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Summary
– First Session ( 7:30 – 9:10 )

• Deductive versus Inductive inference
• Neuronal Nets
– Purposes
– Topologies
– Learning procedures

• Correlation in datasets
• Causality
• Applications
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Section 1



Deductive versus Inductive
• The cognitive quest
– Cognition à Knowledge

• Build it, use it…
• Classical A.I. (“GOFAI”)

– Deductive inferences only
– Knowledge is provided to the system

» No knowledge is actually produced by the system
» It is only transformed, reduced, summarized

– Searches don’t introduce new knowledge either
» The search space is specified, with all its contents
» The ontology of search space is known

• All objects, all relationships…
• Everything can be reduced to a symbol system

• Inferences come from symbol manipulations
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Deductive versus Inductive

• The cognitive quest
– Cognition à Knowledge
• Build it, use it…
• Change deductive inference to inductive inference

– Probabilistic inference
– Machine Learning

» Is here a hope for building knowledge ?
» Knowledge can be learned from the data …
» … through an inductive process

• The inductive process detects patterns in the data
• These patterns bring the invariants

• … that make the knowledge… 
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Deductive versus Inductive
• The cognitive quest
– Cognition à Knowledge
• Build it, use it…
• Change deductive inference to inductive inference

– Probabilistic inference
– Machine Learning

» Is here a hope for building knowledge ?
» Knowledge can be learned from the data …
» … through an inductive process

• The inductive process detects patterns in the data
• These patterns can be used to build new rules 

for behavior control, making the system more 
adaptive
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Not machine learning

Not actually !

Knowledge here comes actually via 
training.  For unsupervised learning, 
it is subsumed in the dynamics

machine learning is just a tool



Artificial Neural Networks

• The network, after being presented to an 
extensive set of cases (images or generally 
datasets) and trained to classify them, keeps a 
signature of those datasets (what is common 
to all or most of them)

• And then can identify among new data, if 
(how) do they belong to groups with that 
characteristic
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Artificial Neural Networks
• Purposes

– Classification
– Comparison

• Topologies
– Feedforward 

• multilayer perceptron (sequential connectivity)
– Feedback

• Hopfield (sequential connectivity)
– Cooperative

• Self Organized Maps (parallel connectivity)

• Learning Procedures or Training Strategies
– Supervised Learning (guided by a professor)
– Unsupervised Learning (reinforcement or self organized) 
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Human brain
Neurons                            90 B

Human cortex
Neurons                            30 B
Columns                          500 k  with 60 k neurons each
Pattern Recognizers      300 M with 100 neurons each



How / Why do we cluster things

• This is one of our cognitive abilities
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Section 2



How / Why do we cluster things

• Features map: multidimensional (here 2D)
– Exploring / identifying coherence
– Similarity among features
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How / Why do we cluster things

• Features map: multidimensional (here 2D)
– Exploring / identifying coherence
– Similarity among features
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Section 3



Natural Neural Networks

• Plasticity & Topology 
in Natural Neuronal Nets
– Hebbian 

synaptic reinforcement
– Topological / Structural 

strengthening 
or creation of 
connections
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Natural Neural Networks

• Plasticity & Topology 
in Natural Neuronal Nets
– Synaptic weight adjustment
– Topological / Structural adjustment

– equilibrium
• Homeostatic
• Bio-chemical
• Dynamic
• Complex systems
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Artificial Neuronal Nets 
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Artificial Neural Networks
Neuron
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Artificial Neural Networks

• Feedforward Nets
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Artificial Neural Networks

• Feedback Nets
– Temporal memory (keeping facts - history)
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• Associative Nets (SOM)
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Artificial Neural Networks

• Convolutional Nets
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Section 4



• Training Phase
– Exposing the ANN to a large set of data
– Conducting successive adjustments
• Error backpropagation

• Test Phase
– When the NN is tested on new samples

• Usage Phase
– Recognition / Classification
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Artificial Neural Networks



• Supervised Training 
– Requires an expert to evaluate the results
– After being trained the ANN matches that 

expertise

• Unsupervised Training
– Self adaptive 
• exploiting similarities
• reinforcement
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Artificial Neural Networks



• Learning / Adapting 
– Function approximation
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Artificial Neural Networks
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• Artificial Neural Network
– Recognizes correlations
– But not necessarily causalities
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Causal Models & Events Correlation



• Applications
– Extracting coherence patterns
• Climate – Rain – Flooding – Traffic Jams
• First identify patterns on a vast set of different 

conditions 
– rain and flooding
– flooding and traffic jams

• Then based on current evidences (climate conditions) 
estimate the possibility impacts 
– Flooding
– Traffic jams
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Artificial Neural Networks



Section 5



Smart Cities – Traffic 
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Smart Cities – Traffic 

JK  2019 PSI 3560 38

Data can be harvested from different sources:

> it can be online sensors in several different networks,
> it can be in the form of manually input or historical data.

The data layer can be distributed between several databases as long as
they are mapped.

SENSOR LAYER DATA LAYER ONTOLOGY LAYER APPLICATION LAYER

A documented network of 
modular ontologies can enable 
the most intelligent 
applications.

Furthermore, it is a replicable 
model for other locations. 

GENERAL MOBILITY ASSISTANCE TOOL



ANN
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SCENARIO – SÃO PAULO

São Paulo stats
Inhabitants
Metropolitan region 22 million UN/DESA - 2018

Inhabitants
Municipality – map view 12 million IBGE - 2018

Demographic density 7,400 inhabitants/ km² IBGE - 2018

Number of vehicles
municipality 8.76 million DETRAN – July/ 2018

Number of cars
municipality 6.14 million DETRAN – July/2018

Trips/ day
individual and motorized
Metropolitan region

13.59 million Metrô SP - 2012

Google Maps 2018
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Chuva Online – Real-time rainfall data in São Paulo 

CGE – Climate emergency management
Data + Information > Decision making

CET– Road transport operation
Strategies > Infrastructure optimization > Improved traffic flow
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INTELLIGENCE – STATISTICAL LEARNING

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔

Duration / Intensity

𝐸𝑣𝑒𝑛𝑡

𝑁𝑜𝑛 𝐸𝑣𝑒𝑛𝑡

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔

Duration / Intensity



This is all for today.

See you next week !

JK  2019 PSI 3560 42


