Cognitive Systems

cognitio

R-R

2020 edition

TT

T8

Marcio Lobo Netto João E. Kogler Jr.

PSI 3560 – COGNITIVE SYSTEMS

class T8

Marcio Lobo Netto João Eduardo Kogler Junior

cognitio

Polytechnic School of the University of São Paulo Department of Electronic Systems Engineering © 2020 – University of São Paulo

MACHINE LEARNING AND THE CONNECTIONISM

Statistical learning, traditional neural network approach, deep learning, advanced networks

Session T8

Summary

- First Session (7:30 - 9:10)

- Deductive versus Inductive inference
- Neuronal Nets
 - Purposes
 - Topologies
 - Learning procedures
- Correlation in datasets
- Causality
- Applications

Section 1

Deductive versus Inductive

- The cognitive quest
 - Cognition \rightarrow Knowledge
 - Build it, use it...
 - Classical A.I. ("GOFAI")
 - Deductive inferences only
 - Knowledge is provided <u>to</u> the system
 - » No knowledge is actually produced by the system
 - » It is only transformed, reduced, summarized
 - Searches don't introduce new knowledge either
 - » The search space is specified, with all its contents
 - » The ontology of search space is known
 - All objects, all relationships...
 - Everything can be reduced to a symbol system
 - Inferences come from symbol manipulations

Deductive versus Inductive

- The cognitive quest
 - Cognition \rightarrow Knowledge
 - Build it, use it...
 - Change deductive inference to inductive inference
 - Probabilistic inference
 - Machine Learning
 - » Is here a hope for building knowledge?
 - » Knowledge can be learned from the data ...
 - » ... through an inductive process
 - The inductive process detects patterns in the data
 - These patterns bring the invariants
 - ... that make the knowledge...

Deductive versus Inductive

- The cognitive quest
 - Cognition \rightarrow Knowledge
 - Build it, use it...
 - Change deductive inference to inductive inference
 - Probabilistic inference
 - Machine Learning
 - » Is here a hope for building knowledge ? Not actually !
 - » Knowledge can be learned from the data ...
 - » ... through an inductive process
 - The inductive process detects patterns in the data

Not machine learning

machine learning is just a tool

These patterns can be used to build new rulesfor behavior control, making the system moreadaptiveKnowledge here comes actually via

training. For unsupervised learning, it is subsumed in the dynamics

- The network, after being presented to an extensive set of cases (images or generally datasets) and trained to classify them, keeps a signature of those datasets (what is common to all or most of them)
- And then can identify among new data, if (how) do they belong to groups with that characteristic

•	Purposes
---	----------

- Classification
- Comparison
- Topologies
 - Feedforward
 - multilayer perceptron (sequential connectivity)
 - Feedback
 - Hopfield (sequential connectivity)
 - Cooperative
 - Self Organized Maps (parallel connectivity)
- Learning Procedures or Training Strategies
 - Supervised Learning (guided by a professor)
 - Unsupervised Learning (reinforcement or self organized)

90 B
30 B
500 k with 60 k neurons each
300 M with 100 neurons each

• This is one of our cognitive abilities

Section 2

- Features map: multidimensional (here 2D)
 - Exploring / identifying coherence
 - Similarity among features

- Features map: multidimensional (here 2D)
 - Exploring / identifying coherence
 - Similarity among features

- Features map: multidimensional (here 2D)
 - Exploring / identifying coherence
 - Similarity among features

- Features map: multidimensional (here 2D)
 - Exploring / identifying coherence
 - Similarity among features

- Features map: multidimensional (here 2D)
 - Exploring / identifying coherence
 - Similarity among features

- Features map: multidimensional (here 2D)
 - Exploring / identifying coherence
 - Similarity among features

Section 3

Natural Neural Networks

- Plasticity & Topology in Natural Neuronal Nets
 - Hebbian
 synaptic reinforcement
 - Topological / Structural strengthening or creation of connections

Natural Neural Networks

- Plasticity & Topology in Natural Neuronal Nets
 - Synaptic weight adjustment
 - Topological / Structural adjustment
 - equilibrium
 - Homeostatic
 - Bio-chemical
 - Dynamic
 - Complex systems

Artificial Neuronal Nets

Neuron

cognitio

Artificial Neural Networks

• Feedback Nets

- Temporal memory (keeping facts - history)

• Associative Nets (SOM)

Convolutional Nets

Section 4

- Training Phase
 - Exposing the ANN to a large set of data
 - Conducting successive adjustments
 - Error backpropagation
- Test Phase
 - When the NN is tested on new samples
- Usage Phase
 - Recognition / Classification

- Supervised Training
 - Requires an expert to evaluate the results
 - After being trained the ANN matches that expertise
- Unsupervised Training
 - Self adaptive
 - exploiting similarities
 - reinforcement

• Learning / Adapting

- Function approximation

Causal Models & Events Correlation

32

Causal Models & Events Correlation

Causal Models & Events Correlation

- Artificial Neural Network
 - Recognizes correlations
 - But not necessarily causalities

- Applications
 - Extracting coherence patterns
 - Climate Rain Flooding Traffic Jams
 - First identify patterns on a vast set of different conditions
 - rain and flooding
 - flooding and traffic jams
 - Then based on current evidences (climate conditions) estimate the possibility impacts
 - Flooding
 - Traffic jams

Section 5

Smart Cities – Traffic

Smart Cities – Traffic

GENERAL MOBILITY ASSISTANCE TOOL

The data layer can be distributed between several databases as long as they are mapped.

Furthermore, it is a replicable model for other locations.

ANN SCENARIO – SÃO PAULO

São Paulo stats

Inhabitants Metropolitan region	22 million	UN/DESA - 2018
Inhabitants Municipality – map view	12 million	IBGE - 2018
Demographic density	7,400 inhabitants/ km ²	IBGE - 2018
Number of vehicles municipality	8.76 million	DETRAN – July/ 2018
Number of cars municipality	6.14 million	DETRAN – July/2018
Trips/ day individual and motorized Metropolitan region	13.59 million	Metrô SP - 2012

Google Maps 2018

🔜 chuva=nline

Chuva Online – Real-time rainfall data in São Paulo

CGE – Climate emergency management Data + Information > Decision making

CET- Road transport operation Strategies > Infrastructure optimization > Improved traffic flow

INTELLIGENCE – STATISTICAL LEARNING

This is all for today.

See you next week !

