
PQI – 3303 – Fenômenos de Transporte III – 2019 DEPARTAMENTO DE ENGENHARIA QUÍMICA DA EPUSP

Absorção Gasosa

Absorção gasosa é uma operação de separação que envolve a transferência de um ou mais componentes de uma fase gasosa para um solvente líquido. Exemplos clássicos são: absorção de cloro em água e absorção de amônia em água. O processo de transferência de massa no sentido inverso - da fase líquida para a gasosa - é denominado "stripping" ou "desorption" (desabsorção).

1. Balanço de Massa - Absorção monocomponente

O esquema da figura 1 é de uma coluna de absorção, recheada ou do tipo "spray", com as fases gasosa e líquido em escoamento contracorrente.

G - vazão molar do gás, kmol/s

L - vazão molar de líquido, kmol/s

 G_M - fluxo molar de gás, kmol/(m^2 s)

 L_M - fluxo molar de líquido, kmol/(m²s)

 $x_{\mathtt{A}}$ - fração molar do soluto A na fase líquida

 y_{A} - fração molar do soluto A na fase gasosa

h - altura da coluna

Figura 1 - Esquema da coluna de absorção - contracorrente.

As vazões de gás e líquido são usualmente expressas pelos respectivos fluxos G_M = G/A e L_M = L/A, sendo A a área da secção transversal da coluna.

O balanço de massa de A para o elemento de altura diferencial dh, envolvendo as duas fases, é expresso por:

$$d(G_{M}y_{A}) = d(L_{M}x_{A}) \tag{1}$$

O fluxos molares G_M e L_M podem ser expressos pelos respectivos fluxos molares de inertes $G_M{}'$ e $L_M{}'$, conforme as expressões:

$$G_{M} = \frac{G_{M}'}{1 - y_{A}}; \qquad L_{M} = \frac{L_{M}'}{1 - x_{A}}$$
 (2)

Substituindo-se (2) em (1), tem-se:

$$d\left(\frac{y_A G_M'}{1 - y_A}\right) = d\left(\frac{x_A L_M'}{1 - x_A}\right) \tag{3}$$

$$G_{M}' \frac{d y_{A}}{(1 - y_{A})^{2}} = L_{M}' \frac{d x_{A}}{(1 - x_{A})^{2}}$$
(4)

Integrando-se a equação (4) ao longo da coluna, do topo até uma altura genérica, resulta:

$$G_{M}' \left[\frac{y_{A}}{1 - y_{A}} - \frac{y_{A2}}{1 - y_{A2}} \right] = L_{M}' \left[\frac{x_{A}}{1 - x_{A}} - \frac{x_{A2}}{1 - x_{A2}} \right]$$
 (5)

A curva $y_A = f(x_A)$, expressa pela equação (5), é conhecida como a *linha de operação* da coluna. Relaciona a concentração de A no seio do gás, y_A , com a composição de A no seio do líquido, x_A , ao longo da altura da coluna.

Na figura 2 são apresentadas as curvas de operação e de equilíbrio para uma operação de absorção e uma operação de "stripping".

No caso de sistemas diluídos, tem-se : $G_M \cong G_M$, $L_M \cong L_M$, $1-y_A \cong 1$, $1-x_A \cong 1$ Simplificando-se (5), resulta a relação linear:

$$G_{M}(y_{A} - y_{A2}) = L_{M}(x_{A} - x_{A2})$$
 (6)

$$y_{A} = \frac{L_{M}}{G_{M}} (x_{A} - x_{A2}) + y_{A2}$$
 (7)

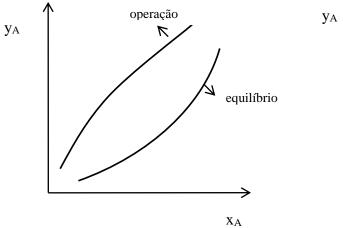
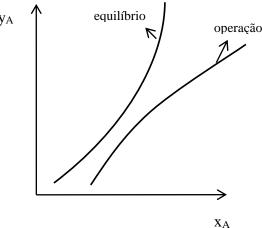



Figura 2 : a) Absorção

b) "Stripping"

No projeto de absorvedores, a vazão de gás G, as composições do gás y_{Al} y_{A2} e a composição do líquido alimentado x_{A2} são geralmente conhecidas. A especificação da vazão de líquido é uma parâmetro a ser definido no projeto, e o seu valor é limitado pela relação $(L/G)_{\text{min}}$, conforme ilustrado na figura 3 pela reta AD. No caso da operação de "stripping" a limitação é expressa por um valor de $(L/G)_{\text{max}}$, de forma análoga.

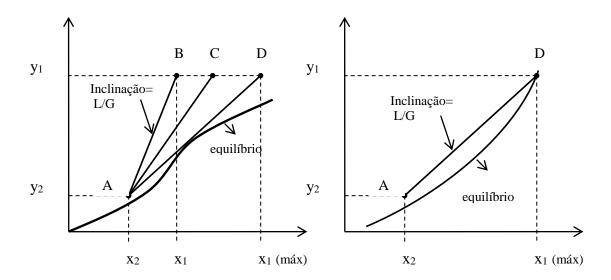


Figura 3 - Relação (L/G) para absorção.

2. Fluxo de Transporte de Massa - Absorção monocomponente

Retomando-se o balanço de massa A, no elemento dh, para a fase gasosa até a interface, tem-se:

$$-d(Gy_A) = N_A dA_i$$
 (8)

Onde N_A é o fluxo molar de A na interface gás-líquido e dA_i a área interfacial elementar, que pode ser expressa em função da área específica interfacial, a, do recheio por:

$$dA_{i} = adV = aAdh (9)$$

No caso da transferência exclusivamente do soluto A, da fase gasosa para a líquida, o balanço na fase gasosa é simplificado para:

$$d(G_{M}y_{A}) = G_{M}dy_{A} + y_{A}dG_{M} = dG_{M}$$

$$(10)$$

tem-se, portanto:

$$dG_{M} = G_{M} \frac{dy_{A}}{1 - y_{A}} \tag{11}$$

Substituindo-se (11), (9) e $G_M = G/A$ em (8), resulta:

$$dh = -\frac{G_{M}dy_{A}}{N_{A}a(1-y_{A})}$$
(12)

O fluxo molar interfacial, N_A , pode ser expresso em termos do coeficiente global K_y , referente à fase gasosa, e em termos dos coeficientes individuais k_y e k_x :

$$N_{A} = K_{y} \left(y_{A} - y_{A}^{*} \right) \tag{13}$$

$$N_A = k_y (y_A - y_{Ai}) = k_x (x_{Ai} - x_A)$$
 (14)

A figura 4 mostra a relação entre a curva de operação e a de equilíbrio. x e y são as concentrações nas fases gás líquido em uma dada altura da coluna; x_i e y_i são as composições interfaciais na mesma altura. A linha pontilhada é expressa pela equação abaixo:

$$-\frac{\mathbf{y} - \mathbf{y}_{i}}{\mathbf{x} - \mathbf{x}_{i}} = \frac{\mathbf{k}_{x}}{\mathbf{k}_{y}} \tag{15}$$

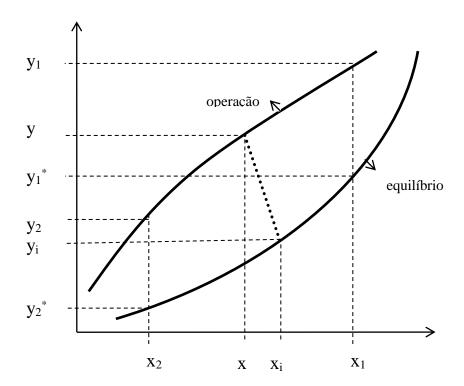


Figura 4 - Relação entre as curvas de operação e de equilíbrio e composições interfaciais.

Substituindo-se (13) em (12), resulta:

$$dh = -\frac{G_{M}dy_{A}}{K_{v}a(y_{A} - y_{A}^{*})(1 - y_{A})}$$
(16)

Multiplicando-se e dividindo-se por $y^*_{\text{B},\text{LN}}$, e integrando-se do fundo, y_1 , ao topo, y_2 , da coluna, tem-se:

$$\int_{0}^{h} dh = -\int_{y_{1}}^{y_{2}} \frac{G_{M} y_{B,LN}^{*} dy_{A}}{K_{y} a y_{B,LN}^{*} (y_{A} - y_{A}^{*}) (1 - y_{A})}$$
(17)

A concentração y_{A}^* é relacionada à concentração y_{A} pelo balanço de massa envolvendo as fases gás e líquida - linha de operação - e o equilíbrio na interface.

A equação (17) é usualmente expressa da seguinte forma:

$$h = N_{OG} H_{OG} \tag{18}$$

onde:
$$H_{OG} = \frac{G_M}{K_v a y_{B,LN}^*}$$
 (19)

é a altura de unidade de transferência (AUT) global média, cuja variação ao longo da coluna é pouco intensa,

e:
$$N_{OG} = \int_{y_2}^{y_1} \frac{y_{B,LN}^* dy_A}{(y_A - y_A^*)(1 - y_A)}$$
 (20)

2.1 Cálculo do Nog

Aproximando-se a média logarítmica $y_{B,LN}^*$ pela aritmética, tem-se:

$$y_{B,LN}^* = (1 - y_A)_{LN}^* \cong \frac{(1 - y_A) + (1 - y_A)^*}{2}$$
 (21)

Substituindo-se na expressão do N_{OG} , resulta uma equação de fácil integração:

$$N_{OG} = \int_{y_2}^{y_1} \frac{\left[(1 - y_A) + (1 - y_A)^* \right] dy_A}{2(y_A - y_A^*)(1 - y_A)}$$

$$N_{OG} = \int_{y_2}^{y_1} \frac{dy_A}{(y_A - y_A^*)} + \frac{1}{2} \ln \left(\frac{1 - y_2}{1 - y_1} \right)$$
 (22)

No caso de sistemas diluídos, simplificações adicionais podem ser feitas e a equação (22) reduz-se a:

$$N_{OG} = \int_{y_2}^{y_1} \frac{dy_A}{(y_A - y_A^*)}$$
 (23)

A relação de equilíbrio pode ser aproximada por uma expressão linear do tipo:

$$\mathbf{y}_{\mathbf{A}}^* = \mathbf{m}\mathbf{x}_{\mathbf{A}} + \mathbf{b} \tag{24}$$

E, finalmente, o balanço de massa de A - linha de operação - é expresso pela equação (7):

$$y_{A} = \frac{L_{M}}{G_{M}} (x_{A} - x_{A2}) + y_{A2}$$
 (7)

Substituindo-se as relações lineares (7) e (24) na equação (23), resulta a expressão:

$$N_{OG} = \frac{y_{A1} - y_{A2}}{(y_A - y_A^*)_1 - (y_A - y_A^*)_2} \frac{1}{\ln[(y_A - y_A^*)_1 / (y_A - y_A^*)_2]}$$

Muitas soluções diluídas seguem a lei de Henry, expressa por:

$$\mathbf{y}_{\mathbf{A}}^* = \mathbf{m}\mathbf{x}_{\mathbf{A}} \tag{26}$$

A partir da linha de operação (equação (7)) e de equilíbrio (equação (26)), tem-se para a expressão do N_{og} :

$$N_{OG} = \frac{\ln\left[\frac{y_{A1} - mx_{A2}}{y_{A2} - mx_{A2}}\left(1 - \frac{1}{\lambda}\right) + \frac{1}{\lambda}\right]}{1 - \frac{1}{\lambda}}$$
(27)

onde λ é o fator de absorção, definido por:

$$\lambda = \frac{L_{\rm M}}{mG_{\rm M}} \tag{28}$$

No caso da operação de "stripping", tem-se, analogamente:

$$N_{OL} = \frac{1}{1 - \lambda} \ln \left[\left(1 - \lambda \right) \left(\frac{x_{A2} - y_{A1}/m}{x_{A1} - y_{A1}/m} \right) + \lambda \right]$$
 (29)

As expressões para cálculo do N_{OG} e do N_{OL} , apresentadas neste item, referem-se a sistemas cujos efeitos térmicos são desprezíveis (sistemas isotérmicos).

2.2 Cálculo do Hog

Da definição do coeficiente global, K_y , a partir dos coeficientes convectivos individuais, para sistemas que satisfazem a lei de Henry, tem-se:

$$\frac{1}{K_{v}a} = \frac{1}{k_{v}a} + \frac{m}{k_{x}a} \tag{30}$$

Multiplicando-se a equação (30) por G_M e dividindo-se $y_{B,LN}^*$, resulta:

$$\frac{G_{M}}{K_{y}ay_{B,LN}^{*}} = \frac{G_{M}}{k_{y}ay_{B,LN}^{*}} \frac{y_{B,LN}}{y_{B,LN}} + \frac{G_{M}m}{k_{x}ay_{B,LN}^{*}} \frac{L_{M}}{L_{M}} \frac{x_{B,LN}}{x_{B,LN}}$$
(31)

A equação (31) passa a ser expressa em termos das alturas de unidades de transferência de massa - AUT:

$$H_{OG} = H_{G} \frac{y_{B,LN}}{y_{B,LN}^{*}} + \left(\frac{G_{M}m}{L_{M}}\right) H_{L} \frac{x_{B,LN}}{y_{B,LN}^{*}}$$
(32)

onde:
$$H_G = \frac{G_M}{k_y a} \frac{1}{y_{B,LN}}$$
 (33)

$$H_{L} = \frac{L_{M}}{k_{x}a} \frac{1}{x_{B,LN}} \tag{34}$$

No caso de sistemas diluídos as equações (32), (33) e (34) tomam a seguinte forma:

$$H_{OG} = H_G + \left(\frac{G_M m}{L_M}\right) H_L \tag{35}$$

onde:

$$H_{G} = \frac{G_{M}}{k_{v}a} \tag{36}$$

$$\mathbf{H}_{L} = \frac{\mathbf{L}_{M}}{\mathbf{k}_{x} \mathbf{a}} \tag{37}$$

Os dados de transferência de massa para colunas recheadas são freqüentemente apresentados na forma de correlações para as AUT's. Na literatura dispõe-se de várias correlações em função do tipo de recheio. Na tabela 5.24 do Perry (2007) são apresentadas algumas correlações clássicas para o cálculo das alturas de unidade de transferência da fase gás, $H_{\rm G}$, e da fase líquida, $H_{\rm L}$, para sistemas de absorção, "stripping" e destilação.

5-80 HEAT AND MASS TRANSFER

TABLE 5-24 Mass-Transfer Correlations for Packed Two-Phase Contactors—Absorption, Distillation, Cooling Towers, and Extractors (Packing Is Inert)

Situation	Correlations	E = Empirical, S = Semiempirical, T = Theoretical	References		
A. Absorption, counter-current, liquid-phase coefficient H_L , Sherwood and Holloway correlation for random packings	$\begin{aligned} H_L &= a_L \bigg(\frac{L}{\mu_L}\bigg)^n N_{8c,L}^{0.5}, L = \text{lb/hr ft}^2 \\ & \frac{\text{Ranges for 5-24-B } (G \text{ and } L)}{\text{Raschig rings}} \\ & \frac{a_G}{a_G} b c G L a_L n}{\text{Raschig rings}} \\ & \frac{3/8 \text{ inch}}{1} 2.32 0.45 0.47 200-500 500-1500 0.00182 0.46} \\ & 1 7.00 0.39 0.58 200-800 400-500 0.010 0.22} \\ & 1 6.41 0.32 0.51 200-600 500-4500 - - - \\ & 2 3.82 0.41 0.45 200-800 500-4500 0.0125 0.22} \\ & \frac{\text{Berl saddles}}{1} \\ & \frac{1}{2} \text{ inch } 32.4 0.30 0.74 200-700 500-1500 0.0067 0.28} \\ & \frac{1}{2} 0.811 0.30 0.24 200-800 400-4500 - - - 1 \\ & 1 1.97 0.36 0.40 200-800 400-4500 0.0059 0.28} \\ & 1.5 5.05 0.32 0.45 200-1000 400-4500 0.0062 0.28 \end{aligned}$	[E] From experiments on desorption of sparingly soluble gases from water. Graphs [Ref. 138], p. 606. Equation is dimensional. A typical value of n is 0.3 [Ref. 66] has constants in kg, m, and s units for use in 5-24-A and B with \hat{k}_C in kgmole/s m^2 and \hat{k}_L in kgmole/s m^2 (kgmol/ m^3). Constants for other packings are given by Refs. 104, p. 187 and 152, p. 239. $H_L = \frac{L_M}{\hat{k}_L a}$ $L_M = \text{lbmol/hr } \hat{t}^2, \hat{k}_L = \text{lbmol/hr } \hat{t}^2, a = \hat{t}^2/\hat{t}^3, \mu_L \text{ in } \text{lb/(hr } \hat{t}^2).$ Range for 5-24-A is $400 < L < 15,000 \text{ lb/hr } \hat{t}^2$	[104] p. 187 [105] [138] p. 606 [157] [156]		
B. Absorption counter-current, gas- phase coefficient H_G , for random packing	$H_G = \frac{G_M}{\hat{k}_G a} = \frac{a_G(G)^b N_{8c,e}^{0.5}}{(L)^c}$	[E] Based on ammonia-water-air data in Fellinger's 1941 MIT thesis. Curves: Refs. 104, p. 186 and 138, p. 607. Constants given in 5-24-A. The equation is dimensional. $G = \text{lb/hr ft}^2$, $G_M = \text{lbmol/hr ft}^2$, $k_G = \text{lbmol/hr ft}^2$.	[104] p. 189 [138] p. 607 [157]		
C. Absorption and and distillation, counter-current, gas and liquid individual coefficients and wetted surface area, Onda et al. correlation for random packings	$\begin{split} \frac{k_C'RT}{a_pD_G} &= A \bigg(\frac{G}{a_p\mu_G}\bigg)^{0.7} N_{8cG}^{1/3} (a_pd_p')^{-2.0} \\ k_L' \bigg(\frac{\rho_L}{\mu_L g}\bigg)^{1/3} &= 0.0051 \left(\frac{L}{a_w \mu_L}\right)^{2/3} N_{8cL}^{-1/2} (a_pd_p')^{0.4} \\ k_L' &= \text{lbmol/hr} \text{ ft}^2 \text{ (lbmol/ft}^3) \text{ [kgmol/s m}^2 \\ \text{(kgmol/m}^3) \end{bmatrix} \end{split}$ $\frac{a_w}{a_p} &= 1 - \exp \left\{ -1.45 \bigg(\frac{\sigma_c}{\sigma}\bigg)^{0.75} \bigg(\frac{L}{a_p\mu_L}\bigg)^{0.1} \\ \times \bigg(\frac{L^2 a_p}{\rho_L^2 g}\bigg)^{-0.05} \bigg(\frac{L}{\rho_L \sigma a_p}\bigg)^{0.2} \right\}$	[E] Gas absorption and desorption from water and organics plus vaporization of pure liquids for Raschig rings, saddles, spheres, and rods. $d_p' =$ nominal packing size, $a_p =$ dry packing surface area/volume, $a_w =$ wetted packing surface area/volume. Equations are dimensionally consistent, so any set of consistent units can be used. $\sigma =$ surface tension, dynes/cm. $A = 5.23$ for packing $\geq 1/2$ inch (0.012 m) $A = 2.0$ for packing $\leq 1/2$ inch (0.012 m) $k_G' =$ lbmol/hr ft² atm [kg mol/s m² (N/m²)] Critical surface tensions, $\sigma_C = 61$ (ceramic), 75 (steel), 33 (polyethylene), 40 (PVC), 56 (carbon) dynes/cm. $4 < \frac{L}{a_w \mu_L} < 400$ $5 < \frac{G}{a_p \mu_C} < 1000$ Most data $\pm 20\%$ of correlation, some $\pm 50\%$. Graphical comparison with data in Ref. 109.	[44] [90] p. 380 [109][149] p. 355 [156]		
D. Distillation and absorption, counter-current, random packings, modification of Onda correlation, Bravo and Fair correlation to determine interfacial area	Use Onda's correlations (5-24-C) for k'_G and k'_L . Calculate: $H_G = \frac{G}{k'_G a_e P M_G}, H_L = \frac{L}{k'_L a_e \rho_L}, H_{OG} = H_G + \lambda H_L$ $\lambda = \frac{m}{L_{M'} G_M}$ $a_e = 0.498 a_p \left(\frac{\sigma^{0.5}}{Z^{0.4}}\right) (N_{Ca,L} N_{Re,G})^{0.392}$ $N_{Re,G} = \frac{6G}{a_p \mu_G}, N_{Ca,L} = \frac{L \mu_L}{\rho_L \sigma g_c} \text{ (dimensionless)}$	[E] Use Bolles & Fair (Ref. 43) database to determine new effective area a_e to use with Onda et al. (Ref. 109) correlation. Same definitions as 5-24-C. P = total pressure, atm; M_G = gas, molecular weight; m = local slope of equilibrium curve; L_M/G_M = slope operating line; Z = height of packing in feet. Equation for a_e is dimensional. Fit to data for effective area quite good for distillation. Good for absorption at low values of $(N_{cal.} \times N_{Re.G})$, but correlation is too high at higher values of $(N_{Cal.} \times N_{Re.G})$.	[44]		

TABLE 5-24 Mass-Transfer Correlations for Packed Two-Phase Contactors—Absorption, Distillation, Cooling Towers, and Extractors (Packing Is Inert) (Continued)

Situation	Correlations	Comments $E = Empirical, S = Semiempirical, T = Theoretical$	References*
E. Absorption and distillation, countercurrent gas-liquid flow, random and structured packing. Determine H_L and H_G	$H_G = \left(\begin{array}{c} 0.226 \\ \hline f_p \end{array} \right) \left(\begin{array}{c} N_{sc} \\ 0.660 \end{array} \right)^b \left(\begin{array}{c} G_x \\ 6.782 \end{array} \right)^{-0.5} \left(\begin{array}{c} G_y \\ 0.678 \end{array} \right)^{0.35}$ $H_L = \left(\begin{array}{c} 0.357 \\ \hline f_p \end{array} \right) \left(\begin{array}{c} N_{sc} \\ 372 \end{array} \right)^{0.5} \left(\begin{array}{c} G_x/\mu \\ 6.782/0.0008937 \end{array} \right)^{0.3}$ Relative transfer coefficients [91], f_p values are in table: $\frac{Ceramic}{Size}, \begin{array}{c} Raschig \\ Raschig \\ Ring \end{array} \right) \begin{array}{c} Berl \\ Berl \\ Ring \end{array} = \begin{array}{c} Hotal \\ Pall \\ Ring \end{array} \begin{array}{c} Metal \\ Metal \\ Hypac \end{array}$ $\frac{Coefficients}{1.52} \begin{array}{c} 1.58 \\ 1.52 \\ 1.00 \\ 1.20 \\ 1.36 \\ 1.61 \\ 1.78 \\ 1.78 \\ 1.78 \\ 1.78 \\ 1.81 \\ $	[S] H_G based on NH ₃ absorption data (5–28B) for which $H_{G, \text{base}} = 0.226$ m with $N_{\text{Sc, base}} = 0.660$ at $G_{x, \text{base}} = 6.782$ kg/(sm²) and $G_{y, \text{base}} = 0.678$ kg/(sm²) with $1\frac{1}{2}$ in. ceramic Raschig rings. The exponent b on N_{Sc} is reported as either 0.5 or as $^2/_3$. $f_p = \frac{H_G \text{ for NH}_3 \text{ with } 1\frac{1}{2} \text{ Raschig rings}}{H_G \text{ for NH}_3 \text{ with desired packing}}$ H_L based on O ₂ desorption data (5-24-A). Base viscosity, $\mu_{\text{base}} = 0.0008937$ kg/(ms). $H_L \text{ in m. } G_y < 0.949$ kg/(sm²), $0.678 < G_x < 6.782$ kg/(sm²). Best use is for absorption and stripping. Limited use for organic distillation [156].	[66] p. 686, 659 [138] [156]
F. Absorption, cocurrent downward flow, random packings, Reiss correlation	Air-oxygen-water results correlated by $k'_L a = 0.12 E_L^{0.5}$. Extended to other systems. $k'_L a = 0.12 E_L^{0.5} \left(\frac{D_L}{2.4 \times 10^5} \right)^{0.5}$ $E_L = \left(\frac{\Delta p}{\Delta L} \right)_{2\text{-phise}} v_L$ $\frac{\Delta p}{\Delta L} = \text{pressure loss in two-phase flow} = \text{lbf/ft}^2 \text{ ft}$	[E] Based on oxygen transfer from water to air 77°F. Liquid film resistance controls. ($D_{\text{water}} @ 77^{\circ}\text{F} = 2.4 \times 10^{-5}$). Equation is dimensional. Data was for thin-walled polyethylene Raschig rings. Correlation also fit data for spheres. Fit $\pm 25\%$. See [122] for graph. $k'_L a = s^{-1}$ $D_L = \text{cm/s}$ $E_L = \text{ft}$, $\text{lb} f \text{s}$ ft ³ $v_L = \text{superficial liquid velocity}$, ft/s	[122] [130] p. 217
	$\begin{split} k_G' a &= 2.0 + 0.91 E_G^{2/3} \text{ for NH}_3 \\ E_g &= \left(\frac{\Delta p}{\Delta L}\right)_{\text{2-phase}} v_g \\ v_g &= \text{superficial gas velocity, ft/s} \end{split}$	[E] Ammonia absorption into water from air at 70°F. Gas-film resistance controls. Thin-walled polyethylene Raschig rings and 1-inch Intalox saddles. Fit ±25%. See [122] for fit. Terms defined as above.	[122]
G. Absorption, stripping, distillation, counter-current, H_L , and H_G , random packings, Bolles and Fair correlation	For Raschig rings, Berl saddles, and spiral tile: $\begin{split} H_L &= \frac{\phi C_{\rm flood}}{3.28} \ N_{\rm sc,L}^{0.5} \bigg(\frac{Z}{3.05} \bigg)^{0.15} \\ C_{\rm flood} &= 1.0 \ \text{if below } 40\% \ \text{flood} \text{—otherwise, use figure in } [54] \ \text{and } [157]. \\ &= \frac{A \psi (d_{\rm co}')^{\rm m} Z^{0.33} N_{\rm sc,G}^{0.5}}{\bigg[L \bigg(\frac{\mu_L}{\mu_{\rm water}} \bigg)^{0.16} \bigg(\frac{\rho_{\rm water}}{\rho_L} \bigg)^{1.25} \bigg(\frac{G_{\rm water}}{\sigma_L} \bigg)^{0.8} \bigg]^{\rm n}} \\ Figures \ \text{for } \phi \ \text{and } \psi \ \text{in } [42 \ \text{and } 43] \\ \text{Ranges: } 0.02 < \phi > 0.300; \ 25 < \psi < 190 \ \text{m}. \end{split}$	[E] Z = packed height, m of each section with its own liquid distribution. The original work is reported in English units. Cornell et al. (Ref. 54) review early literature. Improved fit of Cornell's ϕ values given by Bolles and Fair (Refs. [42], [43]) and [157]. $A = 0.017 \text{ (rings) or } 0.029 \text{ (saddles)}$ $d'_{\text{col}} = \text{column diameter in m (if diameter} > 0.6 \text{ m}, \text{ use } d'_{\text{col}} = 0.6)$ $m = 1.24 \text{ (rings) or } 1.11 \text{ (saddles)}$ $n = 0.6 \text{ (rings) or } 0.5 \text{ (saddles)}$ $L = \text{liquid rate, kg'(sm²)}, \mu_{\text{water}} = 1.0 \text{ Pa·s}, \rho_{\text{water}} = 1000 \text{ kg/m³}, \sigma_{\text{water}} = 72.8 \text{ m/m} \text{ (72.8 dyn/cm)}.$ $H_G \text{ and } H_L \text{ will vary from location to location.}$ Design each section of packing separately.	[42, 43, 54] [77] p. 428 [90] p. 381 [141] p. 353 [157] [156]
H. Distillation and absorption. Counter-current flow. Structured packings. Gauze-type with triangular flow channels, Bravo, Rocha, and Fair correlation	Equivalent channel: $d_{eq} = Bh \left[\frac{1}{B+2S} + \frac{1}{2S} \right]$ Use modified correlation for wetted wall column (See 5-18-F) $N_{Sh,e} = \frac{k'_e d_{eq}}{D_e} = 0.0338 N_{Re,e}^{0.8} N_{Sce}^{0.333}$ $N_{Re,e} = \frac{d_{eq} \rho_e \langle U_{v,eff} + U_{L,eff} \rangle}{\mu_e}$ Calculate k'_L from penetration model (use time for liquid to flow distance s). $k'_L = 2(D_L U_{L,eff} / \pi S)^{1/2}.$	[T] Check of 132 data points showed average deviation 14.6% from theory. Johnstone and Pigford [Ref. 84] correlation (5-18-F) has exponent on N_{Re} rounded to 0.8. Assume gauze packing is completely wet. Thus, $a_{\rm eff} = a_p$ to calculate H_C and H_L . Same approach may be used generally applicable to sheet-metal packings, but they will not be completely wet and need to estimate transfer area. $L = \text{liquid flux}, \text{kg/s m}^2, G = \text{vapor flux}, \text{kg/s m}^2.$ Fit to data shown in Ref. [45]. $H_G = \frac{G}{k_e' a_p \rho_e}, H_L = \frac{L}{k_L' a_p \rho_L}$ effective velocities $U_{e,\text{eff}} = \frac{U_{e,\text{super}}}{\epsilon \sin \theta}, U_{L,\text{eff}} = \frac{3\Gamma}{2\rho_L} \left(\frac{\rho_L^2 g}{3\mu_L \Gamma}\right)^{0.333}, \Gamma = \frac{L}{\text{Per}}$ $\text{Per} = \frac{\text{Perimeter}}{\text{Area}} = \frac{4S + 2B}{Bh}$	[45] [63] p. 310, 326 [149] p. 356, 362 [156]

5-82 HEAT AND MASS TRANSFER

TABLE 5-24 Mass-Transfer Correlations for Packed Two-Phase Contactors—Absorption, Distillation, Cooling Towers, and Extractors (Packing Is Inert) (Concluded)

Situation	Correlations	E = Empirical, S = Semiempirical, T = Theoretical	References
I. Distillation and absorption, counter- current flow. Structured packing with corrugations. Rocha, Bravo, and Fair correlation.	$\begin{split} N_{Sh,G} &= \frac{k_{\rm g} S}{D_{\rm g}} = 0.054 N_{\rm Re}^{0.8} N_{\rm Sc}^{0.33} \\ u_{\rm e,eff} &= \frac{u_{\rm g, super}}{\epsilon (1 - h_L) {\rm sin} \theta} , u_{\rm L,eff} &= \frac{u_{\rm hg, super}}{\epsilon h_L {\rm sin} \theta} , \\ k_L &= 2 \bigg(\frac{D_L C_E u_{\rm L,eff}}{\pi {\rm S}} \bigg) \\ H_{\rm OG} &= H_G + \lambda H_L &= \frac{u_{\rm g, super}}{k_{\rm g} a_e} + \frac{\lambda u_{\rm L, super}}{k_L a_e} \\ \\ &= \frac{a_e}{a_p} = F_{\rm SE} \frac{29.12 ({\rm N}_{\rm We} {\rm N}_{Fr})^{0.15} {\rm S}^{0.350}}{N_{ReL}^2 \epsilon^{0.6} (1 - 0.93 {\rm cos} \gamma) ({\rm sin} \theta)^{0.3}} \\ &= {\rm Packing factors:} \\ &= \frac{a_p}{{\rm Flexi-pac} 2} \frac{\epsilon}{2.33} \frac{F_{\rm SE}}{0.95} \frac{\theta}{0.350} \frac{45^{\circ}}{45^{\circ}} \\ &= {\rm Ognipak} 2A 233 0.95 0.344 45^{\circ}} \\ &= {\rm Mellapak} 350Y 350 0.93 0.350 45^{\circ}} \end{split}$	[E, T] Modification of Bravo, Rocha, and Fair (5-24-H). Same definitions as in (5-24-H) unless defined differently here. Recommended [156]. h_L = fractional hold-up of liquid C_E = factor for slow surface renewal $C_E \sim 0.9$ a_e = effective area/volume (1/m) a_p = packing surface area/volume (1/m) F_{SE} = surface enhancement factor γ = contact angle; for sheet metal, $\cos \gamma = 0.9$ for $\sigma < 0.055$ N/m $\cos \gamma = 5.211 \times 10^{-16.8356}$, $\sigma > 0.055$ N/m $\lambda = \frac{m}{LV}$, $m = \frac{dy}{dx}$ from equilibrium	[124], [156]
J. Rotating packed bed (Higee)	$\begin{split} \frac{k_L a d_p}{D a_p} \left(1 - 0.93 \frac{V_o}{V_t} - 1.13 \frac{V_t}{V_t}\right) &= 0.65 N_{\text{sc}}^{0.5} \\ &\qquad \times \left(\frac{L}{a_p \mu}\right)^{0.17} \left(\frac{d_p^3 \rho^3 a_c}{\mu^2}\right)^{0.3} \! \left(\frac{L^2}{\rho a_p \sigma}\right)^{0.3} \\ &\qquad 500 \leq N_{\text{sc}} \leq 1.2 \text{E5}; 0.0023 \leq L/(a_p \mu) \leq 8.7 \\ &\qquad 120 \leq (d_p^3 \rho^2 a_c)/\mu^2 \leq 7.0 \text{E7}; 3.7 \text{E} - 6 \leq L^2/(\rho a_p \sigma) \leq \\ &\qquad 9.4 \text{E} - 4 \\ &\qquad 9.12 \leq \frac{k_L a d_p}{D a_p} \leq 2540 \end{split}$	[E] Studied oxygen desorption from water into N_2 . Packing 0.22 -mm-diameter stainless-steel mesh. $\varepsilon = 0.954$, $a_p = 829$ (1/m), $h_{bed} = 2$ cm. $a = gas$ -liquid area/vol (1/m) $L = \text{liquid}$ mass flux, kg/(m²S) $a_c = \text{centrifugal}$ accel, m²/S V_i , V_o , $V_i = \text{volumes}$ inside inner radius, between outer radius and housing, and total, respectively, m³. Coefficient (0.3) on centrifugal acceleration agrees with literature values (0.3–0.38).	[50]
K. High-voidage packings, cooling towers, splash-grid packings	$\frac{(Ka)_{\rm H}V_{\rm tower}}{L} = 0.07 + A'N' \left(\frac{L}{G_a}\right)^{-n'} \label{eq:local_equation}$ $A' \mbox{ and } n' \mbox{ depend on deck type (Ref. 86), } 0.060 \le A' \le 0.135, \\ 0.46 \le n' \le 0.62. \mbox{ General form fits the graphical comparisons (Ref. 138).}$	[E] General form. $G_a = \text{lb dry air/hr ft}^2$. $L = \text{lb/h ft}^2$, $N' = \text{number of deck levels}$. $(Ka)_H = \text{overall enthalpy transfer coefficient} = \text{lb/(h)(ft}^3) \left(\frac{\text{lb water}}{\text{lb dry air}}\right)$ $V_{\text{tower}} = \text{tower volume, ft}^3/\text{ft}^2$. If normal packings are used, use absorption masstransfer correlations.	[86][104] p. 220 [138] p. 286
L. Liquid-liquid extraction, packed towers	Use k values for drops (Table 5-21). Enhancement due to packing is at most 20%.	[E] Packing decreases drop size and increases interfacial area.	[146] p. 79
M.Liquid-liquid extraction in rotating-disc contactor (RDC)	$\begin{split} \frac{k_{c\text{-RDC}}}{k_c} &= 1.0 + 2.44 \bigg(\frac{N}{N_{Cr}}\bigg)^{2.5} \\ N_{Cr} &= 7.6 \times 10^{-4} \left(\frac{\sigma}{d_{\text{drop}} \ \mu_c}\bigg) \bigg(\frac{H}{D_{\text{tank}}}\bigg) \\ \frac{k_{d\text{-RDC}}}{k_d} &= 1.0 + 1.825 \bigg(\frac{N}{N_{Cr}}\bigg) \frac{H}{D_{\text{tank}}} \end{split}$	k_c , k_d are for drops (Table 5-21) Breakage occurs when $N > N_{Cc}$. Maximum enhancement before breakage was factor of 2.0. $N = \text{impeller}$ speed $H = \text{compartment height}$, $D_{\text{tank}} = \text{tank diameter}$, $\sigma = \text{interfacial tension}$, N/m . Done in 0.152 and 0.600 m RDC.	[36][146] p. 79
N. Liquid-liquid extraction, stirred tanks	See Table 5-22-E, F, G, and H.	[E]	

3. Cálculo da Altura da Coluna

O cálculo da altura da coluna pode ser expresso de diferentes formas, a saber:

$$h = N_{OG} H_{OG} \tag{18}$$

$$h = N_{OL} H_{OL} \tag{38}$$

$$\mathbf{h} = \mathbf{N}_{\mathbf{G}} \mathbf{H}_{\mathbf{G}} \tag{39}$$

$$h = N_L H_L \tag{40}$$

Para soluções diluídas, os números de unidades de transferência - NUT - são expressos por:

$$N_{OG} = \int_{y_2}^{y_1} \frac{dy_A}{(y_A - y_A^*)}$$
 (23)

$$N_{OL} = \int_{y_2}^{y_1} \frac{dx_A}{(x_A - x_A^*)} \tag{41}$$

$$N_{G} = \int_{y_{2}}^{y_{1}} \frac{dy_{A}}{(y_{A} - y_{Ai})}$$
 (42)

$$N_{L} = \int_{y_{2}}^{y_{1}} \frac{dx_{A}}{(x_{A} - x_{Ai})} \tag{43}$$

No caso da operação de desabsorção ("stripping") empregam-se, usualmente, as equações (38) e (40).

4. Hidrodinâmica - Coluna Recheada

A figura 5 mostra a variação da perda de carga do gás em função da sua vazão, para o escoamento em contracorrente com o líquido, que desce sob ação da gravidade.

Para baixas vazões de líquido, o volume de vazios no leito através do qual escoa o gás é pouco inferior ao do leito seco. A perda de carga do gás é aproximadamente proporcional ao quadrado da vazão de gás (região A-B).

Para maiores vazões de líquido, a retenção deste ("holdup") é maior, e, consequentemente, maior a perda de carga do gás (região A'-B').

A zona de carga ("loading zone"), indicada na figura, corresponde a uma excessiva retenção de líquido, e no limite - região C'C, tem-se o fenômeno do afogamento ("flooding"). Nesta situação ocorre arraste do líquido e/ou borbulhamento de gás no líquido, conhecida como condição de inversão de fase.

Do ponto de vistas hidrodinâmico, as condições de "loading" e "flooding" representam limites da capacidade da coluna recheada.

A determinação da perda de carga em colunas recheadas é feita a partir de dados empíricos, para os diferentes tipos e tamanhos de recheios.

Estes dados são apresentados na literatura na forma de gráficos gerados a partir de correlações generalizadas de perda de carga. O

gráfico apresentado por Strigle - Figura 6 - (Packed Tower Design and Applications - 1994) é o recomendado disponível na literatura.

Na abscissa tem-se o fator adimensional F_{LG} , expresso por:

$$F_{LG} = \frac{L}{G} \sqrt{\frac{\rho_G}{\rho_L}} \tag{44}$$

onde: G e L são os fluxos mássicos (vazão mássica/área da secção da coluna) de gás e líquido, kg/(m² s); ρ_G e ρ_L respectivamente as densidades do gás e líquido, kg/m³.

Na ordenada tem-se o parâmetro $C_{_S}F_{_P}^{0,5}\nu^{0,05}$, onde $C_{_S}$ é o fator de capacidade expresso por:

$$C_{s} = U_{t} \left(\frac{\rho_{G}}{\rho_{L} - \rho_{G}} \right)^{0.5} \tag{45}$$

Sendo:

 U_t = velocidade superficial do gás, ft/s

 F_P = fator do recheio, ft⁻¹

 ν = viscosidade cinemática do líquido , cS [= cP/(g/cm³)]

O fator do recheio, F_P , é determinado experimentalmente em função do tipo e tamanho do recheio. As tabelas 14-13 e 14-14 do Perry apresentam dados específicos de recheios randômicos e estruturados.

A curva de condição de afogamento ("flooding") não está epecificada na Figura 6. Considera-se que a partir de uma perda de carga de 1,5 in $\rm H_2O/ft$ de recheio, inicia-se um incipiente afogamento da coluna.

Sugere-se no projeto de colunas recheadas, do ponto de vista hidrodinâmico, uma vazão de gás correspondente a 50% da vazão de afogamento.

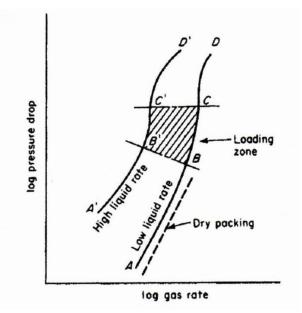


Figura 5 - Perda de carga em função das vazões de líquido e gás.

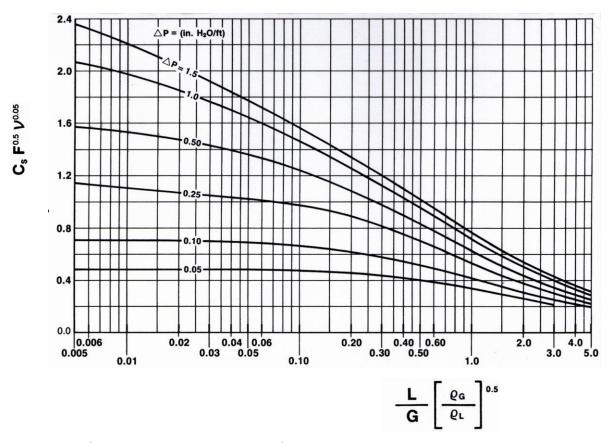


Figura 6 - Correlação generalizada de perda de carga

TABLE 14-13 Characteristics of Random Packings

	Size,	Bed			Packing fa	actor, m ⁻¹	
Name	mm, or no. (#)	density,* kg/m³	Area, m²/m³	% voids	Normal F_p^{+}	$\operatorname*{Dry}_{F_{pd}^{\ddagger}}$	Vendor
			Meta	ls			
Pall rings	16	510	360	92	256	262	Various
(also Flexi-rings,	25	325	205	94	183	174	
Ballast rings, P-rings)	38 50	208 198	130 105	95 96	131 89	91 79	
	90	135	66	97	59	46	
Metal Intalox (IMTP)	25	224	207	97	134	141	Koch-Glitsch
[also I-rings, AHPP,	40	153	151	97	79	85	[Sulzer, Amistco,
RSMR, MSR] [§]	50	166	98	98	59	56	Rauschert, Montz]
	70	141	60	98	39		6.1
Nutter rings	#0.7 #1	177 179	226 168	98 98	98	128 89	Sulzer
	#1.5	181	124	98	79	66	
	#2	144	96	98	59	56	
	#2.5	121	83	98	52	49	
P. 1. 0	#3.0	133	66	98	43	36	n 1:
Raschig Super-ring	#0.5 #0.7	275 185	250 175	98 98	_	_	Raschig
	#0.7	220	160	98	82	_	
	#1.5	170	115	98	59	_	
	#2	155	98	99	49	_	
	#3	150	80	98	36		
Cascade mini-rings	#1	389	250	96	131	102	Koch-Glitsch
(CMR)	#1.5 #2	285 234	190 151	96 97	95 72	79	
	#2.5	195	121	97	62		
	#3	160	103	98	46	43	
	#4	125	$\frac{71}{2}$	98	33	32	
	#5	108	50	98	26¶	_	STREET, STREET
Fleximax	#300 #400	_	141 85	98 98	85 56	_	Koch-Glitsch
Jaeger Tripacks	#1	223	118	96	85		Raschig
(Top-Pak)	#2	170	75	98	46	_	- Time and
VSP	25 50	352 296	206 112	98	105¶ 69	_	Raschig
D.L	25			96	157		Raschig
Ralu-rings	25 38	310 260	215 135	98 97	921	_	Raschig
	50	200	105	98	661	_	
Hiflow	25	298	203	96	_	_	Rauschert
Hy-Pak, K-Pak,	50 #1	175 262	92 174	98 97	52 148	-	Koch-Glitsch,
AIPR	#1.5	180	118	98	95	_	Amistco
	#2	161	92	98	85	_	111110000
2	#3	181	69	98	52	_	
Raschig rings	19	1500	245	80	722	_	Various
(½16 in wall)	25	1140	185	86	472	492	
	50 75	590 400	95 66	92 95	187 105	223	
			Ceramics				
Berl saddles	6	900	900	60	_	2950	Various
Dell saddles	13	865	465	62	790	900	various
	25	720	250	68	360	308	
	38	640	150	71	215	154	
	50	625	105	72	150	102	
Intalox, Flexi-saddles,	6	864	984	65		2720	Various
Torus-saddles, Novalox	13 25	736 672	623 256	$\begin{array}{c} 71 \\ 73 \end{array}$	660 302	613 308	
	50	608	118	76	131	121	
	75	576	92	79	72	66	
Raschig rings	6	960	710	62	_	5250	Various
	13	880	370	64	1900	1705	
	25 50	670 660	190 92	$\begin{array}{c} 74 \\ 74 \end{array}$	587	492 230	
	50 75	590	62	$\begin{array}{c} 74 \\ 75 \end{array}$	213 121	230	
Pall ring	25	620	220	75	350		Raschig
· ····································	38	540	164	78	180		raseing
	50	550	121	78	142	_	
	80	520	82	78	851	<u> </u>	

TABLE 14-13 Characteristics of Random Packings (Concluded)

	Size,	Bed			Packing fa	ctor, m ⁻¹	
Name	mm, or no. (#)	density* kg/m³	Area, m²/m³	% voids	$\overline{\begin{array}{c} \text{Normal} \\ F_p^{\ \dagger} \end{array}}$	$\Pr_{F_{pd}^{\ddagger}}$	Vendor
			Ceramics				
Hiflow rings	38	409	108	83	121	_	Rauschert
	50	405	89	82	95		
	70	333	52	86	49		
			Plastics				
Pall rings	15	95	350	87	320	348	Various
	25	71	206	90	180	180	
	40	70	131	91	131	131	
	50	60	102	92	85	82	
	90	43	85	95	56	39	
Super Intalox,	25	83	207	90	131	131	Various
Flexi-saddles,	50	60	108	93	92	85	
Super-Torus, Novalox	75	48	89	96	59	46	
Cascade mini-rings	#1A	53	185	97	98	92	Koch-Glitsch
(CMR)	#2A	46	115	97	59	_	
	#3A	40	74	98	39	33	
Raschig Super-ring	#0.6	62	205	96	105¶	_	Raschig
	#2	55	100	96	49		
Ralu-ring	15	80	320	94	230¶	_	Raschig
	25	56	190	94	135	_	
	38	65	150	95	80		
	50	60	110	95	55		
	90	40	75	96	38	_	
	125	30	60	97	30¶	_	
Snowflake	_	51	92	97	43	_	Koch-Glitsch
Nor-Pac	25	72	180	92	102	_	NSW
	38	61	144	93	69		
	50	53	102	94	46		
Tri-Packs	#1	67	158	93	53¶	_	Raschig
(Hacketten)	#2	53	125	95	39¶	43	
Ralu-Flow	#1	55	165	95	67¶	_	Raschig
	#2	54	100	95	38¶		
Hiflow	25	63	192	92	138		Rauschert
	50	59	110	93	66	_	
	90	34	65	97	30	_	
Lanpac	90	67	148	93	46		Lantee
Impac	#3	83	213	91	49		
Tellerettes	25	112	180	87	_	131	Ceilcote
	50	59	125	93	_		

^{*}Values are approximate and may not be consistent. Actual number depends on wall thickness and material.

[¶]Packing factor supplied by packing vendor. Vendors: Koch-Glitsch LLP, Wichita, Kansas; Raschig GmbH, Ludwigshafen/Rhein, Germany; Sulzer Chemtech Ltd., Winterthur, Switzerland; Rauschert Verfahrenstechnik GmbH, Steinwiesen, Germany; Amistco Separation Products Inc., Alvin, Texas; Julius Montz GmbH, Hilden, Germany; Ceilcote Co., Berea, Ohio; NSW Corp., Roanoke, Virginia; Lantec Products Inc., Agoura Hills, California.

 $^{^{\}dagger}$ Packing factor F_p from Kister, Distillation Design, McGraw-Hill, 1992; Kister, Larson, and Gill, paper presented at the Houston AIChE meeting, March 19–23, 1995; Strigle, Packed Tower Design and Applications, 2d ed., Gulf Publishing Co., Houston, Tex., 1994; Kister et al., in Distillation 2007. Topical Conference Proceedings, 2007 AIChE Spring National Meeting, Houston, Tex. † Dry packing factor F_{pd} from Robbins, Chem. Eng. Progr., 87(1), 19 (1990). † The bracketed packings are similar to, but not the same as, the Koch-Glitsch IMTP. Some of them have holes that the

IMTP do not have, and others have sizes that are different and are made by different dies.

TABLE 14-14 Characteristics of Structured Packings

	Packing factor, m ⁻¹										Packing fa	ctor, m	-1
Name	Size or number	Area, m²/m³	% voids*	Normal F_p^+	$\Pr_{F_{pd}^{\ddagger}}$	Vendor	Name	Size or number	Area, m²/m³	% voids	Normal F_p^{\dagger}	$\Pr_{F_{pd}^{\ddagger}}$	Vendor
	M	etals, cor	rugated			30	25	4T	135	99			
Mellapak	125Y	125	99	33		Sulzer		5T	90	99			
менарак	170Y	170	99	39		Suizer		5TX	90	99			
	2Y	223	99	46			Super-Pak	250	250	98	55		Raschig
	250Y	250	98	66			ouper ran	350	350	98	70		racing
	350Y	350	98	75			n.l. n.l.	SERVICES .	7.0000104	(nteles	2030		D 1.
	500Y	500	98	112			Ralu-Pak	250YC	250	98	66		Raschig
	750Y	750	97	112			Rhombopac	4M	151				Kuhni
	125X	125	99	16				6M	230		59		
	170X	170	99	20				9M	351				
	2X	223	99	23			Max-Pak	0.5-in	229	98	39		Raschig
	250X	250	98	26			Montz-Pak	B1-125	125	97			Montz
	500X	500	98	82			Montz-rak	B1-123	200	91			Montz
V 11 1 221	2027	1000000	00	75000		0.1		B1-250	250	95	66		
Mellapak Plus	202Y	250	99	20		Sulzer		B1-250	350	93	00		
	252Y	250	98	39				BSH-250¶	250	95			
	352Y	250	98	GO				BSH-500	500	91			
	452Y 752Y	350 500	98 98	69 131				B1-250M	250	01	43		
	7521	500	98	131				B1-350M	350		10		
Flexipac	700Y	710	96			Koch-		B1-500M	500				
	500Y	495	97			Glitsch							
	1 Y	420	98	98	(105)	CHOCH			Wii	e Mesl	1		
	350Y	350	98		(200)		Sulzer	AX	250	95			Sulzer
	1.6Y	290	98	59			Suizei	BX	492	90	69	(52.5)	Buizer
	250Y	250	99					CY	700	85	00	(02.0)	
	2Y	220	99	49	(36)			BX Plus	100	00			
	2.5Y	150	99				<u> </u>						
	3.5Y	80	99	30	(15)		Wire gauze	BX	495	93			Koch-Glitsch
	4Y	55	99	23	(10.5)		Montz-Pak	A3-500	500	91			Montz
	1X	420	98	52			· ·						
	350X	350	98				Goodloe	765	1010	96			Koch-Glitsel
	1.6X	290	98	33				773	1920	95			
	250X	250	99					779	2640	92			
	2X	220	99	23			Hyperfil	2300	2300	93.6	394/230 [.1]	460	Knit Mesh
	2.5X	150	99	10000			Пурсти	1900	1900		312/180 5,11	100	Kille Mesil
	3X	110	99	16				1400	1400		180/1315,11		
	3.5X	80	99				(3)		0.000	2011/2002/00	1001101		
	4X	55	99				-		Co	eramic			
Flexipac	700	710	96	223		Koch-	Flexeramic	28	260	66	131		Koch-Glitsch
High-capacity	500Z	495	97			Glitsch		48	160	77	79		
0 1 /	1 Y	420	98	82				88	100	86	49		
	350Y	350	98						р	lastic			
	1.6Y	290	99	56						lastic			
	250Y	250	99				Mellapak	125Y	125				Sulzer
	2Y	220	99	43				250Y	250		72		
		20000000000						125X	125				
Intalox	1T	310	98	66		Koch-Glitsch		250X	250				
	1.5T	250	99				Ralu-Pak	30/160	160	92			Raschig
	2T	215	99	56			Naiu-Fak	ACCES 200-0-0		1// 5/ 5/ 5/ 5			rascing
	3T	170	99	43			Multifil plastics	P1500	1500	88.5			Knit Mesh

 ^{*%} voids vary with material thickness and values may not be consistent.
 Packing factors from Kister, Distillation Design, McGraw-Hill, 1992; Kister, Larson, and Gill, paper presented at the Houston AIChE Meeting, March 19–23, 1995; and Kister et al., in Distillation 2007: Proceedings of Topical Conference, AIChE Spring Meeting, Houston, Tex., April 22–26, 2007.
 Dry packing factors from Robbins, Chem. Eng. Prog., p. 87, May 1991.
 These packing factors supplied by the packing vendor.
 These are expanded metal packings.
 First figure is for hydrocarbon service, second figure for aqueous service.
 Vendors: Sulzer Chemtech Ltd., Winterthur, Switzerland; Koch-Glitsch LLP, Wichita, Kansas; Raschig GmbH, Ludwigshafen/Rhein, Germany; Julius Montz GmbH, Hilden, Germany; Knit Mesh/Enhanced Separation Technologies, Houston, Texas; Kuhni Ltd., Allschwil, Switzerland.

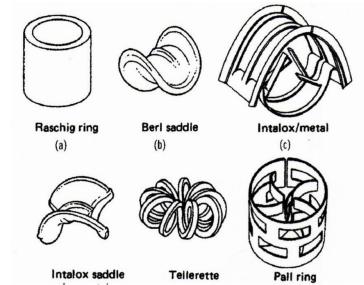
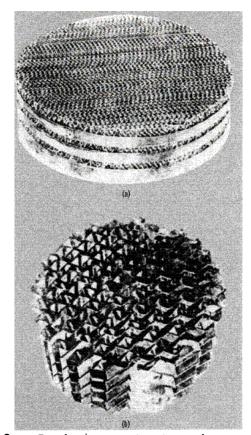
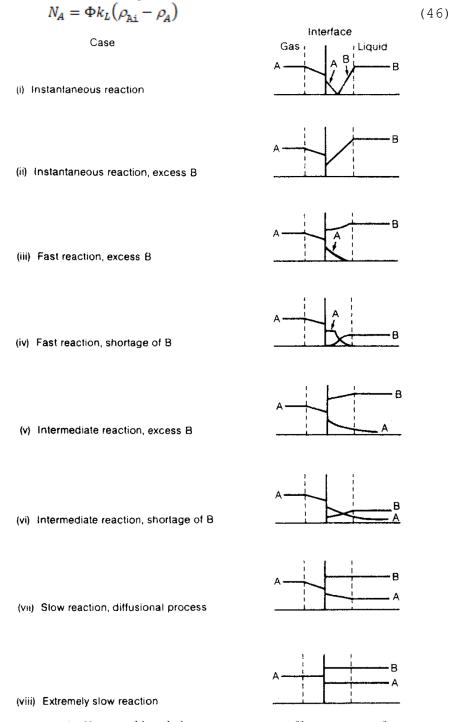


Figura 7 - Recheios randômicos.




Figura 8 - Recheios estruturados.

5. Absorção com reação química

Muitos processos de absorção de gases envolvem sistemas com reação química na fase líquida. O efeito da reação química pode produzir um aumento significativo na velocidade de absorção. O mecanismo que define a taxa de transferência de massa é bastante complexo e depende da relação entre a velocidade do processo difusivo na fase líquida e as velocidades das reações de consumo do soluto que ocorrem simultaneamente na fase.

A figura 9 (figura 14.12 do Perry, 2007) apresenta diferentes situações para o processo difusivo reativo na fase líquida para uma reação do tipo A + B, sendo A o soluto absorvido e B o solvente que reage. A relação entre as velocidades de difusão e de reação no líquido definem os diferentes casos.

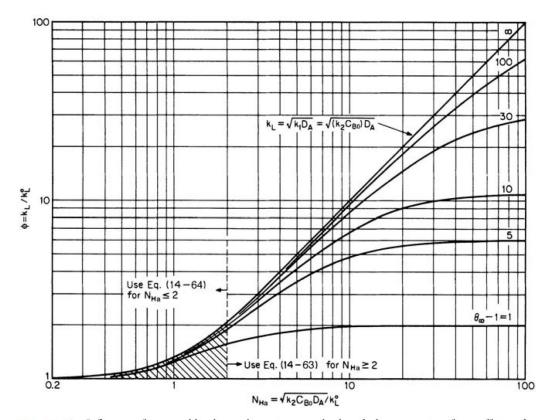

O efeito do incremento na velocidade de transferência de massa, devido à reação química, é descrito através do parâmetro denominado fator de aumento (ϕ) , sendo o fluxo de transferência de massa, N_A , expresso conforme por (Sherwood e Pigford, 1975).

FIG. 14-12 Vapor- and liquid-phase concentration profiles near an interface for absorption with chemical reaction.

Figura 9 - Casos de absorção com reação irreversível

A figura 10 (figura 14.13 do Perry, 2007) mostra o fator de aumento ϕ para uma reação irreversível na fase líquida. Este fator indica a relação entre a velocidade de transferência de massa com reação química em relação à velocidade de transferência de massa por absorção física.

FIG. 14-13 Influence of irreversible chemical reactions on the liquid-phase mass-transfer coefficient k_L . [Adapted from Van Krevelen and Hoftyzer, Rec. Trav. Chim., **67**, 563 (1948).]

Figura 10 - Fator de aumento para reação irreversível

Bibliografia

- Perry's Chemical Engineer's Handbook, 8th ed., D.W. Green; R. H. Perry, 2007 Mc Graw Hill
- Bennett & Myers Fenômenos de Transporte, 2ª ed. 1978 Mc Graw Hill
- Sherwood, T.K; Pigford, R. L.; Wilke, C. R. Mass Transfer, 1975, Mc Graw Hill
- \bullet Treybal , R.E. Mass Transfer Operations, $3^{\rm rd}$ ed., 1981 Mc Graw Hill