Função

Evandro R. da Silva

ICMC - USP

Função sobrejetora

Definição

Uma função $f:A\to B$ é chamada sobrejetora se Im(f)=B, ou seja, para todo $y\in B$ existe pelo menos um $x\in A$ tal que y=f(x).

A função $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| não é sobrejetora, pois, por exemplo, não existe $x \in \mathbb{R}$ tal que f(x) = -1.

Exemplo

A função $f:[0,+\infty) \to [0,+\infty)$, $f(x) = \sqrt{x}$ é sobrejetora. De fato, dado $y \in [0,\infty)$ existe $x = y^2$ tal que $f(x) = f(y^2) = \sqrt{y^2} = |y| = y$ pois $y \ge 0$.

Exemplo

A função $f: \mathbb{R} \to [0, +\infty)$, $f(x) = x^2$ é sobrejetora. De fato, dado $y \in [0, +\infty)$ existe $x = \sqrt{y}$ tal que $f(x) = f(\sqrt{y}) = (\sqrt{y})^2 = y$.

Função injetora

Definição

Uma função $f:A\to B$ é chamada injetora se dados $x_1\in A$, $x_2\in A$ com $x_1\neq x_2$ então $f(x_1)\neq f(x_2)$.

Obs: Dizer que $f: A \to B$ é injetora é equivalente a dizer : para todo $x_1 \in A$, $x_2 \in A$ com $f(x_1) = f(x_2)$ então $x_1 = x_2$.

A função $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| não é injetora, pois, por exemplo, f(1) = 1 = f(-1) e $1 \neq -1$.

Exemplo

A função $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 2 é injetora. De fato se $f(x_1) = f(x_2)$ então $3x_1 + 2 = 3x_2 + 2$ o que implica $3x_1 = 3x_2$ que implica $x_1 = x_2$.

Exemplo

A função $f:[0,+\infty)\to\mathbb{R}$, $f(x)=\sqrt{x}$ é injetora. De fato, se $f(x_1)=f(x_2)$ então $\sqrt{x_1}=\sqrt{x_2}$ e elevando ao quadrado em ambos os lados vem que $x_1=x_2$.

Função bijetora

Definição

Uma função $f:A\to B$ é chamada bijetora (ou bijeção) quando f for injetora e sobrejetora.

Exemplo

A função $f : \mathbb{R} \to \mathbb{R}$, f(x) = x é bijetora. Pois, f é claramente injetora e sobrejetora.

A função $f : \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 2 é bijetora.

De fato:

f é injetora (vimos em um exemplo anterior).

f é sobrejetora pois dado $y\in\mathbb{R}$ existe $x=\frac{y-2}{3}$ tal que $f(x)=3(\frac{y-2}{3})+2=y-2+2=y$

A função $f:[0,+\infty)\to [0,+\infty)$, $f(x)=x^2$ é bijetora.

De fato:

f é injetora pois, se $f(x_1)=f(x_2)$ implica que $x_1^2=x_2^2$ implica que $\sqrt{x_1^2}=\sqrt{x_2^2}$ que implica $|x_1|=|x_2|$ que implica que $x_1=x_2$.

f é sobrejetora pois, dado $y \in [0, +\infty)$ existe $x = \sqrt{y}$ tal que $f(x) = f(\sqrt{y}) = (\sqrt{y})^2 = y$.

Composição de funções

Definição

Sejam $f: A \to B$ e $g: B \to C$ funções. A função $g \circ f: A \to C$ dada por $g \circ f(x) = g(f(x))$ é chamada de função composta de g e f.

Obs: Na verdade, para considerarmos a composta $g \circ f$ basta que a imagem de f esteja contida no domínio da g, isto é, $Im(f) \subset D(g)$.

Sejam
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^3$ e $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 + 1$. Temos que $g \circ f(x) = g(f(x)) = (f(x))^2 + 1 = (x^3)^2 + 1 = x^6 + 1$.

Exemplo

Sejam
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2 + 1$ e $g: [-1, \infty) \to \mathbb{R}$ $g(x) = \sqrt{x+1}$. Temos $g \circ f(x) = g(f(x)) = \sqrt{f(x)+1} = \sqrt{x^2+1+1} = \sqrt{x^2+2}$.

Obs:

Em geral $g \circ f \neq f \circ g$.

De fato, seja
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x + 2$ e $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 - 2x$, temos que

$$g \circ f(x) = g(f(x)) = (f(x))^2 - 2f(x) = (x+2)^2 - 2(x+2) = x^2 + 2x$$
$$f \circ g(x) = f(g(x)) = g(x) + 2 = x^2 - 2x + 2,$$

ou seja,

$$g \circ f(x) = x^2 + 2 \neq x^2 - 2x + 2 = f \circ g(x).$$