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OBJECTIVES

e Apply the stress intensity factor K of fracture mechanics to fatigue crack growth and to
environmental crack growth, and understand test methods and trends in behavior.

e Explore fatigue crack growth rate curves, da/dN versus AK, including fitting common
equations and evaluating R-ratio (mean stress) effects.

e Calculate the life to grow a fatigue crack to failure, including cases requiring numerical
integration and cases of variable amplitude loading. Employ such calculations to evaluate
safety factors and inspection intervals.

11.1 INTRODUCTION

The presence of a crack can significantly reduce the strength of an engineering component due to
brittle fracture, as already discussed in Chapter 8. However, it is unusual for a crack of dangerous
size to exist initially, although this can occur, as when there is a large defect in the material used
to make a component. In a more common situation, a small flaw that was initially present develops
into a crack and then grows until it reaches the critical size for brittle fracture.

Crack growth can be caused by cyclic loading, a behavior called fatigue crack growth. However,
if a hostile chemical environment is present, even a steady load can cause environmental crack
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Figure 11.1 Growth of a worst-case crack from the minimum detectable length a4 to
failure (a), and the resulting variation in worst-case strength (b).

growth. Both types of crack growth can occur if cyclic loads are applied in the presence of a hostile
environment, especially if the cycling is slow or if there are periods of steady load interrupting
the cycling. This chapter primarily considers fatigue crack growth, but limited discussion of
environmental crack growth is included near the end in Section 11.10.

Engineering analysis of crack growth is often required and can be done with the stress intensity
concept, K, of fracture mechanics. Recall from Chapter 8 that K quantifies the severity of a crack
situation. Specifically, K depends on the combination of crack length, loading, and geometry
given by

K = FS\/ma (11.1)

where a is crack length, S is nominal stress, and F is a dimensionless function of geometry and
the relative crack length @« = a/b. The rate of fatigue crack growth is controlled by K. Hence, the
dependence of K on a and F causes cracks to accelerate as they grow. The variation of crack length
with cycles is thus similar to Fig. 11.1(a).

The analysis and prediction of fatigue crack growth has assumed major importance for large
engineered items, especially where safety is paramount, as for large aircraft and for components in
nuclear power plants. Note that the stress-based approach to fatigue of Chapters 9 and 10 does not
consider cracks in a specific and detailed manner. Hence, this chapter provides an introduction to
crack growth, including materials testing, trends in materials behavior, and prediction of the life to
grow a crack to failure.

11.2 PRELIMINARY DISCUSSION

Before proceeding in detail, it is useful to describe the general nature of crack growth analysis and
the need for it, and further to present some definitions.

11.2.1 Need for Crack Growth Analysis

It has been found from experience that careful inspection of certain types of hardware often reveals
cracks. For example, this is the case for large welded components, such as pressure vessels and
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bridge and ship structure, for metal structure in large aircraft, and for large forgings, as in the rotors
of turbines and generators in power plants. Cracks are especially likely to be found in such hardware
after some actual service usage has occurred. The possibility of cracks strongly suggests that specific
analysis based on fracture mechanics is appropriate.

Let us assume that a certain structural component may contain cracks, but none are larger than
a known minimum detectable length a,. This situation could be the result of an inspection that is
capable of finding all cracks larger than ag, so that all such cracks have been repaired, or the parts
scrapped. (Inspections for cracks are done by a variety of means, including visual examination,
X-ray photography, reflection of ultrasonic waves, and application of electric currents, where in the
latter case a crack causes a detectable disturbance in the resulting voltage field.) This worst-case
crack of initial length a4 then grows until it reaches a critical length a., where brittle fracture occurs
after N, cycles of loading. If the number of cycles expected in actual service is N, then the safety
factor on life is

Xy==L (11.2)

This situation is illustrated in Fig. 11.1(a). Such a safety factor is needed because uncertainties exist
as to the actual stress that will occur in service, the exact a4 that can be reliably found, and the crack
growth rates in the material.

The critical strength for brittle fracture of the member is determined by the current crack length
and the fracture toughness K. for the material and thickness involved:

K.

F.ma

As the worst-case crack grows, its length increases, causing the worst-case strength S, to decrease,
with failure occurring when S, reaches Spmax, the maximum value for the cyclic loading applied in
actual service. This is illustrated in Fig. 11.1(b). The safety factor on stress against sudden brittle
fracture due to the applied cyclic load is

Sc ==

(11.3)

X, = Sc (11.4)

S max

Such a safety factor is generally needed in addition to X y because of the possibility of an unexpected
high load that exceeds the normal cyclic load. Within the expected actual service life, X, decreases
and has its minimum value at the end of this service life.

It sometimes occurs that the combination of minimum detectable crack length a; and cyclic
stress is such that the safety margin, as expressed by Xy and X, is insufficient. Predicted failure
prior to reaching the actual service life, Xy < 1, may even be the case. Periodic inspections for
cracks are then necessary, following which any cracks exceeding a; are repaired, or the part
replaced. This ensures that, after each inspection, no cracks larger than a; exist. Assuming that
inspections are done at intervals of N, cycles, the length of the worst-case crack increases due
to growth between inspections, varying as shown in Fig. 11.2. The safety factor on life is then
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Figure 11.2 Variation of worst-case crack length (a), and strength (b), where periodic
inspections are required.
determined by the inspection period:
N.
Xy = —L (11.5)
Np

After each inspection, the worst-case strength of the member temporarily increases, as shown in
Fig. 11.2(b). The safety factor on stress is lowest just prior to each inspection.

Analysis based on fracture mechanics allows the variations in crack length and strength to be
estimated so that safety factors can be evaluated. Where periodic inspections are necessary, fracture
mechanics analysis thus permits a safe inspection interval to be set. For example, for large military
and civilian aircraft, cracks are so commonly found during periodic inspections that safe operation
and economic maintenance are both critically dependent on fracture mechanics analysis. The term
damage-tolerant design is used to identify this approach of requiring that structures be able to
survive even in the presence of growing cracks.

In reality, the detectable crack length a, is not an absolute limit, as the probability of finding a
crack in inspection increases with crack size, but is never 100%. For example, in the aircraft industry,
values of a4 for various inspection methods are generally established as the size that can be found
with 90% probability at a confidence level of 95%. On this basis, the better inspection methods give
ag values on the order of 1 or 2 mm under normal circumstances. Note that a4 is usually defined
as the depth of a surface crack or half the width of an internal crack, on the basis of typical flaw
geometries, as in Figs. 8.17 and 8.19. Cracks as small as a = 0.1 mm can be found, but a; values
this small can be justified only in special cases.

In addition to design applications, analysis of crack growth life is also useful in situations
where an unexpected crack has been found in a component of a machine, vehicle, or structure. The
remaining life can be calculated to determine whether the crack may be ignored, whether repair or
replacement is needed immediately, or whether this can be postponed until a more convenient time.
Situations of this sort have arisen in steel-mill machinery, where an immediate shutdown would
disrupt operations and perhaps cause a large employee layoff. Similar situations have also occurred
in turbine-generator units in major electrical power plants, where fracture of a large steel component
could cause a power outage and expenditures of millions of dollars.
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11.2.2 Definitions for Fatigue Crack Growth

Consider a growing crack that increases its length by an amount Aa due to the application of a
number of cycles AN. The rate of growth with cycles can be characterized by the ratio Aa/AN or,
for small intervals, by the derivative da/dN. A value of fatigue crack growth rate, da/dN, is the
slope at a point on an a versus N curve, as in Fig. 11.1(a).

Assume that the applied loading is cyclic, with constant values of the loads Pmax and Ppin. The
corresponding gross section nominal stresses Smax and Spip are then also constant. For fatigue crack
growth work, it is conventional to use the stress range A S and the stress ratio R, which are defined
as in Egs. 9.1 and 9.3:

Sin

AS = Smax - Smin, R =

S max

(11.6)

The primary variable affecting the growth rate of a crack is the range of the stress intensity
factor. This is calculated from the stress range A S:

AK = F AS{/ma (11.7)

The value of F depends only on the geometry and the relative crack length, o« = a/b, just as if the
loading were not cyclic. Since, according to Eq. 11.1, K and § are proportional for a given crack
length, the maximum, minimum, range, and R-ratio for K during a loading cycle are respectively
given by

Kmax = FSmaxv/7a, Kmin = FSminv/ma

Kunin (11.8)

AK = Kmax - Kminy R =
Kmax

Also, it may be convenient, especially for laboratory test specimens, to use the alternative expression
of K in terms of applied force P, as discussed in Chapter 8 relative to Eq. 8.13:

(11.9)

11.2.3 Describing Fatigue Crack Growth Behavior of Materials

For a given material and set of test conditions, the crack growth behavior can be described by the
relationship between cyclic crack growth rate da/d N and stress intensity range AK . Test data and
a fitted curve for one material are shown on a log—log plot in Fig. 11.3. At intermediate values of
AK, there is often a straight line on the log—log plot, as in this case. A relationship representing this
line is

da

— =C(AK)" 11.10

N (AK) ( )
where C is a constant and m is the slope on the log—log plot, assuming, of course, that the decades
on both log scales are the same length. This equation is identified with Paul Paris, who first used
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it and who was influential in the first application of fracture mechanics to fatigue in the early
1960s.

At low growth rates, the curve generally becomes steep and appears to approach a vertical
asymptote denoted AK,,, which is called the fatigue crack growth threshold. This quantity is
interpreted as a lower limiting value of AK below which crack growth does not ordinarily occur.
At high growth rates, the curve may again become steep, due to rapid unstable crack growth just
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Figure 11.3 Fatigue crack growth rates over a wide range of stress intensities for a ductile
pressure vessel steel. Three regions of behavior are indicated: (a) slow growth near the
threshold AKy,, (b) intermediate region following a power equation, and (c) unstable rapid
growth. (Plotted from the original data for the study of [Paris 72].)
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prior to final failure of the test specimen. Such behavior can occur where the plastic zone is small, in
which case the curve approaches an asymptote corresponding to Kyax = K, the fracture toughness
for the material and thickness of interest. Rapid unstable growth at high AK sometimes involves
fully plastic yielding. In such cases, the use of AK for this portion of the curve is improper, as the
theoretical limitations of the K concept are exceeded.

The value of the stress ratio R affects the growth rate in a manner analogous to the effects
observed in S-N curves for different values of R or mean stress. For a given AK, increasing R
increases the growth rate, and vice versa. Some data illustrating this effect for a steel are shown in
Fig. 11.4.

Constants C and m for the intermediate region where Eq. 11.10 applies have been suggested
by Barsom (1999) for various classes of steel. These apply for R &~ 0 and are given in Table 11.1.
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Figure 11.4 Effect of R-ratio on crack growth rates for an alloy steel. For R < 0, the
compressive portion of the load cycle is here included in calculating AK. (Data from
[Dennis 86].)
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Table 11.1 Constants from Barsom (1999) for
Worst-Case da/dN Versus AK Curves for Various
Classes of Steel for R~ 0

Constants for da/dN = C(AK)™

mm/cycle in/cycle
Class of Steel C, MPa/m)" C, (ksijin)m m

Ferritic-pearlitic  6.89 x 107 3.6 x 1071 3.0
Martensitic 1.36 x 1077 6.6 x 10~ 2.25
Austenitic 561 x 1072 3.0x107'0 325

Note: For use with the Walker equation for R > 0.2, it is
suggested that the given constants be employed as Cy and
m along with an approximate value of y = 0.5.
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Figure 11.5 Steps in obtaining da/dN versus AK data and using it for an engineering
application. (Adapted from [Clark 71]; used with permission.)
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The value of m is important, as it indicates the degree of sensitivity of the growth rate to stress.
For example, if m = 3, doubling the stress range AS doubles the stress intensity range AK, thus
increasing the growth rate by a factor of 2" = 8.

11.2.4 Discussion

The logical path involved in evaluating the crack growth behavior of a material and using the
information is summarized in Fig. 11.5. First, a convenient test specimen geometry is employed
in tests at each of several different load levels, so that a wide range of fatigue crack growth rates is
obtained. Growth rates are then evaluated and plotted versus AK to obtain the da/dN versus AK
curve. This curve can be used later in an engineering application, with AK values being calculated
as appropriate for the particular component geometry of interest. Crack length versus cycles curves
for a specific initial crack length can then be predicted for the component, leading to life estimates
and the determination of safety factors and inspection intervals as discussed earlier.

Example 11.1
Obtain approximate values of constants C and m, and give Eq. 11.10 for the data at R = 0.1 in
Fig. 11.4.

Solution These data appear to fall along a straight line on this log—log plot, so it is reasonable
to apply Eq. 11.10. Aligning a straight edge with the data gives a line that passes near two points
as follows:

da _ _
(AK, d—N> =(21,107°)  and  (155,107%)

Here, units of MPa,/m and mm/cycle are used. Now apply Eq. 11.10 to these two points,
denoting them as (AKy4, da/dNy) and (AKp, da/dNp):

da/dNy = C(AKp)™, da/dNp = C(AKp)"
Eliminate C between these two equations by dividing one into the other:

da/d Ny (AKA )’”

dajdNy ~ \AKp

Taking logarithms of both sides and solving for m then gives

_log(da/dNy) —log (da/dNg)  log10™> —log 1072

= = 3.456
log (AKy) —log (AKp) log21 — log 155

Next, obtain C by substituting this m and either known point into Eq. 11.10:

mimn

I
— CQIMPaym O, € = 2.696 x 10710 SYCe

1072
cycle (MPa,/m)"
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Note that C has the unusual units indicated that involve the exponent m. Hence, the desired
relationship, with constants rounded to three significant figures, is

d
ﬁ — 270 x 10719AK)**  (mm/cycle, MPay/m) Ans.

Discussion If a more accurate fit is desired, the original source of the data should be consulted
for numerical values of the data points and a log—log least squares line of the form y = mx + b
obtained. Taking logarithms of both sides of Eq. 11.10 then gives

d
logﬁ =mlog (AK) + log C

d
y:logﬁ, x =log (AK), m=m, b=1logC

11.3 FATIGUE CRACK GROWTH RATE TESTING

Standard methods for conducting fatigue crack growth tests have been developed, notably ASTM
Standard No. E647. Two commonly used test specimen geometries are the standard compact
specimen, Fig 8.16, and center-cracked plates, Fig. 8.12(a).

11.3.1 Test Methods and Data Analysis

In a typical test, constant amplitude cyclic loading is applied to a specimen of a size such that its
width dimension b (as defined in Chapter 8) is perhaps 50 mm. Before starting the test, a precrack is
necessary. This is accomplished by first machining a sharp notch into the specimen and then starting
a crack by cyclic loading at a low level. Cyclic loading is then applied at the higher level to be used
for the remainder of the test. The progress of the crack is recorded in terms of the numbers of cycles
required for its length to reach each of 10 to 20 or more different values, with these being on the
order of 1 mm apart for a specimen of size b ~ 50 mm. The resulting crack length data may then be
plotted as discrete points versus the corresponding cycle numbers, as in Fig. 11.6.

To measure these crack lengths, one approach is simply to note by visual observation, through
a low-power (20 to 50X) microscope, when the crack reaches various lengths that have been
previously marked on the specimen. An arrangement for such a test is shown in Fig. 11.7. More
sophisticated means may be used to measure crack lengths. For example, as the crack grows, the
deflection of the specimen increases, resulting in decreased stiffness. This stiffness change may be
measured and used to calculate the crack length. Another approach is to pass an electric current
through the specimen and measure changes in the voltage field due to growth of the crack, from
which we can obtain its length. Ultrasonic waves can also be reflected from the crack and used to
measure its progress.

To obtain growth rates from crack length versus cycles data, a simple and generally suitable
approach is to calculate straight-line slopes between the data points, as shown in Fig. 11.6.
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a, Crack Length

N, Cycles

Figure 11.6 Crack growth rates obtained from adjacent pairs of a versus N data points.

Figure 11.7 Crack growth rate test under way (left) on a compact specimen (b =51 mm),
with a microscope and a strobe light used to visually monitor crack growth. Cycle numbers
arerecorded when the crack reaches each of a number of scribe lines (right). (Photos by

R. A.Simonds.)

If the data points are numbered 1, 2,3 ... j, then the growth rate for the segment ending at point

number j is
da\ (A4 _ 44 (11.11)
dN F AN j N;j—Nj—
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The corresponding AK is calculated from the average crack length during the interval with either
of the two equations
AP
AK; =F AS /Ty, AKj=Fp—= (11.12)

b
whichever is more convenient. In the first equation,

aj+aj—

: (11.13)

Aavg =

The geometry factor F' = F(«) or Fp = Fp(a), where o = a/b, is evaluated at the same average
crack length, using
Aavg aj +a j—1
Gave =TT T

(11.14)

The foregoing procedure is valid only if the crack length is measured at fairly short intervals.
Otherwise, the growth rate and K may differ so much between adjacent observations that the
averaging involved causes difficulties. Detailed requirements are given in the ASTM Standard. Also,
curve-fitting methods of evaluating da/dN, which are more sophisticated than simple point-to-point
slopes, are sometimes used to smooth the scatter in the a versus N data. Fitting a polynomial over
all of the data from a test usually does not work very well, but such a fit applied in an incremental
manner to portions of the data works well, as described in the ASTM Standard.

Example 11.2
Crack length versus cycles data are given in Table E11.2(a) from a test on a center-cracked plate
of 7075-T6 aluminum. The specimen had dimensions, as defined in Fig. 8.12(a), of h = 445,
b =152.4, and t = 2.29 mm. The force was cycled between zero and a maximum value of
Prax = 48.1 kN. Obtain da/dN and AK values from these data.

Solution The average growth rate between points 1 and 2 is obtained by applying Eq. 11.11
with j = 2:

d — 7.62 —5.08
( “ ) _Lma =1.388 x 1074 mm/cycle Ans.
2

dN ), N,—N; 18,300 —0

The corresponding AK is evaluated by using the average crack length from Eqs. 11.13 and 11.14
with j = 2:

ar +ajp - 7.62 4+ 5.08
2 2

6.3
—6.35mm,  age = = = — 4?1?1 = 0.0417

Aavg =

To evaluate F for this geometry, Fig. 8.12(a) is employed. The value corresponding to oy, is

p_ 12050 +403%6a® 1-0.5(0.0417) +0.326(0.0417)°

= 1.001
V-« V1 —0.0417



572 Chapter 11 Fatigue Crack Growth

Table E11.2
(a) Given Data (b) Calculated Values
j a N da/dN Aavg Qavg F AK
mm cycles mm/cycle mm MPa,/m

1 5.08 0 — — — — —
2 7.62 18300 1.39 x1074 6.35 0.0417  1.001 9.74
3 10.16 28300  2.54 x 10~* 8.89  0.0583 1.002 11.53
4 1270 35000 3.79 x 1074 11.43  0.0750  1.003 13.09
5 1524 40000 5.08 x 10~* 13.97 0.0917  1.004 14.49
6 1778 43000 8.47 x 107* 16.51  0.1083 1.006 15.78
7 2032 47000 6.35 x 107* 19.05  0.1250  1.008 16.99
8 22.86 50000 847 x107* 21,59 0.1417  1.010 18.13
9 2540 52000 127 x 1073 2413 0.1583 1.013 19.21
10 30.48 57000 1.02 x 1073 27.94  0.1833 1.017 20.77
11 3556 59000 2.54x107% 3302 02167 1.025 22.74
12 4064 61000 2.54x1072 3810 0.2500  1.034 24.65
13 4572 62000 5.08 x 1072  43.18  0.2833 1.045 26.52

Source: Data in [Hudson 69].

Hence, using AS = AP/(2bt) in Eq. 11.12, we have

(AK)2 = F ASA/.T[aa\/g

(AK), = 1.001 43, 100N V7(0.00635m) = 9.74 MPay/ Ans
= 1. T (V. m) =723. A/ m .
2 2(152.4mm)(2.29 mm)

Similarly applying Egs. 11.11 to 11.14 with j = 3, and then with j = 4, etc., gives the additional
values seen in Table E11.2(b).

11.3.2 Test Variables

Crack growth tests are most commonly conducted under zero-to-tension loading, R = 0, or tension-
to-tension loading with a small R value, such as R = 0.1. Variations of R in the range 0 to 0.2 have
little effect on most materials, and tests in this range are accepted by convention as the standard
basis for comparing the effects of various materials, environments, etc. It is usually necessary to
test several specimens at different load levels to obtain data over a wide range of growth rates. Such
results for a steel are shown in Figs. 11.8 and 11.9. For more complete data, groups of several tests
at each of several R values can be conducted. Also, if data are desired in the AK;;, region, a special
decreasing load test is needed, as described in ASTM Standard No. E647.

A wide range of variables may affect fatigue crack growth rates in a given material, so that
test conditions may be selected to include situations that resemble the anticipated service use of
the material. Some of these variables are temperature, frequency of the cyclic load, and hostile
chemical environments. Minor variations in the processing or composition of materials may affect
fatigue crack growth rates due to the different microstructures that result. Hence, tests on different
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Figure 11.8 Crack length versus cycles data for four different levels of cyclic load applied to
compact specimens of an alloy steel.

variations of a material may be conducted to aid in developing materials that can best resist fatigue
crack growth.

11.3.3 Geometry Independence of da/dN versus AK Curves

For a given material and set of test conditions, such as a particular R value, test frequency, and
environment, the growth rates should depend only on AK. This arises simply from the fact that K
characterizes the severity of a combination of loading, geometry, and crack length, and AK serves
the same function for cyclic loading. Hence, regardless of the load level, crack length, and specimen
geometry, all da/dN versus AK data for a given set of test conditions should fall together along a
single curve, except that some statistical scatter is, of course, expected. This occurs for the different
load levels and crack lengths involved in Figs. 11.8 and 11.9. There should be a single trend even
if more than one specimen geometry is included in the tests. Some data demonstrating geometry
independence are shown in Fig. 11.10.

Such uniqueness of the da/dN versus AK curve for different geometries is a crucial test of
the applicability of the K concept to both materials testing and engineering applications. (Recall
Fig. 11.5.) This uniqueness has been sufficiently verified, so it is not generally necessary to include
more than one test specimen geometry in obtaining materials data. However, difficulty with the
applicability of AK can occur if there is excessive yielding, or for very small cracks, as discussed
in Section 11.9 near the end of this chapter.
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Figure 11.9 Data and least-squares fitted line for da/dN versus AK from the a versus N data
of Fig. 11.8.

11.4 EFFECTS OF R = Spin/Smax ON FATIGUE CRACK GROWTH

An increase in the R-ratio of the cyclic loading causes growth rates for a given AK to be larger,
which has already been illustrated by Fig. 11.4. The effect is usually more pronounced for more
brittle materials. For example, the granite rock of Fig. 11.11 shows an extreme effect, being sensitive
to increasing R from 0.1 to only 0.2. In contrast, mild steel and other relatively low-strength, highly
ductile, structural metals exhibit only a weak R effect in the intermediate growth rate region of the
da/dN versus AK curve.

11.4.1 The Walker Equation

Various empirical relationships are employed for characterizing the effect of R on da/dN versus
AK curves. One of the most widely used equations is based on applying the Walker relationship,
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Figure 11.10 Fatigue crack growth rate data for a 0.65% carbon steel, demonstrating
geometry independence. (Adapted from [Klesnil 80] p. 111; used with permission.)

Eq. 10.38, to the stress intensity factor K:
AK = Kpax (1 — R)Y (11.15)

Here, y is a constant for the material and AK is an equivalent zero-to-tension (R = 0) stress
intensity that causes the same growth rate as the actual K31, R combination. By applying Eq. 9.4(a)
to K, which gives AK = Kpax(1 — R), Eq. 11.15 is seen to be equivalent to

— AK
AK = TR (11.16)

Let the constant C in Eq. 11.10 be denoted C for the special case of R = 0.

4 _ oAk (R=0) 11.17
N 0 (AK) = (11.17)

Since AK is an equivalent AK for R = 0, we can substitute AK for AK in Eq. 11.17:

da _ ¢ [L]m 11.18
diN ~_ 'l a =R (11.18)

This represents a family of da/dN versus AK curves, which, on a log—log plot, are all parallel
straight lines of slope m. Some manipulation gives

da Co

av = T AR (1.19)
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Figure 11.11 Effect of R-ratio on fatigue crack growth rates for Westerly granite, tested in
the form of three-point bend specimens. (From [Kim 81]; copyright © ASTM; reprinted with
permission.)

Comparing this with Eq. 11.10, we see that m is not expected to be affected by R, but C becomes a
function of R.

Co
C = —m—m---—r (11.20)
(1 — Rym(1=y)
A useful interpretation arising from Eq. 11.18 is that AK, the equivalent zero-to-tension
(R = 0) stress intensity, can be plotted versus da/dN, and a single straight line should result.
The data of Fig. 11.4 are plotted in this manner in Fig. 11.12, with y = 0.42. Since all of the data
lie quite close to the single line, the equation is reasonably successful. However, it was necessary
to handle loadings involving compression, R < 0, by assuming that the compressive portion of the
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Figure 11.12 Representation of the data of Fig. 11.4 by a single relationship based on the
Walker equation. (Data from [Dennis 86].)

cycle had no effect, which is accomplished by using y = 0 where R < 0, so that AK = Kax. This
is reasonable on the basis of the logic that the crack closes at zero load and no longer acts as a crack
below this. In more ductile metals, the compressive portion of the loading may contribute to the
growth, so this approach is not universally applicable.

Values of the constant y for various metals are typically around 0.5, but vary from around 0.3 to
nearly 1.0. A value of y = 1 gives simply AK = AK, corresponding to no effect of R. Decreasing
values of y imply a stronger effect of R. Constants for the Walker equation are given for several
metals in Table 11.2, including the AISI 4340 steel of Fig. 11.12. Where data are available for
R < 0, note that y = 0 applies in three cases, but not for the very ductile Man-Ten steel, for which
compressive loading does contribute to crack growth according to y = 0.22.
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Table 11.2 Constants for the Walker Equation for Several Metals

Yield  Toughness Walker Equation
Material o K. Co Cy m y y
MPa  MPa./m mm/cycle in/cycle
(ksi) (ksivin)  (MPay/m)™ (ksiv/in)" (R>0) (R<0)
Man-Ten steel 363 200! 3.28x 1077 174 x 10710 313 0.928 0.220
(52.6) (182)
RQC-100 steel 778 150! 8.0l x 10°"" 471 x 1072 424  0.719 0
(113) (136)
AISI 4340 steel 1255 130 511 x 10719 273 x 10711 3.24 0.420 0
(0, = 1296 MPa) (182) (118)
17-4 PH steel 1059 120! 3.29 x 1078 1.63 x 1077 2.44 0.790 —
(H1050, vac. melt)  (154) (109)
2024-T3 Al> 353 34 1.42 x 1078 7.85x 1071 359  0.680 —
(51.2) (31)
7075-T6 Al% 523 29 2.71 x 1078 1.51 x 1072 3.70 0.641 0
(75.9) (26)

Notes: !Data not available; values given are estimates. ZValues for Cy include a modification for use in
[Hudson 69] of k, where K = k+/7.

Sources: Original data or fitted constants in [Crooker 75], [Dennis 86], [Dowling 79c], [Hudson 69], and
[MILHDBK 94] pp. 3—10 and 3-11.

A value of y can be obtained from data at various R values, the desired y being the one that
best consolidates the data along a single straight line or other curve on a plot of da/dN versus AK.
Where a straight line on a log—log plot is expected, a good initial estimate of y can be obtained by
using the data for two different and contrasting R values, as illustrated in Example 11.3, presented
next. However, a more rigorous procedure is to perform a multiple linear regression, starting by
taking the logarithm of both sides of Eq. 11.19:

log (da/dN) =mlog (AK) —m(1 —y)log (1 — R) 4+ log Cy (11.21)

The dependent variable is y = log(da/dN), and the independent ones are x; = log (AK) and
x2 =log (1 — R). See Ex. 10.4 for a similar analysis.

The Walker AK in the form of Eq. 11.15 or 11.16 can be used with any mathematical form for
the da/dN versus AK equation. However, it is primarily employed for intermediate growth rates
where Eq. 11.10 does apply.
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Example 11.3
Obtain approximate values for the Walker equation constants for the AISI 4340 steel of Fig. 11.4.

Solution Note that the Walker equation assumes that the same exponent m applies for all
R-ratios, so that a family of parallel straight lines is formed on a log—log plot. Two such parallel
lines for contrasting values of R are sufficient for obtaining approximate values of Cy, m, and y .
The line for R = 0.1 already determined in Ex. 11.1 can be used for one of these:

da
— =270 x 10~10(AK)340 R=0.1
TN X (AK) ( )

In this equation and in what follows, units of MPa,/m and mm/cycle are employed. A second
line parallel to this one and passing through the R = 0.7 data goes approximately through the
point

da
AK, — | = (11,107
(3x.42) ~n10°

The R = 0.7 data are roughly parallel to the R = 0.1 data, so it is reasonable to proceed with a
common m = 3.46. The constant C for this second line may be obtained by substituting this m
and the preceding point into Eq. 11.10:

107> = C(11)34, C =249 % 107°

Hence, the equation of the line is

da
249 x 1072(AK)346 R=0.7
dN o x ( ) ( )

We now have two values of C, both of which must obey Eq. 11.20.

C() CO

Co=gTpmam e 1= Ty

Substituting the respective C and R values, along with the known m, gives two equations with
unknowns Cp and y:

_ Co - Co
10 _ 9
270 x 10719 = TR 2.49 x 10 (1 —0.7)340-7)

Dividing the second equation into the first eliminates Co:

2.70 x 10710 0.3\ 3460-1)
249 x 109 (@)
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Taking logarithms of both sides and solving for y yields

2.70 x 10710 0.3
=3.46(1 —y) log—, y = 0.415 Ans.

1 —
%% 349 x 109 0.9

Substituting this y back into either equation involving C allows that constant to be determined:

10 mm/cycle

Co = 2.70 x 10710(0.9)3-4601-0415 _ 5 18 « 10~
0 ©.9) (MPa/m)"

The final constant is the m value used throughout, m = 3.46 (Ans.).

Comment These approximate values of the constants agree only roughly with the ones in
Table 11.2 for this material, as the latter were fitted by using the full set of data at several
R values.

11.4.2 The Forman Equation

Another proposed generalization to include R effects is that of Forman:

da  Cy(AK)™ Cr (AK)Y™
dN  (1—R)K.—AK (1 —=R)(K,— Kmax)

(11.22)

Here, K. is the fracture toughness for the material and thickness of interest. The second form arises
from the first simply by applying Eq. 9.4(a) to AK in the denominator. As Kmax approaches K.,
the denominator approaches zero, and da/d N becomes large. In particular, there is an asymptote at
AK /(1 — R) = Kmax = K. The equation thus has the attractive feature of predicting accelerated
growth near the final toughness failure, while approaching Eq. 11.10 at low AK. Hence, it can be
used to fit data that cover both the intermediate and high growth rate regions.

Assuming that crack growth data are available for various R values, we can fit these to Eq. 11.22
by computing the following quantity for each data point:

da
0= N [(1—-R)K. — AK] (11.23)

If these Q values are plotted versus the corresponding A K values on a log—log plot, a straight line
is expected. This is illustrated for 7075-T6 aluminum in Fig. 11.13. The slope of the Q versus AK
line on the log—log plot is given by mj, and C; is the value of Q at AK = 1.

For a given material, the success of the Forman equation can be judged by the extent to which
data for various AK, R combinations all fall together on a straight line on a log-log plot of Q
versus AK . For the data of Fig. 11.13(a), the consolidation onto a straight line in (b) is reasonably
successful. Constants for the Forman equation corresponding to these data are given in Table 11.3,
as are constants for three additional metals.



Section 11.4 Effects of R = S;in/Smax on Fatigue Crack Growth 581

1 1 1 [e) 1 1 1
1
10 |- - 3L -
7075-T6 Al E:g)o 10 7075-T6 Al
&0 3
(6]
>
102 (a) oA P 4 2 -
OA I:||:|oo |§
o P 5
I:Io s
o oo
O 103 B - = -
S <
€ %no |
£ A ©
- 3|:| o X
=z 104 - Q - o -
3 OA !
© A o =
= A g5
107 A - Il -
A OR=0 (¢]
A O 0.33
6| A 0.67-0.74
10 <©0.80-0.82 -
1 Ly s 1l 1 L v v panl 1 1 v g 003al 1 L 3 11l
3 10 30 100 3 10 30 100
AK, MPaym AK, MPaym

Figure 11.13 Effect of R-ratio on growth rates in 7075-T6 aluminum (a), and correlation of
these data (b) on the basis of the Forman equation, with constants as listed in Table 11.3.
(Data from [Hudson 69].)

11.4.3 Effects on AKy,

The R-ratio generally has a strong effect on the behavior at low growth rates, hence also on the
threshold value AK;,. This occurs even for low-strength metals where there is little effect at
intermediate growth rates. Some values of AK;; for various steels over a range of R-ratios are
shown in Fig. 11.14. The lower limit of the scatter shown corresponds to AK;j, as follows:

AK;, =7.0(1 — 0.85R) MPay/m
(R >0.1) (11.24)
AK,, = 6.4(1 — 0.85R) ksiv/in

On the basis of the discussion in Barsom (1999), these equations appear to represent a reasonable
worst-case estimate for a wide range of steels. However, lower values of A K;;, may apply for highly
strengthened steels, which will be illustrated later. Similar trends occur for other classes of metals.

The Walker equation in the form of Eq. 11.15 is sometimes employed to represent the effect of
R-ratio on AK;, for a given material:

AKy = AKy(1 = R)! v (11.25)
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Table 11.3 Constants for the Forman Equation for Several Metals

Yield Toughness Forman Equation
Material o, K. C, C, mo K.
MPa MPa,/m mm/cycle in/cycle MPay/m
(ksi) (ksiv/in) (MPa,/m)"2~! (ksiv/in)m2—1 (ksiv/in)
17-4 PH steel 1145 — 1.40 x 107° 6.45 x 10~8 2.65 132
(H1025) (166) (120)
Inconel 718 1172 132 4.29 x 107° 2.00 x 1077 2.79 132
(Fe-Ni-base, aged) (170) (120) (120)
2024-T3 Al! 353 34 2.31 x 107 1.14 x 1077 3.38 110
(51.2) (31) (100)
7075-T6 Al! 523 29 5.29 x 107 2.56 x 1077 3.21 78.7
(75.9) (26) (71.6)

Notes: ! Values for C; and K. include a modification for use in [Hudson 69] of k, where K = k./7. The K.
values are for 2.3 mm thick sheet material; replace with K. for thick material.
Sources: Values in [Hudson 69], [MILHDBK 94] pp. 2-198 and 6-59, and [Smith 82].

Here, AK,, and vy, are empirical constants fitted to test data of AK;, values for various R. Note
that AK ), corresponds to AK;j; at R = 0. Values of y;;, will not generally agree with y fitted to the
Walker equation in the intermediate growth rate region. In particular, there is usually an increased
sensitivity to R-ratio in the low growth rate and threshold region.

11.4.4 Discussion

A variety of other mathematical expressions, some of them quite complex, have been used to
represent da/dN versus AK curves. Some of these are not merely empirical, but are based on
attempts to include modeling of the closing of the crack and other physical phenomena that affect
crack growth. Many give a curve shape similar to Fig. 11.3, where the curve steepens at both low
and high growth rates. If R-ratio effects are included and the da/d N versus AK behavior ranges
over the regions of low, intermediate, and high growth rates, as many as 10 empirical constants may
be required to accurately represent the behavior of a given material.

An alternative to curve fitting with empirical constants is to use a table lookup procedure. In this
case, numerical data of da/d N versus AK for various R-ratios are maintained in tabular form in a
digital computer, and interpolation is employed to determine da/dN for a desired combination of
AK and R. For additional detail on representing da/d N versus A K behavior, see Forman (2005),
Grandt (2004), and Henkener (1993).

A simple, but approximate, approach to representing da/d N versus AK behavior is illustrated
in Fig. 11.15. In the intermediate region, use the Walker relationship, Eq. 11.19, with appropriately
fitted materials constants Co, m, and y. Then in the threshold region, assume that there is an abrupt
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Figure 11.14 Effect of R-ratio on the threshold AKy, for various steels. For R = —1, the
compressive portion of the loading cycle is here excluded from calculations of AKy,. (Adapted
from [Barsom 87] p. 285; © 1987 by Prentice Hall, Upper Saddle River, NJ; reprinted with
permission.)

transition to a vertical limit, A Ky, as given by Eq. 11.25 or other analogous relationship. Additional
materials constants, such as AK,j, and Vi, are then needed. However, it is conservative to simply
ignore the threshold, as shown by the dashed line. Finally, represent the unstable rapid-growth-rate
region as another vertical limit. This limit occurs upon reaching either the fracture toughness or the
fully plastic limit load, the latter occurring due to the decreasing cross-sectional area of the cracked
member. Either of these may occur first.

A situation often encountered is that data for a material of interest are available only for zero-
to-tension or similar loading—that is, for R in the range 0 to 0.2. For engineering metals in the
intermediate growth rate region, it is reasonable to employ such data with the Walker equation by
assuming a value of y = 0.5. This will generally provide a conservative estimate of the behavior at
other positive R-ratios.

The use of a fracture toughness constant K. in the Forman and other crack growth equations
is necessary for accurate representation of behavior at high growth rates. However, some care is
needed. First, K. varies with thickness unless the behavior is plane strain, where K. applies. In
addition, the severe cyclic loading that occurs just prior to brittle fracture at the end of a crack growth
test may alter K., increasing it for certain materials and decreasing it for others. Further, for ductile,
high-toughness materials such as mild steel, fatigue crack growth tests may terminate due to gross
yielding instead of brittle fracture. It is then not appropriate to obtain a K, value from such data.
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Figure 11.15 Approximate representation of da/dN versus AK behavior with R-ratio effects
included. The Walker equation is used for the intermediate region, along with a possible
threshold limit at low growth rates. There is also an instability limit at high growth rates, due
to either brittle fracture or fully plastic yielding.

11.5 TRENDS IN FATIGUE CRACK GROWTH BEHAVIOR

Fatigue crack growth behavior differs considerably for different classes of material. It is also
affected, sometimes to a large extent, by changes in the environment, such as temperature or hostile
chemicals.

11.5.1 Trends with Material

The crack growth behavior in air at room temperature may vary only modestly within a narrowly
defined class of materials. For example, data for R & 0 for several ferritic-pearlitic steels are shown
in Fig. 11.16. An equation of the form of Eq. 11.10 is shown that represents the worst case for the
several steels tested, with this equation corresponding to the constants given in Table 11.1. Recall
from Chapter 3 that ferritic-pearlitic steels have low carbon contents and are relatively low-strength
steels used for structural members, pressure vessels, and similar applications.

Worst-case da/d N versus AK equations are given in Barsom (1999) for two additional classes
of steel, namely, martensitic steels and austenitic stainless steels. The constants have already been
presented in Table 11.1. Martensitic steels are distinguished as being steels that are heat treated by
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line giving worst-case growth rates. Note that the axes are reversed, compared with the other
da/dN versus AK plots given. (From [Barsom 71]; used with permission of ASME.)

quenching and tempering, so this group includes many low-alloy steels, and also those 400-series
stainless steels with less than 15% Cr. Austenitic steels are primarily the 300-series stainless steels,
which are used where corrosion resistance is critical. These equations apply for R values near zero,
say, up to R = 0.2. For higher R-ratios, it is suggested that these constants be employed as C( and
m in the Walker equation, along with an assumed value of y = 0.5.

These general-purpose equations need to be used with some care, as exceptions do exist
where they are not very accurate. For example, if the widely used martensitic steel AISI 4340
is heat treated to various strength levels, including very high strength levels, the crack growth
rates may exceed the suggested worst-case trend. In addition, the AK;j; values for high-strength
steels may be considerably below the typical behavior of Fig. 11.14. Test data showing the
trend of AK,, with strength level in AISI 4340 steel are given in Fig. 11.17. The decrease
in AK;, with strength parallels the similar trend in fracture toughness for this material. (See
Fig. 8.32.)

If various major classes of metals are considered, such as steels, aluminum alloys, and titanium
alloys, crack growth rates differ considerably when compared on a da/dN versus AK plot.
However, the AK values corresponding to a given growth rate scale roughly with the elastic
modulus E. Hence, a plot of da/d N versus AK /E removes much of the difference among various
metals, as shown in Fig. 11.18. Polymers exhibit a wide range of growth rates when compared on
the basis of AK, as shown in Fig. 11.19. For any given AK level, the growth rates are considerably
higher than for most metals.

One generalization that may be made is that the crack growth rate exponent m is higher for
lower ductility (more brittle) materials. For ductile metals, m is typically in the range 2 to 4 and
is often around 3. Higher exponents occur for more brittle cast metals, for short-fiber reinforced
composites, and for ceramics, including concrete. For example, m is near 12 for the granite rock of
Fig. 11.11.
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Figure 11.17 Effect of strength level of an alloy steel on AKy, at two R-ratios. (Adapted from
[Ritchie 77]; used with permission of ASME.)
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Figure 11.18 Fatigue crack growth trends for various metals correlated by plotting AK/E.
(From [Bates 69]; used with permission.)

Despite the generalizations that may be made as to similar behavior within classes of materials,
surprisingly small differences can sometimes have a significant effect. For example, decreasing the
grain size in steels has the detrimental effect of lowering A K, while the behavior outside of the low
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Figure 11.19 Fatigue crack growth trends for various crystalline and amorphous polymers.
(From [Hertzberg 75]; used with permission.)

growth rate region is relatively unaffected. Also, as might be expected, variations in reinforcement
often have a significant effect on crack growth in composites materials, an example of which is
given in Fig. 11.20.

11.5.2 Trends with Temperature and Environment

Changing the temperature usually affects the fatigue crack growth rate, with higher temperature
often causing faster growth. Data illustrating such behavior for the austenitic (FCC) stainless steel
AISI 304 are shown in Fig. 11.21 (left). However, an opposite trend can occur in BCC metals
due to the cleavage mechanism contributing to fatigue crack growth at low temperature. (See
Section 8.6.) Such a trend for an Fe-21Cr-6Ni-9Mn alloy is illustrated in Fig. 11.21 (right). This
alloy is austenitic at room temperature, but at low temperatures it is martensitic (BCC), and hence
subject to cleavage, so that the more usual temperature effect is reversed. The effect of this cleavage
contribution in BCC irons and steels can have a large effect on the fatigue crack growth exponent
m, as shown in Fig. 11.22. Suppressing this effect by adding sufficient nickel avoids high growth
rates at low temperature.
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Figure 11.22 Variation (left) of the exponent m for the Paris equation with test temperature
for iron and various steels at R-ratios near zero. Shown on the right is the associated drastic
increase in growth rates at low temperature for A533B steel tested at R = 0.1. (Left from
[Gerberich 79]; copyright © ASTM; reprinted with permission. Right adapted from

[Campbell 82] p. 83, as based on data from [Stonesifer 76]; used with permission.)

Hostile chemical environments often increase fatigue crack growth rates, with certain combi-
nations of material and environment causing especially large effects. The term corrosion fatigue is
often used when the environment involved is a corrosive medium, such as seawater. Such behavior
is illustrated in Fig. 11.23, which shows the effect of a saltwater solution similar to seawater on two
strength levels of AISI 4340 steel. The effect is considerably greater for the higher strength level
of this steel. The effect on growth rate per cycle, da/d N, of a given hostile environment is usually
greater at slower frequencies of cycling, where the environment has more time to act. This trend is
apparent in the data of Fig. 11.24.

Even the gases and moisture in air can act as a hostile environment, which can be demonstrated
by comparing test data in vacuum or an inert gas with data in air. Such comparisons for a metal
and a ceramic are shown in Fig. 11.25. This circumstance results in frequency effects occurring
in ambient air for some materials. Since chemical activity increases with temperature, the general
trend of increasing growth rate with temperature is explained, at least in part, by the ambient air
having a hostile effect.
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Figure 11.23 Contrasting sensitivity to corrosion fatigue crack growth of two strength levels
of an alloy steel. (Adapted from [Imhof 73]; copyright © ASTM; reprinted with permission.)

11.6 LIFE ESTIMATES FOR CONSTANT AMPLITUDE LOADING

Since AK increases with crack length during constant amplitude stressing A S, and since the crack
growth rate da/d N depends on A K, the growth rate is not constant, but increases with crack length.
In other words, the crack accelerates as it grows, as for the data of Fig. 11.8. This situation of
changing da/d N necessitates the use of an integration procedure to obtain the life required for
crack growth.

Crack growth rates da/dN for a given combination of material and R-ratio are given as a
function of AK by Egs. 11.10, 11.18, and 11.22, and by other similar equations, which may be
represented in general by

da
I = f(AK,R) (11.26)
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Figure 11.24 Frequency effects on corrosion fatigue crack growth rates in a maraging steel.
(Adapted from [Imhof 73]; copyright © ASTM; reprinted with permission.)

where any effects of environment, frequency, etc., are assumed to be included in the material
constants involved. The life in cycles required for crack growth may be calculated by solving this
equation for d N and integrating both sides:

Ny ary da
/ dN=Nf—N,-=Nl-f=f —_— (11.27)
N a J(AK,R)

This integral gives the number of cycles required for the crack to grow from an initial size a; at
cycle number N; to a final size ay at cycle number Ny. It is convenient to use the symbol N;¢ to
represent the number of elapsed cycles, Ny — N;.



592 Chapter 11 Fatigue Crack Growth

-3
10 , , |
Mg0-PSZ
162 — ceramic
s R=0.1
e [ 16}~ 23°C i
| 50 Hz
E =
[0
5 L
£ 10°k i
% 3 2
¢ 10 - ® Air
E - i o H,0
O B -6
10 -
= - (o]
RS B
3 1 lattice
i spacing
Inconel 718 10" per cycle
10‘4 | [ B | | .
10 20 50 100 25 3 4 s

AK, Stress Intensity Range, MPa/m

Figure 11.25 Faster fatigue crack growth in air than in inert gas (left) for the Ni-base alloy
Inconel 718 at elevated temperature, and (right) for a magnesia, partially stabilized zirconia
ceramic. (Left adapted from [Floreen 79]; used with permission. Right adapted from
[Dauskardt 90]; reprinted by permission of the American Ceramic Society.)

The inverse of the growth rate, d N/da, is the rate of accumulation of cycles, N, per unit
increase in crack length a. From Eq. 11.26, this is given by

dN 1 1

alv _ (11.28)
da  da/dN ~ f(AK,R)

Note that Eq. 11.27 can also be written

4@ (dN
Nir =/ <—> da (11.29)
a; da

Hence, if d N /da from Eq. 11.28 is plotted as a function of a, the life N; is given by the area under
this curve between a; and a ¢. This is illustrated in Fig. 11.26.

To perform the integration for a particular case, it is necessary to substitute the specific da/d N
equation for the material and R of interest, and also the specific equation for AK for the geometry
of interest. Some useful closed-form solutions exist, but numerical integration is necessary in many
cases.
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Figure 11.26 Area under the dN/da versus a curve used to estimate the number of cycles to
grow a crack from initial size a; to final size ay.

11.6.1 Closed-Form Solutions

Consider a situation where growth rates are given by Eq. 11.10 and where ' = F(a/b) in Eq. 11.7
can be approximated as constant over the range of crack lengths g; to ay:

d

d—]‘:] — F(AK,R) = C(AK)", AK =F ASJ7a (11.30)
The value of C used can include the effect of the ratio R = Smin/Smax, as from the Walker approach
using Eq. 11.20. Assume that Spax and Spin are constant, so that AS and R are also both constant.
Substituting this particular f(AK, R) into Eq. 11.27 and then substituting for AK gives

N; —/af da _/af da _/af 1 da (11.31)
" e caKy " ) c(Fasyma)” )i C(Fasym)am? '

Since C, F, AS, and m are all constant, the only variable is a, and integration is straightforward,
giving
glmi2 o emi2

/ :
Nif = - 2 132
IS CFasa A=mp 77 (132

If m = 2, this equation is mathematically indeterminate.

Where a ¢ is substantially larger than a; and m is around 3 or greater, the ¢; term dominates the
numerator of Eq. 11.32, and the life is insensitive to the value of a s. This trend is accentuated for
larger values of m. With reference to Fig. 11.26, the area under the curve, N;, is affected only a
small amount by the exact choice of a . Also, since most of the area, and thus most of the cycles,
are accumulated near a;, the value of constant F' chosen for Eq. 11.32 should be closer to the value
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F; corresponding to a; than to the value Fy corresponding to as. Hence, either use F; or a slightly
higher intermediate value.

Additional closed-form solutions exist that may be useful, such as one for the case of m = 2,
with derivations of some of these being included as Problems at the end of this chapter. However,
where F' = F'(a/b) must be treated as a variable, the variety of these is severely limited due to the
appearance of m as an exponent on F in the denominator of Eq. 11.31.

The preceding equations assume constant amplitude loading, so the gross section nominal
stresses Smax and Spin are constant during cycling. If these change, the integral of Eq. 11.27, and any
equations obtained from it, can be used in separate calculations for periods of crack growth during
which the load levels are constant. The cycle numbers for each of these periods can then be summed
to obtain the total life. However, see the additional discussion of variable amplitude loading given
later in Section 11.7.

11.6.2 Crack Length at Failure

In employing Eq. 11.27 to estimate crack growth life, the final crack length ay is often unknown
and must be determined before the equation can be applied. In addition, if F is taken as constant, as
in Eq. 11.32, it is also necessary to determine Fy = F(ay/b), so that it can be confirmed that this
value does not differ excessively from F; = F(a;/b). If Fy and F; differ by more than about 15 to
20%, the resulting error in N;¢ due to using a constant value will generally be unacceptably large.
Numerical integration, as described in Section 11.6.3, is then usually needed.

Under constant amplitude cyclic loading, the value Ky corresponding to Spmax increases as
crack growth proceeds. When K,x reaches the fracture toughness K, for the material and thickness
of interest, failure is expected at the length a, that is critical for brittle fracture:

1( K, )2
ae = (11.33)

7 \ F S

Since F varies, a graphical or iterative solution as already illustrated by Example 8.1(c) is generally
needed to obtain ..

In addition, crack growth causes a loss of cross-sectional area, and thus an increase in the
stress on the remaining uncracked (net) area. Depending on the material and the member geometry
and size, fully plastic yielding may be reached prior to Kmax = K.. This is most likely for
ductile materials with low strength and high fracture toughness. Hence, a is the smaller of two
possibilities, a. and a,, where the latter is the crack length corresponding to fully plastic yielding.
Values of a, may be estimated on the basis of fully plastic behavior, as discussed in Appendix A,
Section A.7.2. For some simple two-dimensional cases, useful equations for a, obtained in this
manner are given in Fig. A.16.

Use of linear-elastic fracture mechanics up to the crack length a, corresponding to fully plastic
yielding violates the plastic zone size limitations of LEFM, as discussed in Chapter 8. The effect
of yielding just prior to reaching a, will be to increase growth rates to higher values than those
calculated, giving an actual life that is shorter than calculated. However, recall from Fig. 11.26 that
cracks accelerate during their growth, so most cycles are exhausted while the crack is short, and few
are spent while the crack is near its final length. The error in life from this source is thus usually
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small, so the suggested procedure of choosing the smaller of a. and a, is useful and appropriate as
an approximation for engineering purposes.

Another source of possible error in life estimates is that the fracture toughness K. at the end of
cyclic loading may differ from standard values obtained in static tests. However, if ay is significantly
larger than a;, the effect on life of an altered value of K. may not be large, which also arises from
the situation illustrated by Fig. 11.26.

Example 11.4
A center-cracked plate of the AISI 4340 steel (0, = 1296 MPa) of Table 11.2 has dimensions,
as defined in Fig. 8.12(a), of b = 38 and r = 6 mm, and it contains an initial crack of length
a; = 1 mm. It is subjected to tension-to-tension cyclic loading between constant values of
minimum and maximum force, Ppi, = 80 and Py, = 240 kN.

(a) At what crack length a is failure expected? Is the cause of failure yielding or brittle
fracture?

(b) How many cycles can be applied before failure occurs?

(c) Assume that this member is an engineering component that is expected to be subjected
to 150,000 cycles in its service life, and further assume that a safety factor of three on
life is required. If ¢; = 1 mm is the minimum detectable crack length a,4 for inspection,
are periodic inspections required? If so, at what interval?

(d) Consider the possibility of avoiding periodic inspections by improved initial inspection,
such that a smaller ¢; can be justified. What new a; = a4 would be required?

Solution (a) The crack length at fully plastic yielding can be estimated from Fig. A.16(a):

P 24 N
a,=b(1——=)=@G8mm)(1— 0.000 =22.1 mm
2bto, 2(38 mm) (6 mm) (1255 MPa)

The yield strength (and also K;.) is obtained from Table 11.2.
The crack length a, at brittle fracture is given by Eq. 11.33:

1 ([ Kie \?
adp = —

With reference to Fig. 8.12(a), an initial estimate of a, may be made by assuming thata./b < 0.4,
so that F' &~ 1. We obtain

Prax 240,000 N
2bt  2(38 mm)(6 mm)

= 526 MPa

Smax =

1/ Kie \> 1 (130MPaym
A N =— gy R S—
¢ T T

2
) =0.01949m = 19.4 mm
F Sihax 1(526 MPa)
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Table E11.4
Calc. No. Trial a oa=al/b F Kiax = FSmaxA/TTa
mm MPa,/m
1 15 0.395 1.097 125.3
2 16 0.421 1.114 131.3
3 15.77 0.416 1.110 130.0

This corresponds to a./b = 0.51, which is beyond the region of 10% accuracy for F =~ 1. A trial
and error solution, as in Ex. 8.1(c), is thus needed, with F' taken from Fig. 8.12(a). This is shown
in Table E11.4. The final K value is K;. = 130 MPa,/m so that a. = 15.8 mm. Since this is
smaller than a,, brittle fracture determines the controlling value a ¢, and

ay=15.8mm Ans.
(b) If F is approximately constant, Eq. 11.32 can be employed to calculate N;s by

substituting either the initial F or an intermediate value that is biased toward the initial one:

l=m/2  1=m/)2
T C(FasyR) (= m/2)

In this case, the value increases from F; = 1.00 to 'y = 1.11. So the variation is small enough
that constant F' is a reasonable assumption, and we can use F' = 1.00 for the N, calculation. If
we note that Table 11.2 gives constants for the Walker equation, we see that the nonzero R-ratio
for the applied load can be handled by calculating a C value from Eq. 11.20 as follows:

- Smin Pmin 80

R=-—= — — —0.333
Smax Pmax 240
Co 5.11 x 10710 _, mm/cycle

However, substitution into the equation for N;¢ is most convenient if all quantities have units
consistent with MPa,/m as used for AK, requiring a units conversion for C as follows:

o mm/cycle I m 1,095 x 10-12 m/cycle

C =1.095 x 10~ X
(MPa,/m)”™ = 1000 mm (MPa,/m)"

Two additional calculations are useful before computing N; r:

AS = Smax (1 — R) = 526(0.667) = 351 MPa

(1—%) - <1—%> = —0.62
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Substituting the various numerical values finally gives N;:

(0.0158 m)~%62 — (0.001 m)~9-62
m/cycle
(MPa/m)™

Ny =171,600 cycles Ans.

Nif=

(1.095 x 1012 ) (1.00 x 351 MPa x /7)324(—0.62)

In the preceding substitutions, note that all units are meters, MPa, or combinations of these.
Careful checking indicates that these all cancel, leaving only “cycles.”
(¢) With no periodic inspections, the safety factor on life from Eq. 11.2 is

o Nip 71600
N=T% T 150,000 0

Hence, failure is expected before the end of the service life, so inspections are clearly needed.
For the required Xy = 3, the inspection interval can be obtained from Eq. 11.5:

N, ==L = —=— = 25.900 cycles Ans.

(d) To avoid periodic inspections and satisfy Xy = 3, we need a new, smaller a; = a4 such
that N7 is

Nif = Xy N = 3(150,000) = 450,000 cycles

Equation 11.32 is needed again, but now with N; s known and a; unknown. Noting that the same
values of ar, C,m, F,and AS apply as in (b), and handling units as before, we have the following
substitutions:

(0.0158)70-62 — ~0-02

450,000 =
(1.095 x 10~12)(1.00 x 351/7)324(—0.62)

Solving for a; gives
a; = aq = 7.63 x 107> m = 0.0763 mm Ans.

According to the earlier discussion in Section 11.2.1, this very small a4 is probably below the
limits of any reasonable inspection. Hence, periodic inspection would be difficult to avoid in this
case unless it is possible to lower the applied load through redesign or restrictions on the use of
the component.

Comment It would also be reasonable and more conservative to choose a slightly higher
value of F' for the N;¢ calculations. For example, choosing F = 1.03 gives N;r = 70, 500 cycles
for (b) and ¢; = 0.0657 mm for (d).
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11.6.3 Solutions by Numerical Integration

As already discussed, Eq. 11.32 and related equations that might be derived for calculating crack
growth life assume that F' is constant, so these cannot be used if F' changes excessively between
the initial and final crack lengths, a; and a . Since closed-form integration of Eq. 11.27 is seldom
possible if F is treated as a variable, numerical integration becomes necessary. Also, some elaborate
mathematical forms used to fit da/d N versus AK curves lead to equations that cannot be integrated
in closed form even for constant F', again necessitating numerical integration.

To perform a numerical integration, it is useful to employ Eq. 11.27 in the form of Eq. 11.29.
First, pick a number of crack lengths between a; and a:

aj,ap,az,az, ...af

For each of these, and for the material, geometry, and loading of interest, calculate AK, and then
da/dN, inverting the latter to get d N /da. Finally, find N;r as the area under the d N /da versus
a curve between g; and ay. This can be done for any mathematical form of the AK and da/dN
equations. For example, for the forms of Eq. 11.30 with F' allowed to vary, the d N /da for any given
crack length a; is

(ﬂ) I L (11.34)
da j C(AK]') C(Fj AS,/JTCZJ')

where F'; needs to be specifically calculated for each a;.

The intervals Aa between the a; can be made equal, but this is not necessary. It is important
that Aa be sufficiently small for accurate representation of the d N /da curve. This is most likely to
be a problem for the shorter crack lengths where the curve is generally steepest. One alternative that
gives small Aa only where needed is to increase a by a fixed percentage for each interval. A 10%
(factor of 1.10) increase for each interval is sufficiently small for typical values of m:

ajy1 =raj, r~1.10 (11.35)

A manual solution for N;r may be done on graph paper. It is also straightforward to program an
approximate area calculation on a digital computer. Standard methods and computer programs for
numerical integration also apply.

A relatively simple method of numerical integration usually described in books on numerical
analysis is Simpson’s rule. To use this, consider three neighboring crack lengths @, a1, and a2,
as shown in Fig. 11.27. Between a; and a7, an estimate of the area under the curve y = dN /da
can be made by assuming that a parabola passes through the three points (a;, y;), (aj+1, yj+1), and
(@j42, yj+2). If the points are equally spaced Aa apart, the area estimate is

aj+2 Aa
/ yda = 3 (yj +4yjt1 + yj+z) (11.36)
a

7
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a, Crack Length

a0

Figure 11.27 Area under the dN/da versus a curve over two intervals Aa as estimated by
Simpson’s rule.

This equation is applied for each of j =0, 2, 4, 6... (n —2), where n is even. Adding the
contributions to the area from each calculation gives an approximate value of the total area under
the curve between a; and a ¢, where ay = ay,.

For crack growth analysis, the number of intervals can be kept reasonably small if the a values
are not evenly spaced, but instead differ by a constant factor r, as in Eq. 11.35. Then

a;, a, =ra;, a = rla;, cooap=r"a;=ay (11.37)
The area for a parabola through three such points is given by

. aj (r’ —1) 2

/ yda= EEre— [yj”(z—i”)+)’j+1(r+1) + yj+2@2r — 1)] (11.38)
aj

The integration up to a, can be performed in a manner analogous to a Simpson’s rule calculation,
except for the use of the new area formula.

Example 11.5
Refine the approximate life estimate of Ex. 11.4(b) by using numerical integration.

Solution The modified Simpson’s rule of Eq. 11.38 can be used. A factor for incrementing a
is first chosen to be near r = 1.1, such that the integration will end at a y = 15.8 mm, which is
the ay as determined in Ex. 11.4. From Eq. 11.37, we have ay = r'a;, where q; = 1.0 mm as
given. Substituting a ¢ and a@; with r = 1.10 and solving gives n = 28.96. Thus, we need an even
integer for n near this value. Choosing n = 30 and solving for r gives

15.8
o= 4L r30:_10mm, r = 1.09637
a; Umm
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The crack lengths for the n = 30 intervals can now be calculated by using this r with Eq. 11.35,
starting with the first value as ap = a; = 0.001 m. Some of the values are shown in Table E11.5
in units of meters.

Then, using F and § as appropriate for the center-cracked plate geometry from Fig. 8.12(a),
we perform calculations as follows for each aj, where j = 0 to 30:

1 —0.50 +0.3260>

a
o= -, F
b V1 —«o
AP dN 1
AK = F ASma = F == /xa, et
i by VT Y= 4 T CaK)T

Values from Ex. 11.4 are needed as follows: b = 0.038m, ¢t = 0.006m, AP = 0.160 MN,
m = 3.24, and C = 1.095 x 107!, where this C includes the effect of R = 0.333. Note that
units of meters, MPa = MN/ m?, and cycles, or combinations of these, are used for all quantities,
including C. Some calculation results are shown in Table E11.5.

Next, numerical integration can proceed by applying Eq. 11.38 to each pair of intervals to
obtain the number of cycles AN to grow the crack from a; to a;y2:

aj+2
ANjyr = / vda
aj

Specifically, Eq. 11.38 is first applied for the two intervals from j = 0 to j + 2 = 2, then from
j=2toj+2=4,nextfrom j=4toj+2=6,etc.,upto j =28to j+ 2= 30. The first

Table E11.5
j a a=a/b F=F(a/b) AK y =dN/da AN S(AN)
m MPa,/m cycles/m cycles cycles
0 1.000 x 1073 0.0263 1.0003 19.67 5.869 x 107 0 0
1 1.096 x 1073 0.0289 1.0004 20.60 5.055 x 107 — —
2 1.202 x 1073 0.0316 1.0005 21.57 4354 x 107 10203 10203
3 1.318 x 1073 0.0347 1.0006 22.59 3.750 x 107 — —
4 1.445 x 1073 0.0380 1.0007 23.66 3.229 x 107 9098 19300
5 1.584 x 1073 0.0417 1.0008 24.77 2.781 x 107 — —
6 1.737 x 1073 0.0457 1.0010 25.94 2.395 x 107 8110 27410
26 1.094 x 1072 0.2878 1.0464 68.05 1.052 x 10° 2304 72020
27 1.199 x 1072 0.3155 1.0572 71.99 8.770 x 10° — —
28 1314 x 1072 0.3459 1.0708 76.35 7.249 x 103 1935 73955
29  1.441 x 1072 0.3792 1.0881 81.23 5.931 x 10° — —

30 1.580 x 1072 0.4158 1.1101 86.78 4.789 x 10° 1573 75528
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three calculations give

a as
AN, = f yda = 10,203, ANy = f yda = 9098
a a

0=aj 2

ae
ANg = f yda = 8110 cycles
a

4

The cumulative sum of the AN values is also calculated as shown in the last column of the table.
For example, the number of cycles to reach crack length ag is

Y (AN)e = 10,203 + 9098 + 8110 = 27,410 cycles

The final such cumulative sum at a3p = a is the calculated life for crack growth:
Y (AN)30 = Nir =75,500 cycles Ans.

Discussion The life from this numerical integration is seen to be similar to the approximate
result from Ex. 11.4 of N;r = 77,600 cycles, which is affected by the choice of F = 1.00. If
Ex. 11.4 is redone with constant /' = 1.0085, the same life is obtained as for Ex. 11.5.

11.7 LIFE ESTIMATES FOR VARIABLE AMPLITUDE LOADING

If the stress levels vary during crack growth, life estimates may still be made. One simple approach
is to assume that growth for a given cycle is not affected by the prior history—that is, sequence
effects are absent. Large sequence effects do occur in special situations, but it is often useful and
sufficiently accurate to neglect these.

11.7.1 Summation of Crack Increments

The crack growth Aa in each individual cycle of variable amplitude loading can be estimated from
the da/d N versus AK curve of the material. Summing these Aa, while keeping track of the number
of cycles applied, leads to a life estimate. Such a procedure is equivalent to a numerical integration
where a, rather than N, is the dependent variable.

Hence, if the current crack length is a; and the increment is Aaj, the new value of crack length
ajy1 for the next cycle is

da
aj+1=aj+Aaj=aj+(ﬁ>. (11.39)
J

where the Aa are numerically equal to da/dN, since AN = 1 for one cycle. Denoting the initial
crack length as a;, we find that the crack length after N cycles is
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N da
— = 11.40
v — +;(dN)j (11.40)

Each da/dN is calculated from the AK and R for that particular cycle, where AK is obtained
from the current crack length a; and the AS for the particular cycle. Any form of expression for
varying F' = F(a/b) and any form of a da/dN versus AK relationship can be readily used with
this procedure. For highly irregular loading, rainflow cycle counting as described in Chapter 9 can
be used to identify the cycles.

The summation is continued until a load peak is encountered that is sufficiently severe to cause
either fully plastic yielding or brittle fracture. At this point, the calculation is terminated, and the
number of cycles accumulated is the estimated crack growth life.

Note that the procedure just described can also be applied for constant amplitude loading as an
alternative to the numerical integration approach of Section 11.6.3. In this case, the procedure can
be modified to accommodate values of AN other than unity, so that cycles are taken in groups, such
as AN = 100. It is necessary only that AN be sufficiently small that da/d N does not change by
more than a small amount, so that its value at the beginning of the interval is representative of the
entire interval.

For a crack with a curved front, such as a portion of a circle or ellipse, as in Figs. 8.17 to
8.19, the stress intensity K varies around the periphery of the crack. This causes the growth rate to
also vary around the periphery, so that the crack changes shape as it grows. This complexity can be
handled by updating the crack shape and appropriately adjusting the geometry function F, as crack
increments are summed. The needed details for F' can be found in various References to Chapter 8,
especially Newman (1986). Such a capability is included in the computer programs NASGRO and
AFGROW; see LexTech (2010) and SWRI (2010).

11.7.2 Special Method for Repeating or Stationary Histories

In some cases, it may be reasonable to approximate the actual service load history by assuming that it
is equivalent to repeated applications of a loading sequence of finite length. This can be useful where
some repeated operation occurs, such as lift cycles for a crane, or flights of an aircraft, and also for
random loading with characteristics that are constant with time, called stationary loading. The crack
growth life can then be estimated by an alternative procedure that is equivalent to summing crack
increments. The necessary mathematical derivation follows.

First, assume that the da/dN versus AK behavior obeys a power relationship of the form of
Eq. 11.10. The increment in crack length for any cycle (AN = 1) is then

Aaj = Co(AK ;)" (11.41)

where different R-ratios are handled by calculating an equivalent zero-to-tension (R = 0) value
AK, as in the Walker approach using Eq. 11.15. Note that the coefficient C¢y corresponding to
R = 0 applies due to the use of AK. If the repeating load history contains Np cycles, the increase
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in crack length during one repetition is obtained by summing:
Np Np
Aag =Y Aaj=Y_ Co(AK;)" (11.42)
j=1 j=1

The average growth rate per cycle during one repetition of the history is thus

N —
(da> Lo ok (BF) (11.43)
AN ) e N Np '
Note that Cy is constant and so can be factored from the summation. Manipulation gives
N (=% \ 1/my\ ™
d 2 (AK;
<_“) — Li2i (AK)) = Co (AK,)" (11.44)
dN avg. NB
where
—_— 1/m
SN (AK )"
AK, = [ i1 (AK)) (11.45)
Np

The quantity AK, can be interpreted as an equivalent zero-to-tension stress intensity range that is
expected to cause the same crack growth as the variable amplitude history when applied for the
same number of cycles Np.

Since K and nominal stress S are proportional for any given crack length, an equivalent zero-
to-tension stress level can also be defined:

— \mo1/m
AK, [Z?ﬁl(AS.f) }

AS, (11.46)

= Fma Nz

In this equation, the A S for each cycle in the history is the equivalent zero-to-tension value corrected
for R effect. If this is done on the basis of the Walker approach using Eq. 11.15, these values
are obtained from

AS = Smax (1 — R)Y (11.47)

where y is the value for crack growth, as from Table 11.2.

Since AS; is independent of crack length, it can be applied throughout the life as the crack
grows. Hence, we can make a life estimate by using AS, just as if it were a constant amplitude
loading at R = 0, for example, by using Eq. 11.32. However, to determine the final crack length
ay as caused by either fully plastic yielding or brittle fracture, the actual peak stress Syax in one
repetition of the history should be employed.

Such use of AS, assumes that the load history of length Np is repeated numerous times during
the crack growth life. If the repeating history is so long that only a few repetitions occur, then
special, detailed handling of the last repetition is needed to identify the load peak that causes failure
and so determines ay.
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Note that Eq. 11.46 is very similar to Eq. 9.37, which is employed for calculating equivalent
stress amplitudes for use with stress—life curves. If the latter is expressed in terms of stress

range and equivalent zero-to-maximum stresses, the two become identical with the substitution
m = —1/b.

Example 11.6
A center-cracked plate of the AISI 4340 steel of Table 11.2 has dimensions, as defined in
Fig. 8.12(a), of b = 38 and + = 6 mm, and the initial crack length is @; = 1 mm. It is repeatedly
subjected to the axial force history of Fig. E11.6. How many repetitions of this history can be
applied before fatigue failure is expected? (This is the same situation as Ex. 11.4, except for the
load history.)

Solution We will first calculate an equivalent zero-to-tension stress level for the load history
from Eq. 11.46. This AS, may then be employed in Eq. 11.32 to calculate the life N, as if it
were a simple zero-to-tension (R = 0) loading. However, a s needs to correspond not to AS,,
but to the most severe force in the history, Ppax = 240kN. Since this Ppgx is the same as in
Ex. 11.4, we need not repeat the calculation, but may employ the ay value and corresponding
approximate F from Ex. 11.4, which are

ay =15.8 mm, F =1.00
In addition, materials properties from Table 11.2 are needed:

m/cycle

Co=5.11x10"B3 L2 —
0 (MPa+/m)"

m=324, y=042

From rainflow counting of the given force history, we obtain the results presented in the first
four columns of Table E11.6. The single cycle for j = 4 arises from rainflow cycle counting as
the major cycle between the highest peak and lowest valley. (See Section 9.9.2).

240 kN
<

P, Force, kN

[ One repetition I time

Figure E11.6
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Table E11.6
/ N J P max P min R Smax A_Sj N j (A_S] )m
cycles kN kN MPa MPa

1 100 240 180 0.75 526.3 294.0 9.94 x 10°

2 25 200 100 0.5 438.6 327.8 3.54 x 10°

3 40 150 0 0 328.9 328.9 5.72 x 10°

4 1 240 0 0 526.3 526.3 6.56 x 108

) 166 1.986 x 100

The following calculations are then needed for each load level j:

R =

P, min P, max
9

max — 2bt s A_S = Smax(1 - R)y

Pmax
Here, S is defined as in Fig. 8.12(a).

Since multiple cycles occur at each of k = 4 load levels, the summation for Eq. 11.46 may
be done in the form

Np
Z(AS )" ZN (AS;)"
j=1 j=1

Details are given in Table E11.6, where the sum is shown at the bottom. Noting that Np =
3 N; = 166 cycles, we may now calculate AS,:

k —_— 1/m 1/3.24
- Nj(AS)H" 1.986 x 1010
AS, = [Z"l - } = [Txé = 311.3MPa

Ng 1

This value is then employed in Eq. 11.32 to obtain the number of cycles for crack growth:

a; " — gl 0.0158~062 — 0.001 02

N‘ A — prm—
o Co(F ASy/m)™(1 —m/2) 511 x 10713(1.00 x 311.3/7)3-24(—0.62)

Nif =245 x 10° cycles

Here, all quantities substituted correspond to units of meters and MPa, as in Ex. 11.4. Also, Cy is
the value for R = 0, as R-ratio effects are already included in the A S values. Finally, the number
of repetitions to failure is

Niy _ 245 x10°

B r =
= Ng T 166

= 1477 repetitions Ans.
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11.7.3 Sequence Effects

In all of the treatment so far of variable amplitude loading, it has been assumed that the crack
growth in a given cycle is unaffected by prior events in the load history. However, this assumption
may sometimes lead to significant error. Consider the situation of Fig. 11.28. After a high tensile
overload is applied, as in case C, the growth rate during the lower level cycles is decreased. Slower
than normal growth continues for a large number of cycles until the crack grows beyond the region
affected by the overload, where the size of the affected region is related to the size of the crack-tip
plastic zone caused by the overload. For the case illustrated, the overall effect of only three overloads
was to increase the life by about a factor of 10. This beneficial effect of tensile overloads is called
crack growth retardation.

A tensile overload introduces a compressive residual stress around the crack tip in a manner
similar to the notched member of Fig. 10.28. This compression tends to keep the crack tip closed
during the subsequent lower level cycles, retarding crack growth. The magnitude of the effect is
related to the ratio Smax2/Smax 1, where Smax 2 is the overload stress and Smax 1 1S the peak value of
the lower level. For ratios greater than about 2.0, crack growth may be arrested—that is, stopped
entirely. Conversely, if the ratio is less than about 1.4, the effect is small. Compressive overloads
have an opposite, but lesser, effect. The effect is not as great because the crack tends to close during
the overload, so the faces of the crack support much of the compressive load and shield the crack
tip from its effect. Also, the effect of a tensile overload is much reduced if it is followed by a
compressive one, as in case B of Fig. 11.28.

Several methods have been developed to incorporate sequence effects due to overloads into life
calculations for crack growth. The general approach used is to base the life estimate on calculating
crack growth increments for each cycle as previously described in connection with Eqgs. 11.39
and 11.40. However, the da/dN values used are modified in a manner that is determined by
the prior history of overloads. This is generally done by determining da/dN from an effective

?i((; Tu(mm) ;,!A B /C
f ’/
! —
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/
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8 // / B over 10ad Spygx: 192
/ / cycle (C) Spin =-2.9
6 S
4 j/ C /\/\l\/\/\ﬂ/WW\ overload (0) Smex =192

O 100 200 300 400 500
—— number of kilocycles

Figure 11.28 Effect of overloads on crack growth in center-cracked plates (b = 80, t = 2 mm)
of 2024-T3 aluminum. (From [Broek 86] p. 273, based on data in [Schijve 62]; reprinted by
permission of Kluwer Academic Publishers.)
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AK that is modified on the basis of logic related to residual stress fields or crack closure
levels. More detailed explanation can be found in Broek (1986) and (1988), Grandt (2004), and
Suresh (1998).

Overload sequence effects are likely to be important where high overloads occur predominantly
in one direction. This occurs in the service of some aircraft, where occasional severe wind gust
loadings or maneuver loadings may introduce sequence effects. However, less effect is expected
if overloads occur in both directions, if the history is highly irregular, or if the overloads are
relatively mild. Noting that the effect is mainly to retard crack growth, we see that neglecting this
sequence effect usually provides conservative estimates of crack growth life that will be sufficient
for engineering purposes in many cases. Load histories that include severe compressive overloads
then need to be handled with caution, due to the possibility of these causing faster crack growth than
predicted.

11.8 DESIGN CONSIDERATIONS

It is becoming increasingly common to ensure adequate service life for components of machines,
vehicles, and structures on the basis of crack growth calculations, as described in this chapter. This is
appropriate for large structures subjected to cyclic loading, especially where personal safety or high
costs are factors, and especially if cracks are commonly found in the type of hardware involved.
Examples include bridge structure, large aircraft, space vehicles, and nuclear and other pressure
vessels. Such a damage-tolerant approach is critically dependent on initial and sometimes periodic
inspections for cracks.

Inspection for cracks, especially small ones, is an expensive process and is not generally
feasible for inexpensive components that are made in large numbers. If the service stresses are
relatively high, the cracks that would need to be found to use a damage-tolerant approach can
be so small that the inspection would greatly increase the cost of the item. Periodic inspections
would allow a larger crack to be tolerated initially, but the component may not be available for
periodic inspection. Examples of parts that fall into this category are automobile engine, steering,
and suspension parts, bicycle front forks and pedal cranks, and parts for home appliances. Here,
fatigue life estimates are usually made on the basis of an §-N approach, or the related strain-based
approach, neither of which specifically considers cracks. Where personal safety is involved, safety
factors reflect this fact and are typically larger than if a damage-tolerant approach could be used.
Failures are minimized by careful attention to design detail and to manufacturing quality control,
including initial inspection to eliminate any obviously flawed parts.

Regardless of the approach used, a finite probability of failure always exists. For the damage-
tolerant approach, this arises because the minimum detectable crack length a, is difficult to establish
and is never precisely known. For the S-N and related approaches, a finite probability of failure
arises due to the possibility that a part passing inspection still contains a flaw that, though small,
nevertheless leads to early failure. Also, all approaches to ensuring adequate life are subject to
additional uncertainties, such as: (1) estimates of the service loading being too low, (2) accidental
substitution during manufacturing of the wrong material, (3) undetected manufacturing quality
control problems, and (4) hostile environmental effects that are more severe than forecast, with
the latter including both ordinary corrosion and environmental crack growth.
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Where a damage-tolerant approach is used, critical components must be designed so that they
are accessible for inspection. For example, cracks at fastener (rivet or bolt) holes are of concern
in aircraft structure, and access to the interior of the skin of the fuselage or wing structure may be
needed for situations such as that illustrated in Fig. 11.29. If periodic inspections are required, then
the design must accommodate disassembly when this is necessary for inspection. For example, in
large aircraft, the passenger seats, interior panels, and even paint are removed, and some structural
parts are disassembled, for costly, but necessary, periodic inspections.

Specific measures can also be taken by the designer to allow structures to function without
sudden failure even if a large crack does develop. Some examples for aircraft structure are
illustrated in Figs. 11.30 and 11.31. Stiffeners retard crack growth, and joints in skin panels may be

N\
interior
crack
crack
i — 1
¢ = L 3
| | /
skin
exterior

Figure 11.29 Cracks in the interior of an aircraft skin structure. (Adapted from [Chang 78].)

/4——— PANEL WIDTH ———7/

(=] 07_2
°, ° > ° o ° o o
Figure 11.30 Stiffened panel in aircraft structure with a crack delayed before growing into

adjacent panels. The rivet spacing dimensioned is 38 mm. (From the paper by J. P. Butler in
[Wood 70] p. 41.)
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HIGH LOCAL STRESS

CRACK STOPPER STRAP

Figure 11.31 Crack (left) in a DC-10 fuselage in the longitudinal direction, due to cabin
pressure loading, and (right) a crack stopper strap. Rivet locations are indicated by (+), and
the longeron member with a hat-shaped cross section is omitted on the left for clarity. (From
[Swift 71]; copyright © ASTM; reprinted with permission.)

intentionally introduced so that a crack in one panel has difficulty growing into the next. Similarly,
a crack stopper strap may lower stresses in a critical area and provide some strength even if a crack
does start.

Recall from the early part of this chapter and Eq. 11.2 that the safety factor on life X is the ratio
of the failure life for crack growth N; to the expected service life N. The value of N; f depends not
only on the detectable crack length a,, but also on the stress level and the material. If the safety factor
is insufficient, perhaps even less than unity, several different options exist to resolve the situation.
Obviously, the design could be changed to lower the stress, thus increasing the calculated life N;¢
and X y. Another possibility is to make a more careful initial inspection for cracks, decreasing ay,
and thus increasing the worst-case failure life N;¢. Alternatively, the material could be changed to
one with slower fatigue crack growth rates, as judged by comparing da/dN versus AK curves.
Depending on whether failure occurs by brittle fracture or by yielding, increasing either the fracture
toughness or the yield strength of the material also increases the life by increasing the final crack
length ar, but the effect is usually small, as the life is generally insensitive to the value of ay.

If design changes or improved initial inspection do not suffice, it may be necessary to perform
periodic inspections, making it permissible to calculate the safety factor from the inspection period
N, with the use of Eq. 11.5.

11.9 PLASTICITY ASPECTS AND LIMITATIONS OF LEFM
FOR FATIGUE CRACK GROWTH

During cyclic loading, a region of reversed yielding exists at the crack tip, and the size of this region
can be estimated by a procedure similar to that applied to static loading in Section 8.7. On this
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Figure 11.32 Hypothesized plastic deformation behavior at the tip of a growing fatigue crack
during a loading cycle. Slip of crystal planes along directions of maximum shear occurs as
indicated by arrows, and this plastic blunting process results in one striation (Aa) being
formed for each cycle. (Adapted from the paper by J. C. Grosskreutz in [Wood 70] p. 55.)

basis, plasticity limitations on LEFM for fatigue crack growth can be explored. Limitations are also
needed if the crack is so small that its size is comparable to that of the microstructural features of
the material.

11.9.1 Plasticity at Crack Tips

In the immediate vicinity of the crack tip, there is a finite separation § between the crack faces, as
discussed in Chapter 8. Behavior on the size scale of § determines how the crack advances through
the material during cyclic loading. Details are not fully understood, they vary with material, and
they even vary with the K level for a given material. In ductile metals, the process of crack advance
during a cycle is thought to be similar to Fig. 11.32. Localized deformation by slip of crystal planes
occurs and is most intense in bands above and below the crack plane. The crack tip moves ahead
and becomes blunt as the maximum load is reached, and it is resharpened during decreasing load.
This process results in striations on the fracture surface, as previously illustrated by Fig. 9.22.
Another mechanism is crack growth by small increments of brittle cleavage during each cycle.
It is not uncommon in metals for the fracture surface to have regions of striation growth mixed
with regions of cleavage, especially at high growth rates where Kp.x approaches K.. In other
cases, the boundaries between grains are the weakest regions in the material, so that the crack
grows along grain boundaries. This is called intergranular fracture, to distinguish it from the more
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Figure 11.33 Monotonic (a) and cyclic (b) plastic zones. (Adapted from [Paris 64]; used with
permission.)

usual transgranular fracture by striation formation or cleavage. For example, intergranular fatigue
cracking occurred for the granite rock of Fig. 11.11. In metals, intergranular cracking is likely to
occur if there is a hostile environmental influence.

If the material is relatively ductile, a crack-tip plastic zone will exist that is considerably larger
than §. The peak stress in the cyclic loading determines K ax, Which can be substituted into Eq. 8.37
or 8.38 to estimate the extent of yielding ahead of the crack. For example, for plane stress,

1 [ Kmax \°
oy = — ( ma") (11.48)
T

Op

This is called the monotonic plastic zone. As the minimum load in a cycle is approached, yielding
in compression occurs in a region of smaller size, called the cyclic plastic zone, as illustrated in

Fig. 11.33.
For an ideal elastic, perfectly plastic material, consider the behavior during unloading following

K = Kpax. For compressive yielding to occur as K changes by an amount A K, the stress of o, near
the crack tip must change to —o,, which is a change of 20,, or twice the yield strength. In effect,
for changes relative to Ky, the yield strength is doubled. The size of the cyclic plastic zone where
yielding occurs not only in tension, but also in compression, can therefore be approximated by using
AK for K and 20, for o, in the monotonic plastic zone estimate:

2 — L (BKY (11.49)
rlo=— -
7 1\ 20,

For zero-to-tension (R = 0) loading, where AK = Kpax, the cyclic plastic zone is thus estimated
to be one-fourth as large as the monotonic one. The cyclic plastic zone size may also be estimated
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for cases of plane strain. Using logic as in Section 8.7, we see that its size r,, is one-third as large
as the corresponding plane stress zone.

We can further understand the monotonic and cyclic plastic zones by considering the
stress—strain history at a point in the material as the crack approaches, as illustrated in Fig. 11.34.
When the point being observed is still outside the monotonic plastic zone, no yielding occurs.
Yielding begins, but only in the tensile direction, when the monotonic plastic zone boundary passes
the point. Once the cyclic plastic zone boundary passes, yielding in both compression and tension
occurs during each loading cycle.

11.9.2 Thickness Effects and Plasticity Limitations

If the monotonic plastic zone is not small compared with the thickness, then plane stress exists,
and fatigue cracks may grow in a shear mode, with the fracture inclined about 45° to the surface.
Since K and hence the plastic zone size increase with crack length, a transition to this behavior can
occur during the growth of a crack, as illustrated in Fig. 11.35. Crack growth rates can be affected
somewhat by member thickness as a result of different behavior in plane stress and plane strain.
However, the effect is sufficiently small that it can generally be ignored, so crack growth data for
one thickness can be used for any other thickness.

If large amounts of plasticity occur during cyclic loading, crack growth rates rapidly increase
and exceed what would be expected from the da/dN versus AK curve. This circumstance arises
from the fact that the theory supporting the use of K requires that the plasticity be limited to a

(c) // //

\\_

Figure 11.34 Stress—strain behavior at a point as the tip of a growing fatigue crack
approaches. For selected cycles (a), relative positions of the point and the crack tip are shown
in (b), and the stress-strain responses in (c). (Adapted from [Dowling 77]; copyright © ASTM;
reprinted with permission.)
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Figure 11.35 Schematic of surfaces of fatigue cracks showing transition from a flat tensile
mode to an angular shear mode. The shear growth can (A) occur on a single sloping surface,
or (B) form a V-shape. (From [Broek 86] p. 269; reprinted by permission of Kluwer Academic
Publishers.)

region that is small compared with the planar dimensions of the member, as discussed previously in
Section 8.7. Large effects occur only where the maximum load exceeds about 80% of fully plastic
yielding, so this level represents a sufficient plasticity limitation in most cases. Modest effects may
occur at somewhat lower levels. If a fairly strict limitation is desired, the limitation of Eq. 8.39 on
the in-plane dimensions, as previously employed for static loading, can be applied to the peak stress:

4 ( K \ >
a,(b—a),hZSr,,U:—< m“‘") (11.50)
s
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For fatigue crack growth, thickness effects and plasticity limitations are not generally issues of major
importance, as they are for fracture toughness applications. This is because nominal stresses around
or exceeding yielding are rare in engineering situations except near the very end of the life, when
the fatigue crack growth phase is essentially complete. However, local yielding at stress raisers is
fairly common, so difficulties may be encountered if it is necessary to use fracture mechanics for
cracks growing from notches while they are still small, as they may be affected by local plasticity.
Fortunately, a crack is under the influence of the local stress field of a notch only if its length is quite
small, specifically less than about 10 to 20% of the notch radius. See Eq. 8.26 and Fig. 8.20.

11.9.3 Limitations for Small Cracks

Fracture mechanics in the form considered so far is based on stress analysis in an isotropic and
homogeneous solid. The microstructural features of the material are, in effect, assumed to occur on
such a small scale that only the average behavior needs to be considered. However, if a crack is
sufficiently small, it can interact with the microstructure in ways that cause the behavior to differ
from what would otherwise be expected. In engineering metals, small cracks tend to grow faster



