H₂O	Metavariscite	$FeNH_{1}(HPO_{4})_{2}$	-	
$d(NH_4)_2H(PO_4)_2 \cdot 4H_2O$		$Fe_3NH_4H_8(PO_4)_6\cdot 6H_2O$	_	
$I_2(\mathbf{N} \mathbf{I}_4)_2 \mathbf{H}_4(\mathbf{PO}_4)_4 \cdot \mathbf{H}_2 \mathbf{O}_4$	-	$\mathrm{Fe_3}\mathrm{K}/\mathrm{I_8(PO_4)_6}\cdot 6\mathrm{H_2O}$	17-70	
$d_5(NH_4)_3H_6(PO_4)_8 \cdot 18H_2O_4$	NH ₄ -taranakite	Fe_2 (PO ₄) ₂ OH·2H ₂ O	K-leucophosphi	
INH,PO₄OH·2H₂O		$MgHPO_4 \cdot 3H_2O$	Newberryite	
INH₄PO₄OH∙3H₂O	-	$Mg_3(HO_4)_2 \cdot 4H_2O$	-	
$J_2NH(PO_4)_2OH \cdot 2H_2O$		$Mg_3(PO_4)_2 \cdot 22H_2O$	_	
$d_2NH(PO_4)_2OH \cdot 8H_2O$		MgNH ₄ PO ₄ ·6H ₂ O	Struvite	
$JKH_{2}PO_{4})_{2}\cdot H_{2}O$		Mg(N H4)2(HPO4)2 · 4H2O	Schertelite	
$J_5K_3H_6(PO_4)_8 \cdot 18H_2O$	K-taranakite	$Mg_3(1/H_4)_2(HPO_4)_4 \cdot 8H_2O$	Hannayite	
$d_2K(PO_4)_2OH \cdot 2H_2O$	Leucophosphite	MgKPO ₄ ·6H ₂ O	-	
JKPO ₄ OH · 0.5H ₂ O		$Mg_{\bullet}KH(PO_4)_2 \cdot 15H_2O$	-	
JKI O ₄ OH·1.5H ₂ O		A (NH ₄) ₂ P ₂ O ₇ OH·2H ₂ O	F	
$\frac{1}{2}$ $(PO_4)_2(F,OH) \cdot 3H_2O$	Minyulite	$Ca_{2}P_{2}O_{7} \cdot 2H_{2}O$	_	
APO ₄	Monetite	$Ca_2O_2O_7 \cdot 4H_2O$	-	
aHPO ₄ ·2H ₂ O	Brushite	$Ca_{3}H_{2}(P_{2}O_{7})_{2}\cdot 4H_{2}O$	-	
$Ca_8H_2(PO_4)_6 \cdot 5H_2O$	Octocalcium phosphate	$e = Ca(NH_4)_2P_2O_7 \cdot H_2O$	=	
${ m Ca}_{10}({ m PO}_4)_6({ m OH})_2$	Hydroxyapatite	$Ca_3(NH_4)_2(P_2O_7)_2 \cdot 6H_2O$	-	
${ m Ca}_{10}({ m IO_4})_6{ m F}_2$	Fluorapatite	$Ca_{5}(NH_{4})_{2}(P_{2}O_{7})_{3}\cdot 6H_{2}O$	- 1	
aAll (PO ₄) ₂ ·6H ₂ O·		$CaNF_4HP_2O_7$	-	
$\text{CaAl}_{6}\text{I}_{4}(\text{PO}_{4})_{3} \cdot 20\text{H}_{2}\text{O}$	_	$Ca_2NII_4H_3(P_2O_7)_2 \cdot 3H_2O$	-	
aNH PO ₄ H ₂ O		$CaK_2\Gamma_2O_7$	_	
$a(NF_4)_2(HPO_4)_2 \cdot H_2O$		$\text{Ca}_3\text{K}_2 \text{ P}_2\text{O}_7)_2 \cdot 2\text{H}_2\text{O}$	10 -	
$a_2NH_4H_7(PO_4)_4 \cdot 2H_2O$	NH ₄ -Flatt's salt	$Ca_5K_2P_2O_7)_3 \cdot 6H_2O$		
$a_2(N_1 I_4)_2(HPO_4)_3 \cdot 2H_2O$		$\text{Ca}_2\text{KH}_3(\text{P}_2\text{O}_7)_2 \cdot 3\text{H}_2\text{O}$	-	
$aKPO_4 \cdot H_2O$	_	$CaNa_{2}P_{2}O_{7}\cdot 4H_{2}O$		
$CaK_3L(PO_4)_2$	_	$Fe(NH_4)_2P_2O_7 \cdot 2H_2O$	-	
$2a_2KH_7(PO_4)_4 \cdot 2H_2O$	K-Flatt's salt	$Mg(NH_4)_2P_2O_7 \cdot 4H_2O$		
$aFe_2H_4(PO_4)_4 \cdot 5H_2O$		$Mg(1/H_4)_6(P_2O_7)_2 \cdot 6H_2O$	1.18	
$aF_2H_4(PO_4)_4 \cdot 8H_2O$	_	$Mg(NH_4)_2H_4(P_2O_7)_2 \cdot 2H_2O$		
$\text{Ca}_{2}\text{Mg}_{3}(\text{PO}_{4})_{4}$		$Ca_{1}NH_{4})_{3}P_{3}O_{10}\cdot 2H_{2}O$		
ePO₄·2H₂O	Strengite			

Source: Sample et al., in F. E. Khasawneh et al., Eds., The Role of Phosphorus in Agricul ure, p. 284. Madison, Wis.: American Society of Agronomy, 1980.

2. Conteúdo no solo e distribuição no perfil

- Grande parte dos solos brasileiros são muito pobres em P
- No est. de SP: P-resina varia de 1 a 30 mg dm⁻³ de P, sendo mais comum entre 3 e 10 mg dm⁻³
- <u>Mais ricos em P</u>: derivados de rochas basalto e diabásio e pouco intemperizados;
- <u>Mais pobres em P</u>: excessivamente intemperizados ou derivados de arenitos e calcários

Distribuição típica do P no perfil do solo

3. Formas de ocorrência de P no solo

a) P nos minerais primários

Constituem a fonte original do P do solo

Mais importantes: apatitas:

Fluorapatita $CaF_2.Ca_3(PO_4)_2$

Hidroxiapatita $Ca(OH)_2.Ca_3(PO_4)_2$

Cloroapatita $CaCl_2.Ca_3(PO_4)_2$

Carbonatoapatita $CaCO_3$. $Ca_3(PO_4)_2$

b) P nos minerais secundários

Mais importantes:

Estrengita $Fe(OH)_2H_2PO_4$

Variscita $Al(OH)_2H_2PO_4$

Fosfato dicálcico CaHPO₄

Fosfato tricálcico Ca₃(PO₄)₂

Fosfato octocálcico Ca₈(H₂PO₄)₆.5H₂O

c) P orgânico

Representa de 25 a 75% do total de P do solo

Principais formas:

- Fosfatos de inositol ou fitinas (principais)

- Fosfolipídeos

- Açúcares fosforilados

- Ácidos nucléicos

- ânion fosfato H₂PO₄- ligado a radicais orgânicos da MOS

OH

2-O₃PO

d) P na solução do solo

Ocorre em concentrações muito baixas

Principais formas químicas:

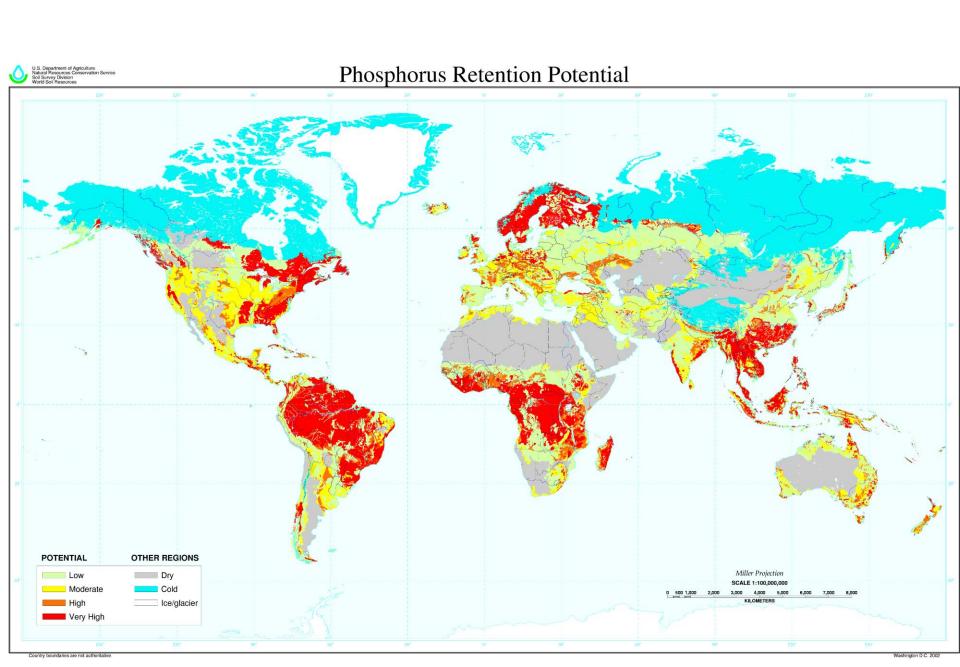
- Ortofosfato primário ($H_2PO_4^-$): predom. a pH < 7,2
- Ortofosfato secundário (HPO₄²⁻): predom. a pH > 7,2

e) P adsorvido

4. Adsorção de P

a) Definição de adsorção:

é o fenômeno pelo qual íons ou substâncias acumulam-se na superfície de outra substância ou partícula (colóide).


b) P adsorvido é representado pelas formas H₂PO₄- e HPO₄²- ligadas à superfície dos colóides

c) Maior parte → adsorção específica:

- Ligações são covalentes (fortes)
- Não depende de cargas elétricas no colóide
- O íon adsorvido não é trocável
- Principais colóides envolvidos: óxidos de Fe e de Al

Principal = Fosfato (H₂PO₄-)

ex.: P em óxido de Fe

d) Fatores que influem na adsorção do P

- Reação do solo (pH)
 A adsorção aumenta abaixo de pH 6,5 e acima de pH 7,5
- Concentração de P na solução
 A adsorção aumenta com a concentração de P na solução
- Teor e natureza da argila

Maior teor de argila → Maior adsorção

Óxidos de Fe e de Al > Minerais de argila

Matéria orgânica não adsorve P

Adsorção máxima de fósforo no solo- estudo com 44 amostras superficiais de solos sob cerrado (médias por textura e por cor) (Lopes, 1983- Solos sob "Cerrado"- Caracter., Propried. e Manejo)

Textura (% Argila)	Vermelha Amarela (10YR – 7,5YR)	Vermelha (5YR)	Vermelha Escura (2,5YR – 10R)	Médias por Textura 1/		
	mg P/g solo					
< 18	0,572	0,642	0,671	0,629a		
18 – 35	1,248	1,138	1,111	1,166 b		
35 - 60	1,712	1,696	1,848	1,752 c		
> 60	2.206	1.988	2.059	2.084 d		
Médias por cor 1/	1,435a	1,366a	1,422a			

^{1/} Médias seguidas da mesma letra não diferem estatisticamente ao nível de 1%.

5. Fixação de P

Fixação = perda de disponibilidade

Fixação = Precipitação + Adsorção

6. Fósforo "disponível"

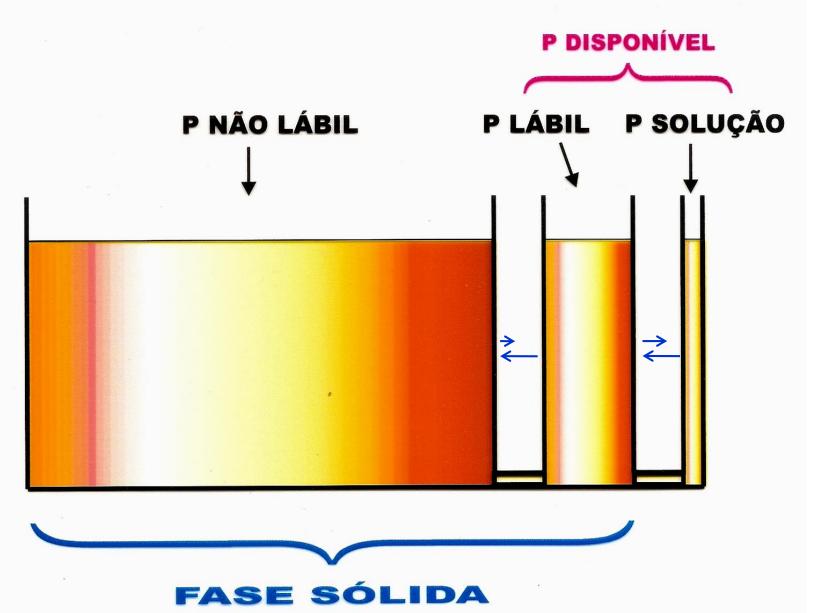
Dificuldade de se caracterizar o P disponível do solo

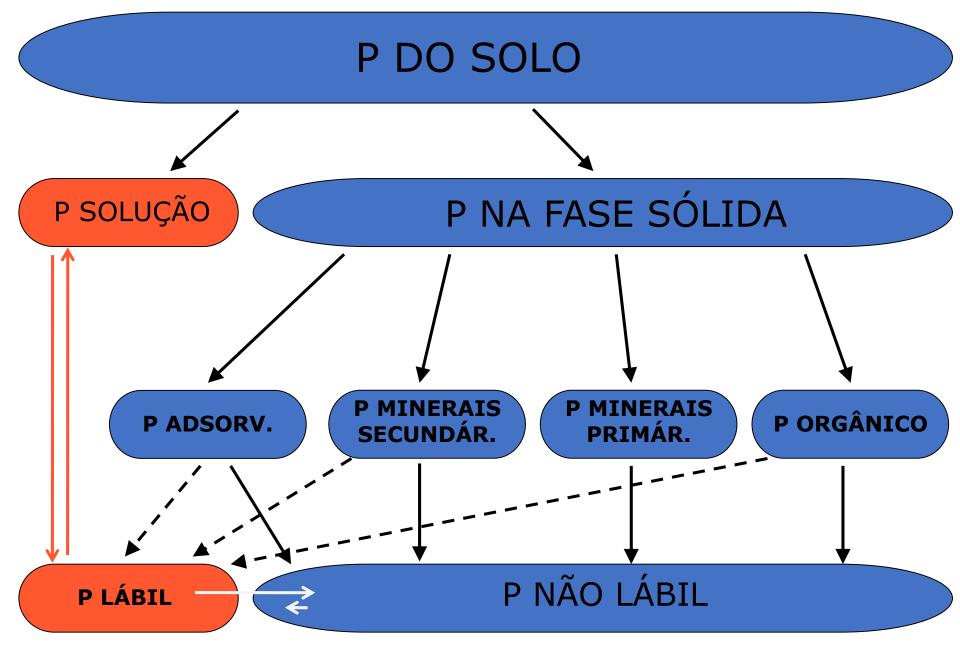
- -Extratores ácidos: H₂SO₄ diluído, mistura de H₂SO₄ e HCl diluídos (Mehlich), etc.
- -Resina de troca aniônica

7. Classificação das formas de P segundo a disponibilidade e equilíbrio entre as formas

a) P solução

- Íons H₂PO₄- e HPO₄²- que estão na solução do solo
 - **→** P prontamente disponível


b) P lábil


- Está na fase sólida mas pode passar para a solução em curto prazo → P disponível

c) P não lábil

- Está na fase sólida e pode passar para a solução a longo prazo → P não disponível

Equilíbrio entre as formas de P do solo

Relações entre as formas de P do solo

8. Perdas de P do solo

a) Produtos agrícolas

Perdas <u>são menores</u> do que as de <u>N e K</u> Em geral variam entre $\underline{5}$ e $\underline{20}$ kg $\underline{ha^{-1}}$ de $\underline{P_2O_5}$

b) Erosão

Perdas <u>podem superar</u> as das <u>colheitas</u> Em geral variam entre $\underline{0}$ e $\underline{30}$ kg ha⁻¹ de $\underline{P_2O_5}$

c) Lixiviação

Perdas desprezíveis em solos argilosos e muito pequenas em solos arenosos de clima úmido

9. Manejo do solo para manutenção do P

- a) Fazer calagem antes da adubação fosfatada
- b) Fazer <u>adubações fosfatadas</u> com <u>frequência</u>
- c) Aplicar fertilizantes orgânicos com frequência
- d) Fazer <u>rotação de culturas</u> com espécies com <u>alta</u> <u>capacidade de extração do P</u> (ex: trigo sarraceno)
- e) Adotar sistema de <u>plantio direto</u>
- f) Utilizar fungos micorrízicos quando possível
- g) Aplicar o fosfato solúvel de forma localizada.
- h) Aplicar dose correta (sem excessos)