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A b s t r a c t ~ T h J s  introduction to Charles S. Peirce's elegant logic dia~-rarns explains the dements mad 
operations of the Alpha and Beta parts of the system. These parts, together, constitute a complete 
and consistent treatment of elementary logic. Statements and inferences involving quantifiers and 
relations axe presented and explained, typical methods of proof are illustrated, and a proof of the 
consistency of the system is given. A brief sketch is presented of Peirce's attempts to extend the 
system and of current work on a computational model of Alpha and Beta. 

Tile system of Existential Graphs (EG) is a diagrammatic system of logic by means of which 
we can express, and then examine and experiment with, statements and inferences. It has a 
remarkably small number of special symbols, and it shows in an especially clear way that deductive 
reasoning can be analyzed into certain insertions and omissions of statements, or declarative 
sentences. The system was invented by Charles S. Peirce in 1896 (see [1]) and as developed by 
him it soon became a complete and consistent treatment of elementary logic, t Peirce is better 
known for his logical algebras and his pioneering work in the logic of relations, but by 1897 [4], 
he preferred graphical to algebraic notations as a means of investigating these fields of inquiry. 
Recently EG has been used ~ the logical basis for a system of conceptual graphs by John Sowa [8]. 
Sows connected his graphs to such topics a.s semantic networks and artificial intelligence, and the 
relevance of EG to these topics brought out by Sowa's work has been further stressed by Fritz 
Lehmann (see their articles in this volume). 

Peirce sometimes used the terms "Alpha" and "Beta" for the parts of EG that correspond to 
the two major components of eleme,tary logic, namely, the logic of statements and the logic of 
predicates and quantifiers. Further developments, including but not restricted to modal logic, 
belong to a "Gamma" part of EG which is mentioned briefly in tiffs paper. 

1. ALPHA 

1.1. The Sheet and Juzlaposition 

Because EG is a two-dimensional system, the surface on which the diagrams or graphs are 
to be placed becomes important. In practice, it may be a blackboard, or a sheet of paper, or 
something else; but whatever surface is used will be called the sheet o[ assertion (SA). SA is 
one of tile primitive symbols of EG; it is a graph, even if it is blank, in which case it represents 
what philosophers and others call "the universe of diseourse"--the sum total of what the reasoner 
understands himself to be reasoning about. Further, whatever is written on SA is asserted to be 
true of the (perhaps fictitious) universe represented by SA. 

A pear is ripe 

The lazy dog stumbles over the quick brown fox 

Figure I. 

I A detailed treatment of E G  is given in [1]. This monograph takes account of the unpublished manuscripts at 
Harvard [2] as well ~ the published material [3-6]. Deductive completeness for E G  was first proved by J. Jay 
Zernan [7]; a different proof is given in [1]. That the system is consistent is proved in this paper (with a small 
improvement over the proof given in [1]). 
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If we write "A pear is ripe" on SA, we assert that there is a pear in our universe, and it is ripe. 
Such a sentence, written on SA, constitutes a graph. If we write two or more sentences onto SA, 
we assert them all. Thus, Figure 1 means: There is a ripe pear and the lazy dog stumbles over 
the quick brown fox. Thus, writing two or more sentences (graphs) on SA is to join them by 
the conjunction "and." Graphs written together on S A  are said to be j,xtaposed on SA. Their  
order or arrangement, however, is of no significance in E G .  

1.2. The Cut 

To deny a statement,  we enclose it in a finely drawn self-returning line, called a cut because it 
cuts off or separates the enclosed s tatement  from the rest of SA. 

. . Y o u  a r e  a c a u t i o u s  r e a s o  

Figure 2. 

Thus, Figure 2 asserts "It is false that  you are a cautious reasoner." The shape of the cut has no 
significance. Each of the following is a graph of the sentence "It does not rain." 

Figure 3. 

The cut separates (cuts off) one part or area of SA from another. The interior of a cut is 
called the area of the cut; the cut, together with its area and whatever graphs are on its area, is 
called an enclosure. It is important  to note that the cut per se - - the  finely drawn line itself--is 
not a graph, but every enclosure is. Writing or drawing or otherwise placing a graph on any area 
will be called scribing a graph, and the area on which a graph is scribed is called the place of 
that graph. We abbreviate the phrase "the place of the graph P" by the use of braces: {P}. Two 
or more graphs scribed on the same area, that  is, two or more graphs not separated by cuts, are 
said to be juxtaposed on that area, and the order or arrangement of juxtaposed graphs has no 
logical significance. 

Since SA is a graph representing all the things we take for granted, it follows that  a cut made a 
on an otherwise empty area of SA is the denial of something taken to be true. The value of 
such an empty cut is always false, and it cannot, therefore, represent any possible state of the 
universe; since Peirce intended that  all graphs scribed on SA should represent such possible 
states, he sometimes called the empty cut the pseudograph. 

1.3. The Scroll, and Interpretin9 Graphs 

So far, we have simple assertion, conjunction, and negation which, together, are sufficient to 
build any structure of the s tatement  calculus. For example, Figure 4 expresses the conditional 
sentence "If P then Q," since the graph, read from the outside inward, states "It is false that 
both P and not-Q are true," which is equivalent to the conditional. And Figure 5, which reads 
"It is false that  both not-P and not-Q," expresses the inclusive alternation "Either P or Q." This 
method of reading graphs from the outside (or least enclosed area) inward was given the name 
"endoporeutie" by Peirce. We will elaborate on it as we proceed. 

The two-cut graph of Figure '1 is called a scroll, and Figure 4 can be read "P scrolls Q." {P}, 
the place of P, is called the outer area or first area of the scroll; {Q} is called the inner or second 

~Because the cut is not a graph, we do not say that we "scribe" a cut, but that we "make" it. 
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Figure 4. Figure 5. 

Figure 6. Figure 7. Figure 8. 

area. The graph on the outer area is called the antecedent, that on the inner area, the consequent, 
of the scroll. 

Even the graph of Figure 5 can be read as a scroll, and in two different ways, depending upon 
which set of two cuts is taken to constitute the scroll--the two cuts joined by the dotted line in 
Figure 6, or the two cuts joined in Figure 7. If we identify the scroll as in Figure 6, then cut-P is 
the antecedent and Q is the consequent, giving "If not-P then Q"; if we identify it as in Figure 7, 
then cut-Q is the antecedent and P the consequent, which gives "If not-Q then PY 

One of the strengths of E G  is that  a graph of even slight complexity can be read in several ways, 
eliminating the need for additional special symbols. Facility in reading graphs becomes second 
nature with only a little practice. Thus, Figure 8 can readily be seen to express four equivalent 
statements, depending upon whether we read it endoporeutically (as a negated conjunction), or 
as an alternation, or as two different conditionals: (1) It is false that: it does not rain and it does 
not snow; (2) Either it rains or it snows (or both); (3) If it does not rain, then it snows; and (4) 
If it does not snow, then it rains. 

1..4. Nests of Cuts and Containment 

Enclosures which result from placing cuts within other cuts consist of one or more "nests" of 
cuts, where by nest we mean a collection or series of cuts each enclosing the next one. Figure 9 
is a nest of three cuts with its four distinct areas "labeled" by the letters (or graphs) P, Q, R, 
and S. An area is said to be oddly enclosed if it is enclosed by any odd number of cuts (begin 
the count from the unenclosed SA); and it is called evenly enclosed if it is enclosed by an even 
number of cuts, or by no cuts at all. tlence, the unenclosed SA is said to be evenly enclosed. 

P 

Figure 9. 

This terminology applies also to graphs scribed on various areas. In Figure 9 the letters P and 
R are evenly enclosed, while Q and S are oddly enclosed. Cut-S, the enclosure consisting of the 
innermost cut with its contents, is evenly enclosed in Figure 9; and the two-cut graph, which 
by itself could be read "R scrolls S," is oddly enclosed in Figure 9. When a precise reference is 
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necessary, we will use the following terminology: a graph on SA will be called an unenclosed or 
level-O graph; a graph separated from SA by a single cut will be called a once-enclosed or level.l 
graph; one separated from SA by two cuts, a twice-enclosed or level-2 graph; and so on. This 
terminology will also be applied to areas. 

A 

Figure 10. 

An enclosure may contain more than one nest. In Figure I0, for example, there are five nests 
of cuts: one with 4 cuts (whose 5 areas are A-B-C-E-F); three with 3 cuts (whose corresponding 
areas are A-B-C-D, A-B-H-I, and A-B-H-J); and one with 2 cuts (with areas A-B-G). 

Earlier, the notation {P} was introduced to denote the place of P. Now let tile relation sym- 
bol _D, which may be read contains, be defined as follows: {A} D {B}, if and only if Off) {B} is 
enclosed by every cut that encloses {A}. Examination of Figure 10, in the light of this definition, 
shows, for example, that {A} (which is SA) contains every area in the graph, including itself; 
and {B} contains every area except {A}. 

By means of the relation of containment, we can state precisely what it means for two areas 
to be in the same nest of cuts: Two areas belong to the same nest of cuts iffeither area contains 
the other. This terminology can be applied to graphs also: Two graphs belong to the same 
nest of cuts iff the place of one contains the place of the other. This kind of analysis will greatly 
facilitate the application of E G  rules of inference (introduced below) to graphs of any complexity. 
It verifies that Figure 10 does indeed contain five distinct nests of cuts. It shows that some areas 
in Figure 10 are not related to each other by containment--for example, there is no nest to which 
both E and G belong, since neither {E} D {G} ,,or {G} D {E} is true. 

2. BETA 

2.1. Predicates and Subjects 

Suppose we take a statement and erase certain parts of it, so that it is no longer a statement but 
will become one, as soon as each blank is filled by a proper name (or noun or noun clause). This 
partly blank form of statement will be called a predicate. (It is the graphical analogue of what 
some logiciasm calf an "open sentence," or what Russell and Whitehead called a "propositional 
function.") Consider, for example, the statement "Zeno was a pupil of Crates." One erasure of 
the sort described might produce " was a pupil of Crates", or it might produce the different 
predicate "Zeno was a pupil of ." Two such erasures will produce "__ was a pupil of__." We 
see from this that different analyses of a statement can produce different predicates. Figure I I is 
an example of a predicate with three blanks; it becomes a true statement if we fill in the blanks, 
left to right, with "twelve," "five," and "seven." 

_ _  is the sum of and __. 

Figure 1 I. 

According to EG, any statement, if it has no other statement as a proper part of itself, can 
be analyzed into two parts: the predicate, of which we have just seen several examples; and the 
subject, or subjects, defined as any part of the statement which might be replaced by a proper 
name (or noun or noun clause) and still leave the statement a statement. In our Figure II 
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example, "twelve," "five," and "seven" are subjects. It is the subjects which identify the things 
represented by the predicates. Predicates per se do not count as graphs because, containing 
blanks, they cannot be said to be either true or false. 

:?.Y.. The Line of Identity 

We now introduce the third special symbol of EG which, although it is not a proper name or 
a noun, will enable us to convert predicates into statements. That symbol is a heavily drawn 
dot, as in Figure 12; when it occurs by itself (not attached to a predicate) on SA, it denotes the 
existence of a single, individual (but otherwise undesignated) object in the universe of discourse 
("something exists"). EG, thus, combines in one symbol the sign of individuality and the sign 
of quantification. 

0 

Figure 12. Figure 13. 

Now imagine stretching such a heavy dot into a heavy line, as scribed in Figure 13, and take 
this line to be an assertion of the identity of the individuals denoted by its two extremities. (In 
fact, any of tile points on the heavy line can be taken to denote individuals, and the continuity 
of tile lille represents their identity.) Because of this identity claim, the heavy line is called tile 
line of identity (often abbreviated to line). 

llow do we use the heavy line to convert predicates with blanks into statements? By attaching 
it to the predicates, as in Figures 14 and 15: Figure 14 can be read "Something (or somebody) 
w,xs a pupil of Crates," and Figure 15, "Something is the sum of something and something." 
These sentences do qualify as statements, they do make certain claims, unlike the blank forms 
(given above) from which they were obtained. Figure 14, for instance, is false if Crates had no 
pupils at all. 

,---hwlts a pupil  of Cr~.tes 

Figure 1.1. 

- , ~ i s  the  sum o f , - ~  a n d , - - ' -  

Figure 15. 

Predicates whose every blank has been filled by a heavy dot or a line of identity qualify as 
graphs. Attaching a predicate to a dot or line serves to characterize or describe the individual 
denoted, serves to describe the "something." We will pretend that predicates have certain hooks 
to which tile lines can somehow be fastened. 

Figure 16. 

Tile shape and length of a line of identity have no significance, so that each line in Figure 16 
asserts "something exists." The three lines taken together do not, however, guarantee tile exis- 
tence of three different objects, for each line might denote the same object. It follows from our 
interpretation of juxtaposition that Figure 16 means "Something exists and something exists and 
something exists." 

Lines of identity may branch. Figure 17 shows a line with four branches and extremities; 
Figure 18 shows one way to represent a line with an indefinite, say n, number of branches. In 
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Figure 17'. 

f 

Figure 18. 

general, a branching line of identity expresses the identity of the individuals denoted by all its 
extrenfities. 

Just as there is practically no limit to the way a line may branch, so there is no limit to the 
number of predicates to which a line may be attached. In Figure 19, there are three distinct lines 
of identity, but it is their combination with the predicates that enables us to express this true 
sentence about three prominent ancient Greeks: "There is a Stagirite who teaches a Macedonian 
conqueror of the world and who is at once a disciple and an opponent of a philosopher admired 
by Fathers of the Church." 

is a Stagi r i te  

_ . - . t  c a c h e s -  
_ r . - i s  a M a c e d o n i a n  

L . m c o n q u e r s  the  world  

. . . - i s  

• -.~ is 

a disciple O f = o f . ~ i s  

an o p p o n e n t  

a ph i losopher  admi r ed  by  the  Church  Fa the r s  

Figure 19. 

2.3. Qua,tificatio, 

The endoporeutic method of interpretation applies to graphs containing lines of identity. The 
four categorical statements of Aristotle's syllogistic provide convenient examples. Figure 20 means 
"There exists in our universe something which is both painful and good," or "Some pain is good." 

FigtJre 20. Figure 21. Figure 22. Figure 23. 

Figure 21 is the denial of Figure 20. Reading endoporeutically, we begin on SA and interpret 
the cut first, which yields "It is false that some pain is good." Familiarity with language should 
make it clear that this reading is equivalent to "No pain is good." 

Since a line of identity on SA refers to "some" individual of our universe of discourse, such a 
line represents the existential quantifier. From Figure 21, we see that a line of identity enclosed in 
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one cut (a level-1 line of identity) refers to "all" individuals, and thus may be taken to represent 
the universal quantifier. 

In Figure 22, we have a line of identity crossing a cut. The continuity of this line means that  
the part which is outside the cut and the part which is inside the cut denote the same individual. 
Hence, the graph means "Some pain exists and it is false that this pain is good," that  is, "Some 
pain is not good." Figure 23, the denial of Figure 22, means "It is false that  some pain is not 
good," that is, "Every pain is good." 

Although only part of the line in Figure 22 is on SA, it is still read as the existential quantifier; 
and although only part of the line in Figure 23 is once-enclosed, it is still read as the universal 
quantifier. The general rule of interpretation for lines crossing cuts is this: a line of identity is 
as much enclosed as its least enclosed (or outermost) part; and if this outermost part is evenly 
enclosed the line refers to "some" suitably chosen individual, while if this outermost part is oddly 
enclosed the line refers to "ant.I ~ individual you please, a The clause following the semi-colon is a 
generalization of our earlier remark about quantification, and it will enable us to interpret any 
line of identity, if we proceed by the endoporeutic method,--if ,  that is, we first read all unenclosed 
or level-0 lines, then all once-enclosed or level-I lines, then all twice-enclosed or level-2 lines, and 
SO Oil. 

Figure  2,1. 

a, m a . l l  of , - - -  is a 

Figure 25. 

Thus, in Figure 24, ttle unenclosed or level-0 line is read first, which gives "There is a man, 
such that, taking any woman you please, she is a child of that man." In Figure 25, there is no 
level-0 line, so the level-1 line is read first: "Take any woman you please, she is the child of some 
man (or other)." The difference between the two graphs consists in the order of selection of the 
individuals, and this makes all the difference between truth and falsity. For in Figure 24, where 
the man is chosen first, the claim is that every woman has the same father. Figure 25 claims 
only that every woman has a father. 

a.. 4. Special Cases 

To make the claim that  at least two objects exist, we scribe the graph of Figure 26. Literally, 
this means "There is an object and there is an object and it is false that  these objects"--denoted 
by the two unenclosed parts of the line---"are identical." By means of this graph, we can say such 
things as "Some woman has two husbands" (Figure 27). Figure 28 means ~rhere is something, 
and it is false that there is something else non-identical to i t " - - tha t  is, "Something is identical 
with everything." If we attach the predicate "is God" to the unenclosed end of tile line only, as 
in Figure 29, we obtain the statement "God is identical with everything," which perhaps is what 
some llindus believe about Brahman. If we attach the predicate to both ends of the line, we 
obtain (Figure 30) the statement "There is (exactly) one God," which expresses half of the creed 
of Islam. Figure 31 expresses the Unitarian theology as summarized by Whitehead: "There is 
one God at most." 

A special and important class of scrolis consists of those whose outer area either is blank or 
contains only portions of lines of identity which pass from inside the inner area to outside the 

3 In some  g raphs ,  such  as t h a t  of  Figure  26, a llne of  ident i ty  m a y  represent  more  t h a n  one idividual;  such  a llne 
can  be  recognized by its hav i ng  more  t h a n  one lea.~t enclosed par t .  
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husband o i ~ , m  is 

husband o 

Figure 26. Figure 27. Figure 28. 

a w o r n  a ~  

~ i s  G o ~  ~ 1  

Figure 29. Figure 30. Figure 31. 

outer area. Any such scroll is called a doable cut (DC). Figures 32, 33, and 34 are examples 
of such scrolls; Figures 32 and 33 qualify as double cuts because their outer areas are blank; 
Figure 34 qualifies because its line of identity extends from outside the outer cut to inside the 
inner cut, there being no other graph on the outer area of the scroll. Figure 35 fails to qualify as 
a DC, because the line of identity terminates on its outer area, and the termination counts as a 
graph. It is readily seen that the double cut is the graphical equivalent of double negation. 

Figure 32. Figure 33. Figure 34. Figure 35. 

Should a line of identity terminate on a cut, it is to be interpreted according to this convention: 
points on a cut shall be considered to lie outside the area of that cut. Thus, Figure 36 has the 
same meaning as Figure 37 ("Something is F and Q is false"), and Figure 38 the same meaning 
as Figure 39 ("Something is not F and Q is true"). 

q q 

Figure 36. Figure 37. Figure 38. Figure 39. 
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3. D E D U C T I O N  

8.1. Axioms and Rules 

We have introduced the three special symbols of E G ,  namely SA, the cut, and the line of 
identity. For a formal development of the system we need, in addition, an infinite supply of 
predicates with no hooks, predicates with one hook, predicates with two hooks, and so on. 

Figure 40. Figuxe 41. Figure 42. 

The class of graphs is specified as follows: ( t )  Any part of the blank SA is a graph. (2) Any 
unattached line of identity is a graph. (3) If P and Q are graphs, then their simple juxtaposition 
PQ is a graph. (4) If P is a graph, then the enclosure consisting of a single cut with P alone 
scribed on its area (Figure 40) is a graph. (5) A predicate  F with n hooks, n = 0, 1,2, ..., is a 
graph iff each hook is attached to some line of identity. Such lines need not be enclosed by every 
cut that  encloses F, nor is it required that  all n lines be distinct (for n > 1). Thus, for n = 3, 
Figures 41 and 42 are graphs. It follows from (5), when n = 0, that any predicate having no 
hooks is a graph. 

There are two axioms in EG:  the blank sheet of assertion, SA, and the unenclosed, unattached 
line of identity. To make the line of identity an axiom is to assume that  there is at least one 
object in any universe of discourse we choose. 

The following five rules of transformation are the only inference rules required for elementary 
logic. We show below that  none of them can change a true graph into a false one. 

R.I. The rule of erasure. Any evenly enclosed graph may be erased, except for lines of identity 
which cross cuts---only evenly enclosed portions of such lines may be erased. 

R2. The rule of insertion. Any graph may be scribed on any oddly enclosed area, and two 
lines of identity (or portions of lines) oddly enclosed on the same area, may be joined. 

R3. The rule of iteration. A graph which already occurs may be scribed again within the same 
or additional cuts. 

R4. The rule of deiteration. Any graph whose occurrence is, or could be, the result of iteration, 
may be erased. 

RS. The rule of the double cut. The double cut may be inserted around or removed (where it 
occurs) from any graph on any area. 

In R3, the word "same" does not mean the same number of cuts, but the identically same cuts. 
And in R4, tile phrase "or could be" is required to emphasize that this rule can be applied even 
when no previous use of R3 has occurred; it is sufficient that the graph to be deiterated might 
have come about  by iteration. In fact, it will facilitate our work with the graphs, if we elaborate 
a bit on IL3 and R4, beginning with a restatement that  makes use of the notion of "same nest of 
cuts"  : 

R3 restated: A graph G may be scribed again on {G} (the area of its original occurrence), o r  
on any more-times-enclosed area of the same nest of cuts, but not on an area which is part 
of G itself. 

R.4 restated: If two or more instances of the same graph G occur on the same area, all but one 
may be erased; and if two or more instances of G occur on different areas of the same nest 
of cuts, those that are more-times-enclosed may be erased. 

To clarify the application of these rules to lines of identity, we expand their s tatement into 
several clauses each: 

R3 permits (a) a branch with a loose end to be added to any line of identity, provided that 
no crossing of cuts results from this addition; (b) any loose end of a line to be extended 
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inwards through cuts; (c) any line thus extended to be joined to the corresponding line of 
an iterated instance of a graph; and (d) the two loose ends that are the innermost parts of 
a line to be joined by inward extensions, forming a cycle: a self-returning line of identity. 

R4 permits (a) a branch with a loose end to be retracted into any line of identity, provided 
that  no crossing of cuts occurs in the retraction; (b) any loose end of a line to be retracted 
outwards through cuts; and (c) any cycle to be cut at its inmost part. 

3.2. Elementary Inferences 

The rule of insertion (R2) enables us to transform the graph of Figure 43 into that of Figure 44, 
since this is to introduce Q onto an oddly-enclosed area. Two applications of the rule of erasure 
(R1) transform Figure 45 into Figure 46: first erase the evenly-enclosed (because unenclosed) 
cut-P, and next erase the level-2 R. Note that the removal of the cut from around the P would 
not be a legitimate application of erasure, since what occurs evenly enclosed in Figure 45 is not 
a cut, but an enclosure. 

Figure 43. Figttre .FI. Figure 45. Figure .16. 

The simplest applications of iteration (R3) and deiteration (R4) enable us to transform Figures 
47 and 48 into each other. Iteration across cuts permits us to transform Figure 49 into Figure 50, 
since the new occurrences of P and cut-R are in a nest of cuts located on {P} and {cut-R} (" the  
place of cu t -R ' ) .  Note that R itself cannot be iterated onto the level-2 area, which is {cut-Q}, 
because in Figure 49 {R} is not in the same nest of cuts as is {cut-Q}. In Figure 51, there are two 
occurrences of P in the same nest of cuts. Deiteration allows tile transfornlation of Figure 51 into 
Figure 52, since the P, which is eliminated, was more-times-enclosed than tile P which remains. 

Figure 47. Figure 48. 

Figure 49. Figure 50. Figure 51. Figure 52. 

Figure 53. Figure 54. Figure 55. 
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Graphs in which lines of identity occur can, of course, undergo all the transformations illus- 
trated thus far, but there are some transformations pecuhar to lines of identity. For example 
iteration (R3) transforms Figure 53 into Figure 54; by clause (a) of the same rule, Figure 54 can 
be transformed into Figure 55, in which a branch has been added to the oddly enclosed line; by 
clause (b), the line can be extended into the cut, yielding Figure 56; and clause (c) permits the 
joining of the fines on the evenly enclosed area, as in Figure 57. Deiteration (R4) can reverse 
each of these steps, giving us Figure 53 again. (The transformation of Figure 57 into Figure 56 
consists in the erasure on a twice-enclosed area of a connection or join which also occurs on 
a once-enclosed area of the same nest of cuts.) An alternative way to obtain Figure 53 from 
Figure 57 would be to begin by applying deiteration to Figure 57 in order to obtain Figure 58, 
and then retracting the line by clauses (c) and (b) of the rule. Variations on the steps from 
Figure 53 to Figure 57 occur so frequently that it is convenient to omit the intermediate steps, 
scribing only the first and the last, and labelling the inference "R3/R3(a, b, c)." If, for reasons 
of clarity, ttle initial iteration is shown (by a graph corresponding to that of Figure 54), the 
inference exemplified in Figures 54 to 57 (omitting steps corresponding to Figures 55 and 56) will 
be labelled "R3(a, b, c)." 

Figure 56. Figure 57. 

Figure ,58. 

8.3. Theorems and Metatheorerns 

Peirce sometimes said that EG provides a "motion picture of thought." Animated drawings 
might best depict tile gradual changes taking place as an inference proceeds. At the start, we 
would see the blank SA or a graph representing the premises of an argument; we would then see 
the graph change as the rules of transformation are applied; the final result would be a theorem, 
or a conclusion of the argument. Note, however, that if no film or videotape were made of a 
graphical inference, everything except the conclusion would disappear; for the process itself does 
not provide a record of the premises or of the intermediate stages of the transformation. 

To remedy this inconvenience, we represent a proof in EG by a set of graphs each of which 
can be thought of as a "frame" taken from a film or a videotape of the inference. This makes our 
proof format much like that used in other systems of logic. Each graph is numbered as it enters 
the proof set, and to the right of each we indicate how its inclusion in the set is justified. 
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As a first illustration we present the proof of a graphical analogue of the theorem (ll x) (ll y)
[Fx::::> (Gy::::> Fx)]:

(ht~
1. C_ g R5 (Double out)

At Step 3, we make use of the abbreviation introduced in the final paragraph of the previous
section.

Another standard move in EG is to iterate an entire graph onto some area of another graph. We
illustrate it in Step 3 of the following proof of the categorical syllogism known as "Barbara": From
"All F is G" and "All G is H," we are entitled to infer "All F is H"; that is, from (lIx) [Fx::::> Gx]
and (lIx) [Gx ::::> Hx], we may infer (lIx) [Fx ::::> Hx].

1.

2.

3.

CvtTI
~

Premise

Premise

1,2, R3
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4. 3, b) 

5. 4, R2 

5, R4: Deit. level-3 line-G 

In Step 3, tile second premise has been iterated onto the second area of tile first premise. The 
inward extension of the line is, as usual, justified by R3; but the joining of tile lines ill Step 5 
cannot be justified by R3(c) because the level-3 line-G is not an iteration of the level-2 line-G, 
but of the line-G of Premise 2. Since the lines to be joined occur on an oddly enclosed area, 
they may be joined by R2. This common sequence of inferences will often be abbreviated by the 
omissiou of tile graph corresponding to Step 6; the label "R3/XJ/R2" will call attention to this 
extension by R3 and subsequent joining by R2. The Step 6 deiteration of the level-3 line-G is 
justified because, as a result of Step 5, the two occurrences of the predicate G are attached to 
the same line of identity; this qualifies the innermost G as a "could have been" iteration of the 
level-2 G (see the initial statement of R4). 

Figure 59. Figure 60. Figure 61. 

The Beta axiom, the unenclosed and unattached line of identity, enables us to prove the 
graphical version of (Vz) Fz D (3z) Fz,  given in Figure 59, which asserts "If everything is F, 
then there exists something which is F." We start by inserting "Everything is F" onto the oddly 
enclosed outer area of a double cut (use R5 first, then R2), which yields Figure 60. Iteration 
(R3) gives us Figure 61. Now we scribe the Beta axiom on SA (Figure 62), iterate it by R3 onto 
the level-2 area (Figure 63), and use R3/XJ/R2 (see preceding paragraph) to obtain Figure 64. 
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Figure 62. Figure 63. 

Figure 64. 

Removal of the resulting double cut by R5, and the level-0 line by Rl, yields the desired theorem 
(Figure 59). 

Here is a more complex proof. The graphs of Figures 65 and 6{} can each be derived from the 
other. This equivalence is the theorem [(3x) Fx V (3x) Gx] -- (:Ix) [Fx V Gx]. 

Figure 65. Figure 66. 

The inference from Figure 66 to Figure 65 is straightforward, but the converse inference requires 
subtlety. It is tempting to say that the initial addition of double cuts is the "key" to the proof, 
but the proper insertions onto level-3 and the strategy of constructing an opportunity for the 
Step 7 use of deiteration are also essential. Taking the graph of Figure 65 as our premise, we 
begin by adding a double cut: 

. Figure 65, R5 

. 
G 

1, R2 



. 

The existential ~'aphs 

2, R3/XJ/R2 
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4. 

. i 

. 

3, R5 

4, R2 

5, It3/XJ/it2 

6, R4 

From Step 7, Figure 66 follows by R5. 

3.4. Analysis of art Argument 

To illustrate the application of EG to arguments stated in ordinary language, we take an 
example from Antoine Arnauld's Port Royal Logic of 1662: "No man can abandon hinmelf. Every 
man is an enemy to himself. Therefore, there are some enemies whom we cannot abandon." This 
is an EAO Aristotelian syllogism in the third figure, which is expressed as follows in EG:  

. ~ is a m a n  h i m s ~ e ~  
is a b a n d o n e d  b y  
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- ' f ~ i s  a m a n  e l f ~ ~  
2. is an e n e m y  to h ims  

.'. i~s an e n e m y  to himsel~lf~ 

a b a n d o n e d  by h ims  

This is a valid argument in traditional logic where the existential import of universal statements 
is assumed; but in modern logic the universal statement "No man is abandoned by himself" is 
not taken as a guarantee that any man exists. In EG, therefore, we add this guarantee as an 
additional premise (Step 3), and the inference now is practically immediate. 

3. , . ._ . , is  a m a n  

By what we have been calling R3/XJ/R2, we cause the line of identity attached to "is a man" 
to branch, we extend it into the level-I areas of Steps 1 and 2, and join it to the lines already on 
those areas; this produces Step 4. 

~.:: a m a n  h i m s e ~ l f  
a b a n d o n e d  by 

. - i s  a m a n  

an e n e m y  to hires 

3, t, 2, r /xJ/P,.2 

Because each occurrence of tile predicate "is a man" is connected to the same line of identity, the 
more-times-enclosed occurrences can be deiterated, which yields Step 5. Now remove the double 
cut (by R5) and erase tl,e level-0 line-(is a man) to obtain the conclusion. 

. 

• • i s  a b a n d o n e d  b y _ h i m s e l f ~  

i5 a m a n  

~ a s a n  e n e m y  to h i m ~ e l f ~  

4,8.4 

It is somewhat inaccurate, however, to press these sentences into categorical form. A more 
natural way to express them is readily available in EG. Thus, to express the statement "No 
man can abandon himself" we introduce the two-hook predicate "can abandon," and we attach 
the same line of identity to both its hooks as in Figure 67. This says "something can abandon 
itself." To identify that something as a man, we simply attach to the same line of identity the 
predicate "is a man," as in Figure 68. This asserts that some man can abandon himself; but 
we need, as first premise, the negation of this, which we obtain by putting a cut around the 
graph, obtaining Figure 69. The second premise, which also makes use of a two-hook predicate, 
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Figure 67. 

~ & mail. 

n a b a n d o D  

Figure 68. 

a b a n d o n ~  

Figure 69. Figure 70. 

is given in Figure 70. Let us take the conclusion to mean "Every man has some enemy whom 
he cannot abandon," which seems to be a fair rendering of the original. (The original, taken 
by itself, appears to suggest that everybody has the same enemy, which is not supported by the 
premises and is probably false as well.) The graph is given in Figure 71. A slightly more literal 
reading is "Take any [this reads the level-1 line of identity] man you please, there is at least one 
[this reads the level-2 line] enemy of his whom he cannot abandon." 

( 
Figure 71. 

1S a m a n  

Figure 72. 

a m a n  

a m a n  

an a b a n d o n ~ I s  e n e m y  

Figure 73. 

The first step in deriving this conclusion from its premises is to iterate the first premise (Fig- 
ure 69) onto the level-2 area of the second premise (Figure 70), which gives Figure 72. Next, 
we make two uses of our abbreviation labelled "R3/XJ /R2,"  first on the level-I line of identity, 
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attaching it to the level-3 line; second on the level-2 line, attaching it to a different portion of that 
same level-3 line. This gives us Figure 73. Now we deiterate the level-3 predicate "is a man," 
and by R4(c) break the cyclic line of identity on level-3 (its "inmost part"),  which results in 
Figure 74. We then use R4(a) to retract the loose ends of the line on level-3, and erase a portion 
of the level-2 line by R1 in such a way as to produce Figure 75. From this graph the conclusion 
follows immediately, by retracting onto level-1 the loose end of the line produced by R1. 

Figure 74. 

Figure 75. 

4. C O N S I S T E N C Y  

4.1. The Valuation Procedure 

Deductive reasoning is good if it yields only true conclusions from true premises, and not 
otherwise. To show that this is tile case for reasoning carried out in EG,  we analyze the effects 
of our rules of inference, in terms of the following method for evaluating graphs. 

Let 1 and 2 represent the truth-values truth and falsehood, respectively. By value of an area 
is meant the value of the juxtaposition, that is, the conjunction, of all the graphs scribed on 
that area. This value is calculated by the rule that a conjunction has the value 1 (true) iff each 
conjunct has the value 1. This means that a single 2 on an area is sufficient to give the area the 
value 2. Ttle value of a graph is indicated by placing a 1 or a 2 next to the graph. The value of 
an area is indicated by placing a 1 or a 2 inside square brackets on that area. The value of an 
enclosure, indicated by a 1 or a 2 placed just outside its cuts, is 2 (false) if the value of its area 
is 1 (true), and it is I (true,) if the value of its area is ~ (false). By value of the cut K is meant 
the value of tile enclosure whose outermost cut is K. And by n-th area of a given nest of cuts is 
meant the area enclosed by n number of cuts. 

To illustrate the procedure, we show that "P scrolls Q" has the value 2 when P = 1 and Q = 2; 
the evaluation, outlined in Figure 76, takes 5 steps. If we wish to determine the value of "P scrolls 
Q" for all possible values of P and Q, we can use a truth-table as in Figure 77. The two left-most 
columns, the reference columns, set out the four possible combinations of truth-values for the 
graphs P and Q. The values are arranged in columns beneath the letters, beneath the square 
brackets, and beneath the left-most edges of the cuts to which they belong. Each of the values 
in the table proper, beneath the graph being evaluated, is obtained according to the method 
explained above. The calculations in a given row of the table are based on the values assigned 
to P and Q in the reference columns for that row. 
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~ ~"~ ' - ' - ( 3 )  ca lcula te  c u t - q  value  

(4) ca lcu la te  level-1 value 

4 ( 5 )  ca lcula te  va lue  of  ent i re  g raph  

Figure 76. 

- ( i )  en te r  P ,  Q values 

(2) calcula te  level-2 value 

P Q 

1 1 
I 2 
2 i 
2 2 

(cJ 
1 2 1 2 1 l 
2 1 1 1 2 2 
1 2 2 2 1 1 
i 2 2 1 2 2 

Figure 77. 

Truth-tables are convenient as long as lines of identity are not involved in the graphs being 
evaluated; the presence of lines complicates matters: the size of the universe becomes relevant, 
the number of hooks belonging to each predicate must be noted, and the procedure is subject 
to certain limitations which do not concern us here. Nevertheless, whenever the procedure can 
be applied to a graph G, the resulting truth-table must show as values for G either (a) a I in 
every row, or (b) a 2 in every row, or (c) a 1 in some rows and a 2 in the others. It is the first 
case (a) which is of interest to us, because that is the case in which G is said to be valid; and the 
consistency of EG depends upon the proof that every theorem is valid. 

To be more precise, if a graph G is true for all interpretations of its predicates, for all combina- 
tions of values of its partial graphs, and for a non-empty universe of a given size--say, k number 
of objectsmthen: G is said to be valid ia that universe of k objects. And G is said to be valid if it 
is valid in every non-empty universe. The EG axioms, SA and the unenclosed, unattached line of 
identity (Section 9 above), are examples of valid graphs, but valid by stipulation rather than by 
calculation. What we have now to prove is that the EG rules of transformation preserve validity, 
and our proof requires the following five lemmas in which the effects of erasure and insertion are 
made clear. 

LEMMA 1. Let a and ~ be areas of  the nest o f  cuts N, such that a D_ 8. I f  the va/ue of~  has no 
effect on the value of a, then the value of~ has no effect on the value of  N. 

PROOF. This follows from the fact that, according to the valuation procedure just introduced, 
the calculation of the value of a nest of cuts begins from inside the nest and proceeds outwards. 
(For the value of a cut depends upon the value of its area; the value of an area depends upon 
the values of all the graphs scribed on it; and so on.) And, in this calculation, the value of each 
area is used exactly once. 

NOTe.. The following lemmas consider the erasure and insertion of 9raphs in 9eneral. This 
includes, among other things, portions of lines of identity. Thus, to erase a portion of a line of 
identity is to erase a graph (a graph asserting identity); and to join lines is to insert a graph 
(again, a graph asserting identity). Notice that to erase a portion of a line--to break or to sever 
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i t - - is  not to assert the non-identity of the individuals denoted by the newly separated lines; it is 
simply to drop or eliminate a previous claim of identity, so that the resulting graph asserts less 
than the original graph. 

LEMMA 2. To erase a graph from an area a can change the value o f  a from 2 to 1 but not from I 
to 2. 

PROOF. That the erasure of a graph G from a cannot change the value of a from 1 to 2 follows 
from the way in which the valuation procedure assigns a value to juxtaposition (conjunction), 
and from the stipulation that the blank has the value I (which is relevant in case the erasure 
empties a). But the erasure can change the value of a from 2 to I, and it will do so in case G - 2 
and no other graph on a has the value 2. 

LEMMA 3. To insert a graph onto an area a can change the value of  a from 1 to 2 but not [xom 
2 t o l .  

PROOF. That tile insertion of G onto a cannot change the value of a from 2 to 1 follows from 
the way juxtaposit ion is evaluated. But such an insertion can change the value of a from 1 to 2, 
and will do so in case G - 2 and no other graph on a has the value 2. 

LEMMA 4. To erase a graph from an area 8 which is contained by an area a and enclosed by 
two more cuts than a can change the value of a from 2 to I but not from 1 to 2. 

~--~1 °t cut 
Figure 78. 

PROOF. To fix our ideas, consider Figure 78, and suppose that a is enclosed by n cuts, 8 by 
n + 2 cuts; we distinguish two cases. 

Case 1. The value of a is 1. By Lemma 2, to erase a graph from 8 will either make no change 
in the value of 8 or will change it from 2 to 1. If the former, then, of course, no change will 
occur in tile value of a.  And if the latter, again no change will be effected in the value of a; for 
when the value of 8 is 1--no other value changes being made in the nest of cuts--straightforward 
calculation shows that a must retain the value 1. Hence, erasures performed on 8 cannot change 
tile value of a from 1 to 2. 

Case 2. "rite value of a is 2. Then any change in the value of a would be a change from 2 to 1, 
aud this change can result from a value change on 8. For suppose the value 2 of a is a result of 
the value 2 of the (n + 1) Ih cut; then the value of the (n + 1) th area must be 1. To change the 
value of/3 from 2 to 1 would change all of this, as straightforward calculation will show. 

L~-MMA 5. To insert a graph onto an area 8 which is contained by a and enclosed by two more 
cuts than a can change the value of  a from 1 to 2 but not from 2 to 1. 

PROOF. Consider Figure 78 again, with a and 8 identified as in Lemma 4. We distinguish two 
Cases.  

Case I. The value of a is 2. By Lemma 3, to insert a graph onto 8 will either make no change 
in the value of 8, or will change it from 1 to 2. If the former, then no change will result in the 
value of a.  If the latter, then again no change will occur in the value of a; for if the value of 
8 changes from 1 to 2 - -no  other value changes being made in the nest of cuts--straightforward 
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calculation shows that  a must retain the value 2. Hence, insertions onto fl cannot change the 
value of c~ from 2 to 1. 

Case 2. The  value of a is 1. Then any change in the value of a would be a change from 1 
to 2, which can result from an insertion onto/3,  as the reader can verify for himself (using an 
argument  similar to that  in Case 2 of Lemma 4). 

4.2. Preserving Validity 

We now turn to the proof that  reasoning in E G  cannot yield false conclusions from true 
premises. We show, in fact, that  the E G  rules of transformation (Section 9 above) preserve 
validity in the sense that  when the rules are applied to a valid graph as premise, the conclusion 
must also be valid. We use the te rm total graph to denote SA taken together with all the graphs 
scribed on SA. By partial graph is meant  any graph scribed in the presence of other graphs. 

Ft l,  the rule of  erasure, preserves validity. 

PROOF. In Section 4, we defined a graph to be evenly enclosed iff it is enclosed either by an even 
number of cuts or by no cuts at all. We consider the latter case first. 

Case 1. R1 is applied to some graph unenclosed on SA. It  follows immediately from Lemma 2 
that  if the premise, the total graph, has the value I, so does the conclusion, tlence, if the premise 
is vMid, so is the conclusion. 

C,'use 2. I t l  is applied to some graph which is evenly enclosed in a nest of cuts scribed on 
SA.  Now Letnma 2 states that  erasure of a graph from any area can change the value of that  
area from 2 to 1, but not from 1 to 2. Let us call such a change of value a validating change. 
By Lemma 4, validating changes on any area of a nest of cuts produce only validating changes 
on tile area of that  nest enclosed by exactly two fewer cuts. llence, validating changes on some 
k th a r e a  of a nest can produce only validating changes on the (k - 2) th area; validating changes 
on the (k - 2) tn area can produce only such changes on the (k - 4) *h area; and so on. So if k 
is any ew;n nund)er (our supposition for this Case 2), the production of changes will terminate  
on S A ~ a u d  the result is this: validating changes on the k ¢h area of the nest can produce only 
validating changes on SA. By Case 1, such changes on SA preserve validity, llence, in Case 2 
also, if the pretuise, the total graph, has the value 1, so does the conclusion; and if the premise 
is valid, so is the conclusion. This  complete the proof. 

I{2, the rule of  insertion, preserves validity. 

PI tOOF.  Again we consider two cases. 
Ca~e l. It2 is applied to the first area ol" a nest of cuts. Now if the nest of cuts has the value 1, 

the value of its first area amst be 2; and by Lemma 3, insertion cannot change this value, tience, 
if the premise, the total graph, has the value 1, so does the conclusion. And if the premise is 
valid, so is the conclusion. 

Case 2. R2 is applied to an area enclosed by some odd number of cuts greater than one. Now 
Lemma 3 states that  insertion of a graph onto any area can change the value of that  area from 1 
to 2, but not froth 2 to 1. Let us call such a change of value a falsifying change. By Lemma 5, 
falsifying changes on any area of a nest of cuts produce only falsifying changes on the area of 
that  nest enclosed by exactly two fewer cuts. Hence, falsifying changes on some k th area of a 
nest can produce only such changes on the (k - 2) th area; falsifying changes on the (k - 2) th 
area can produce only such changes on the (k - 4) th area; and so on. So if k is any odd number 
greater than one (our supposition for tiffs Case 2), the production of changes will terminate on 
the first area of the nes t - -and  the result is this: falsifying changes on the k th area of the nest 
can produce only falsifying changes on the first area of the nest. By Case I, such changes on the 
first area preserve validity, llence, in Case 2 also, if the premise is valid, so is the conclusion. 
This completes the proof. 

R3 and l't,l, the rules of iteration and deiteration, preserve validity. 

PrtooF. Let N be a nest of  cuts in which the transformations are imagined to take place. Let 
a be the area of the original occurrence of a graph which is to be iterated, or the remaining 
occurrence of a graph which is to be deiterated; and let/3 be the area onto which the graph is to 



660 D.D. ROBERTS 

be iterated by R3, or from which it is to be deiterated by R4. It follows that a D 3. Two c a s e s  

are distinguished. 
Case 1. The graph G to be iterated or deiterated has the value 1. Regardless of the value of ,,3 

before the use of IL3 or R4, it follows from the way juxtaposition is evaluated that the insertion 
of G onto/3 or its removal from/3 cannot change the value of 3 and, therefore, cannot change the 
value of N. Hence, if the premise, the total graph, has the value I, so does the conclusion; and if 
the premise is valid, so is the conclusion. 

Case 2. The graph G to be iterated or deiterated has the value 2. Then the value of a is 
2 regardless of the value of 3 before and after the use of R3 or R4, and it follows from this by 
Lemma 1 that the value of/3 has no effect on the value of N. Hence, if the premise, the total graph, 
has the value 1, so does the conclusion; and, hence, if the premise is valid, so is the conclusion. 

From Cases 1 and 2, it follows that both R3 and R4 preserve validity. 
To see that this proof covers applications of R3 and R4 to lines of identity, it is sufficient to 

recall that the interpretat ion--and,  therefore, the evaluat ion--of  a line of identity depends upon 
the position of its least enclosed part. Thus, (a) the adding or removing of unattached branches of 
a line, without crossing cuts, has no effect oil the interpretation or evaluation of the line; and (b) 
the extension inwards or retraction outwards through cuts, of unattached branches of a line, has 
no effect on the interpretation or evaluation of the line. Furthermore, (c) to join corresponding 
lines of a graph and its iteration, or to break such a join, is to insert or erase an identity claim 
whose value is 1 (precisely because the one graph is an iteration of the other),  and by Case I of 
the proof for R3 and R4, we know that such transformations preserve validity. Finally, (d) the 
formation or disruption of a cycle by R3 or R4 is to insert or erase a graph (an identity claim) 
whose value is 1; and again Case 1 of the proof applies. 

I{5, the rule of  the double cut, preserves validity. 

PItool:. This follows immediately from the valuation procedure ,as applied to the cut. 

Since the E G  axioms arc valid and the E G  rules of transformation preserve validity, it follows 
th;tt any graph proved in E G  from the axioms and rules alone is valid. Tha t  is: " 

"l'llg, VALIDITY TIIEOrtEM. Every E G  theorem is valid. 

Among the several senses of consistency that may be distinguished we define two: (1) A system 
of logic E is said to be consistent with respect to a given transformation, by which each expression 
I ~ of E is transformed into an expression P~, if there is no expression P such that both P and P~ 
are tl,eorems of E. (2) A system E is said to be absolutely consistent if not all of its expressions 
are theorems. 

C o t t O t . L a l t Y  1. E G  is consistent with respect to the transfortnation of  P into cut-P. 

PItool.'. By the definition of validity and the way in which the cut is evaluated, not both P and 
cut-P can be valid. Ilence, by the Validity Theorem, not both P and cut-P can be theoretns of 
EG.  

ColtoLkhrtv 2. E G  is absolutely consistent. 

Pltool.'. The empty cut is not valid (in fact, it always has the value 2), and therefore by the 
Validity Theorem it is not a theorem of EG.  

5. B E Y O N D  A L P I I A  AND BETA  

5.1. Gamma and the Tinctures 

So far, we have restricted our attention to tile Alpha and Beta parts of E G  only; we have 
illustrated reasoning in tile system and, with the consistency proof, reasoning about the system. 
Peirce, however, wanted to provide a way to reason about I~G in EG ,  and he also wanted to 
use tile system to investigate such things as qualities and relations and logical possibilities: At 
the present time, these topics are routinely handled in standard second and higher order logics, 

4 Beta, for example, cannot express  the sentence "Aristotle has all the virtues of a philosopher" because Beta does 
not quantify over predicates .  
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and in modal and many-valued logics. In Peirce's time, however, the idea of incorporating them 
into a formal system was relatively new. Be claimed he "first broke ground" in this part of 
logic in 1885, as a consequence of his study of a paper published in 1882 by one of his students, 
O. I-I. Mitchell; and within two years of his discovery of EG, that is, by 1898, he had begun to 
incorporate these developments into a "Gamma" part of the system, s In both 1903 and 1906, 
Peirce worked intensively on these graphs, and he continued working on them in the following 
years at a more leisurely pace. The history of his accomplishments along these lines is given in 
Roberts 1973 [1]; here we present the briefest possible sketch. 

A - - - - 4 - - - -  ]3 

Figure 79. 

4@ 
Figure 80. 

The Gamma signs are of the same five varieties we have found in Alpha and Beta: graphs 
making or representing assertions, the sheet of assertion, the cut, the line of identity, and spots-- 
Peirce's general term for unanalyzed expressions of predicates. Each of these five varieties takes 
on new forms in Gamma. 

f - = - - B  

Figure 81. Figure 82. Figure 83. 

One of his early special symbols looks simply like a line of identity which has been thickened into 
a node, as in Figure 79, which Peirce translated "A belongs to the general unordered collection B" 
or "A possesses the character B." By means of this symbol Peirce could diagram tile statement 
"Given any two things, there is some character which one possesses and the other does not" 
(this is Figure 80, reading from top to bottom).  A later version of symbols to express logical 
possibilities provided, as in Figures 81-83, characterizations of his three categories, Firstness, 
Secondness, and Thirdness. The figures mean "B possesses the quality A," "B is in the dyadic 
relation A to C," and "B is in the triadic relation A to C for D." These, and other sysmbols of 
tile same sort, he called "the potentials." At the same time that he introduced the potentials 
Pcirce was using colored lines of identity as well as lines placed between two rows of dots in order 
to represent abstractions. 

Figure 84. Figure 85. Figure 86. 

SThese remarks occur in MS 467, p. 12 (1903) [2], in a lengthy passage omitted by Hartshorne and Weiss at the 
very end of [5, 4.511]. Mitchell's essay appeared in $/udies in Logic, a book edited by Peirce, containing essays 
by four other students of his along with several things by Peirce himself [9]. 
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Peirce sometimes used Greek letters to represent predicates needed in scribing graphs of graphs. 
Thus, the lower case gamma represented graph-instances, kappa represented enclosures, and 
alpha represented areas. He altered the look of the cut in various ways and for several years 
experimented with dotted cuts or "rims," saw cuts, and wavy cuts. Figure 84 means "The 
individual X has the character of being a B," Figure 85 ~A is the collection of all X's," and 
Figure 86 "A is one of the collections of X's." 

His most succesful new cut, however, was the broken cut, which is illustrated in the graphs 
of Figures 87-90. They express the following statements: "It is possible that it does not rain," 
"It is necessary that it rains, ~ "It is possible that it rains," and "It is possible that it necessarily 
rains." This is the only Gamma innovation that has caught the attention of more recent logicians. 
Zeman developed a Gamma version of Lewis' modal systems $4, $4.2, and $5 by tinkering, in a 
clever way, with the rules of iteration and deiteration [7]. And Butterworth developed a Gamma 
version of the system T in a similar way [10]. 

As early as 1898, Peirce had the idea of using his sheet of assertion to represent various universes 
of discourse and, in 1903, he spoke of replacing the single sheet with a book of separate sheets 
representing different kinds of possibility. The most ambitious development appeared in 1906, 
when Peirce published an account of his "tinctured" EG: the system was now provided with a 
large supply of tinctured or colored sheets, which were intended to allow the diagramming of 
questions, commands, and resolutions in addition to statements of fact and possibility. Peirce 
continued to work on these ideas after 1906 (as he continued working on the Gamma devices) but 
no further systematic additions were made apart from a very modest beginning in Roberts [1]. 

The range of ideas and the difficulties considered by Peirce are suggested in a draft of a letter 
he wrote to Lady Welby, date March 9, 1906 [3]: 

The system of Existential Graphs (at least, so far as it is at present 
developed) does not represent every kind of Sign. For example, a piece of 
concerted music is a sign; for it is a medium for the conveyance of Form. 
But I know not how to make a graph equivalent to it. So the command 
of a military officer to his men: "tlalt! . . . .  Ground arms!" which is 
interpreted in their action, is a sign beyond the competence of existential 
graphs. All that existential graphs can represent is propositions, on 
a single sheet, and arguments on a succession of sheets, presented in 
temporal succession. 

My guess is that Peirce hoped the tinctured graphs or some other improved version would do the 
job even for such things as music and commands. This would explain the optimism expressed 
in tile following remark from a later unpublished manuscript, MS 499s [2]: "There are countless 
Objects of consciousness that words cannot express; such as the feelings a symphony inspires or 
that which is in the soul of a furiously angry man in [the] presence of his enemy. But all these 
can perfectly be expressed in Graphs." It may still be premature to conclude that Peirce was 
simply daydreaming here, but I confess that this last claim seems mysterious. 

II 
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Figure 87. Figure 88. Figure 89. Figure 90. 

5.2. Work in Progress: Pronovost's Computational Model for EG 

In the 1970's, Roberts developed a method for determining the truth value of certain Beta 
graphs. Although the decision problem for the whole of first order logic is unsolvable, many 
interesting subsets are decidable [I 1]. And just as the method of trees is useful for these subsets 
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when logic is treated in one of the standard algebraic notations, so Roberts' method, which he 
calls "weeds," has proved useful for Beta graphs. 

When Dan Pronovost of Watcom Systems Inc. (Waterloo, Ontario) was introduced to weeds, 
he thought that a full implementation of the method would be greatly facilitated if the work 
could be done by a computer. The first problem was to develop a representation of EG by means 
of a model which is (I) isomorphic to EG, (2) faithful to the unusual features of EG, s (3) easy 
to program, and (4) computationaUy efficient. 

It is not necessarily best to model a system such as EG directly. For one thing, although the 
topological properties of the graphs yield an elegant and productive representation of logic for 
human interpretation, they produce many difficulties for a computer model. While it might be 
possible to represent the topology of the graphs in a program, the discrete nature of computer 
programs does not suggest an effective or reliable representation. Instead, Pronovost based his 
model on a tree oriented data structure. The result, which he calls "Tree Existential Graphs" 
(TEG),  satisfies the four constraints listed above. 

So far, Pronovost and Roberts have developed translation algorithms from EG to TEG and 
from TEG to EG, and have verified that these transformations preserve the isomorphism of the 
two systems. These algorithms, programmed in the C programmer's language, have allowed us 
to represent the full variety of Beta graphs on the computer. 

We have begun translating the EG rules of transformation into their T E G  equivalents, but 
work in this area remains to be done. The next job is to translate weeds into TEG.  Once this is 
done, we shall use T E G  to complete the job of formalizing weeds and to confirm that the method 
is sound. 

Our intention in programming weeds is to investigate whether or not a decision algorithm 
for logic based on the features of EG (as translated into TEG) is sufficiently computationally 
efficient to be of some practical use. As is well known, many of the standard decision proofs are 
based on methods whose order of computation is so high as to render them nearly useless from 
a practical point of view. 7 
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