# PRO 5859 Statistical Process Monitoring

#### Linda Lee Ho

Department of Production Engineering University of São Paulo

2020

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

# Outline

Multivariate process monitoring

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

# Multivariate process monitoring - Introduction

- Simultaneous Monitoring or control of two or more related quality characteristics
- The use of separate control chart for each characteristic may be misleading
- $\alpha^*$ =type I error for the joint control procedure:
  - p statistically independent quality characteristics and α is the type I error for each X̄, then α<sup>\*</sup> = 1 − (1 − α)<sup>p</sup>)
  - But if p s are not independent, the above equation does not hold.

#### About multivariate normal distribution

- Consider p variables, given by  $\mathbf{X}' = (X_1 \ X_2 \ \dots \ X_p)$
- With its respective means  $\mu' = (\mu_1 \ \mu_2 \ \dots \ \mu_p)$
- $\blacktriangleright$  And their variances and covariances described by a matrix  $\Sigma_{p\times p}$
- > The multivariate normal probability density function is

$$f(\mathbf{X}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp^{-1/2(\mathbf{X}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu})}$$

# About multivariate normal distribution - random sample

- A random sample of size  $n: \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$
- Sample mean vector

$$\overline{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} = \left[ \overline{X}_{1} \overline{X}_{2} \dots \overline{X}_{p} \right]'$$



- When  $\mu$  and  $\Sigma$  are known
- Monitored statistic

$$\chi_0^2 = n(\overline{\mathbf{X}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu})$$

• Upper control limit: UCL= $\chi^2_{\alpha,p}$ 

< 4 P < 4

E ▶ 4

- $\blacktriangleright$  In practice, it is usually necessary to estimate  $\mu$  and  $\Sigma$
- ▶ Assuming the process is in-control, take *m* samples of size *n*
- Obtain

$$\overline{x}_{jk} = \frac{1}{n} \sum_{i=1}^{n} x_{ijk}, \ S_{jk}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ijk} - \overline{x}_{jk})^2$$
$$j = 1, \dots, p; \ k = 1, \dots, m$$

and the covariance between quality characteristics j and h in the k-th sample

$$S_{jhk} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ijk} - \overline{x}_{jk}) (x_{ihk} - \overline{x}_{hk}), \ k = 1, \dots, m; \ j \neq h$$

Estimates of mean, variance and covariance are respectively given as:

$$\overline{\overline{x}}_j = \frac{1}{m} \sum_{k=1}^m \overline{x}_{jk}; \ \overline{S}_j^2 = \frac{1}{m} \sum_{k=1}^m S_{jk}^2; \ j = 1, \dots, p$$

$$\overline{S}_{jh} = \frac{1}{m} \sum_{k=1}^{m} S_{jhk}, \ j \neq h$$

- ▶  $\overline{\overline{x}}_j$  is the j-th element of the vector  $\overline{\overline{x}}$ , an unbiased estimator of the vector  $\mu$
- ►  $\overline{S}_j^2$  is the j-th element of diagonal of the matrix **S** and  $\overline{S}_{jh}$  is the jh-th element of the same matrix. Matrix **S** is an unbiased estimator of  $\Sigma$

- This procedure is called Hotelling  $T^2$  control chart
- The monitored statistics is

$$T^2 = n(\overline{\mathbf{x}} - \overline{\overline{\mathbf{x}}})' \mathbf{S}^{-1}(\overline{\mathbf{x}} - \overline{\overline{\mathbf{x}}})$$

Image: A mathematical states and a mathem

- Careful selection of the control limit must be taken for T<sup>2</sup> statistic
- It depends on the phases of control chart usage
- Phase 1 use of charts for establishing control; that is, testing whether the process was in control when the *m* preliminary subgroups were drawn and the estimates computed - called retrospective analysis

$$UCL = \frac{p(m-1)(n-1)}{mn-m-p+1} F_{\alpha,p,mn-m-p+1}$$

Phase 2 - the chart is used for monitoring future production

$$UCL = \frac{p(m+1)(n-1)}{mn-m-p+1}F_{\alpha,p,mn-m-p+1}$$

(日)

# $T^2$ Control chart: interpreting out-of-control signals

- One difficult in any multivariate control chart practical interpretation of the signals
- Which of p variable is responsible for the signal?
- Standard practices:
- ► Alt (1985): plot univariate X charts on the individual variables with Bonferroni-type control limits (use z<sub>α/(2p)</sub> in place of z<sub>α/2</sub>)



#### Figure 1: Two no-correlated and correlated variables- ellipsoid contours

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

# $T^2$ Control chart: interpreting out-of-control signals

- One difficult in any multivariate control chart practical interpretation of the signals
- ▶ Which of *p* variable is responsible for the signal?
- Standard practices:
  - Runger et al. (1996): Decomposition of T<sup>2</sup> into components that reflects the contribution of each individual variable:

$$d_i = T^2 - T^2_{(i)}; T^2_{(i)}$$

is the statistic for all variables except the ith one,  $i{=}1,\ldots,\,p$ 

# $T^2$ control chart: Questions for seminars

- Describe the procedures: Case 1 Haridy et al. (2014)- a procedure to build for exact simultaneous confidence intervals
- Case 2 Jackson (1980): use of control charts based on p principal components
- Case 3: Murphy (1987); Case 4: Chua & Montgomery (1992) , Case 5-Tracy et al. (1996) Mason et al. (1995, 1996)
- How is the performance of all these methods?
- Find other related contributions in the literature

# $T^2$ control chart for individual observation

- Some industrial settings the subgroup size n=1 like chemical process
- *m* samples, each of size n = 1 are available
- ► Let X and the matrix S the sample mean vector and covariance matrix of these observations

$$T^2 = (\mathbf{x} - \overline{\mathbf{x}})' \mathbf{S}^{-1} (\mathbf{x} - \overline{\mathbf{x}})$$

Phase 2 control limit:

$$UCL = rac{p(m+1)(m-1)}{m^2 - mp} F_{\alpha,p,m-p} ext{ or } \chi^2_{\alpha,p} ext{ if } ext{m} > 100$$

Phase 1 control limit

$$UCL = \frac{(m-1)^2}{m} \beta_{\alpha,p/2,(m-p-1)/2}$$

 $\beta_{\alpha,p/2,(m-p-1)/2}$  is the upper  $\alpha$  percentage of a Beta distribution with parameters p/2,(m-p-1)/2

# Multivariate control chart (MCC) to monitor space-time count series

- Vectors of the deviance residuals (after fitting a STARMA model) used to build MCUSUM and MEWMA control charts to monitor multivariate space-time count series.
- Chart parameters estimated by simulation to meet a desired in-control average run length and to minimize out-of-control average run length

- A complementary simulation study is performed to measure the impact of the omission of the spatial dependencies on the performance of the control charts.
- Results highlight that false alarms will be signaled much earlier on average.

- For illustrative purposes, consider the data set of the monthly rates of vehicle robberies registered in 93 police districts located in São Paulo City (Brazil).
- Data from January 2001 to December 2013 are used to fit the STARMA model. Chart parameters are searched by simulation
- Observed vehicle robberies from January 2014 to April 2016 and used to draw the control charts.

- The control charts signal as out-of-control for almost all months of 2014 and the beginning of 2015.
- An exploratory analysis is used to identify which districts are responsible for these signals.
- In the case of omission of spatial dependencies, in the current application, these control charts will give false alarms on average 2.5 (MEWMA) and 7 months (MCUSUM) earlier due to this fault.





Figure 3: Vehicle robbery rate per one thousand vehicles.

イロト イヨト イヨト イ

STARMA(p,  $\lambda_p$ , q,  $\delta_q$ ) model

$$\mathbf{Z}_{t}^{*} = \sum_{k=1}^{p} \sum_{j=0}^{\lambda_{k}} \phi_{k,j} \mathbf{W}_{j} \mathbf{Z}_{t-k}^{*} - \sum_{k=1}^{q} \sum_{j=0}^{\delta_{k}} \theta_{k,j} \mathbf{W}_{j} \varepsilon_{t-k} + \varepsilon_{t}, \quad (1)$$

#### where

- p and q are the lags of autoregressive and moving average components, respectively;
- λ<sub>k</sub> is the degree of spatial dependency within the k-th autoregressive lag component;
- δ<sub>k</sub> is the degree of spatial dependency within the k-th moving average lag component;
- $\phi_{k,j}$  are the parameters of the autoregressive components; and
- $\theta_{k,j}$  are the parameters of the moving average component.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

- ε<sub>t</sub> = {ε<sub>1,t</sub>,...,ε<sub>N,t</sub>} in (1) are normally distributed with μ = 0 and variance-covariance matrix Σ = σ<sup>2</sup>I<sub>N</sub>, where I<sub>N</sub> is the N × N identity matrix.
- ► The standardized matrix W<sub>j</sub>, with dimension N × N, is used to describe the spatial neighborhood relationship of order j among N locations.
- For an order j, the elements w<sub>im<sub>j</sub></sub> > 0 indicate the neighborhood relationship strength between *i*-th and *m*-th locations with w<sub>iij</sub> = 0 and ∑<sup>N</sup><sub>m=1</sub> w<sub>im<sub>j</sub></sub> = 1, where i = 1, ..., N.
- For j = 0, the matrix W<sub>0</sub> = I. So φ<sub>k,0</sub> and θ<sub>k,0</sub> are, respectively, the "pure" temporal components of the autoregressive and the moving average in the STARMA model.

# Frame Title

- ► Order 1: Matrix W<sub>1</sub>—for the police districts whose minimum distance δ is ≤ 0.5 km;
- ► Order 2: Matrix W<sub>2</sub>—for the police districts whose minimum distance δ ∈ ]0.5km; 3km];
- ► Order 3: Matrix W<sub>3</sub>—for the police districts whose minimum distance δ ∈ ]3km; 6km]

- ► X<sub>i,t</sub> be the monthly number of vehicle robberies at the *i*-th location at time *t*.
- It is assumed that X<sub>i,t</sub> follows a Negative Binomial distribution (as overdispersion is also observed,
- $Z_{i,t}^* = \frac{X_{i,t}}{fl_t} \times 10^6$  is the respective rate of vehicle robberies, where  $fl_t$  is the fleet of registered vehicles at time t and i = 1, ..., N.
- For N (here N = 93) locations, Z<sup>\*</sup><sub>t</sub> = (Z<sup>\*</sup><sub>1,t</sub>, Z<sup>\*</sup><sub>2,t</sub>, · · · , Z<sup>\*</sup><sub>N,t</sub>) at instant t.

## Frame Title

- In the checking stage of the STARMA model, normality assumption was not considered reasonable,
- some possible transformations in the response variable that would allow to consider the normality assumption as satisfied are evaluated.
- After evaluating several possibilities, we observed that deviance residuals yield the symmetrical variable presented the best results in the sense of not rejecting the hypotheses of the model.



Figure 4: Histogram of the rate of vehicle robbery and its transformations.

э

イロト イボト イヨト イヨト

$$Z_{i,t}^{DR} = sign(Z_{i,t}^* - \mu_i) \sqrt{g_{i,t}^2},$$
 (2)

where  $g_{i,t}^2$  is calculated as follows:

$$g_{i,t}^{2} = \begin{cases} 2\gamma_{i}\ln(1+\mu_{i}/\gamma_{i}) & \text{if } Z_{i,t}^{*} = 0\\ 2Z_{i,t}^{*}\ln(Z_{i,t}^{*}/\mu_{i}) - 2\gamma_{i}(1+Z_{i,t}^{*}/\gamma_{i})\ln\left(\frac{1+Z_{i,t}^{*}/\gamma_{i}}{1+\mu_{i}/\gamma_{i}}\right) & \text{if } Z_{i,t}^{*} > 0\\ \end{cases}$$
(3)

 $\mu_i$  in (2) and (3) is replaced by the sample mean  $\overline{Z}_i^*$  for any t,

- and parameter  $\gamma_i$  is estimated by satisfying  $Var(Z_{i,t}^*) = \gamma_i \pi_i / (1 \pi_i)^2$ , with  $\pi_i = \mu_i / (\mu_i + \gamma_i)$ .
- These equalities are due to the assumption that the original random count variable X<sub>i,t</sub> follows a Negative Binomial Distribution

$$\hat{\mathbf{Z}}_{t} = + 0.80409 \ \mathbf{Z}_{t-1} + 0.04687 \ \mathbf{Z}_{t-12} + 0.22849 \mathbf{W}_{1} \mathbf{Z}_{t-1} - 0.10124 \mathbf{W}_{1} \mathbf{Z}_{t-2} - 0.51406 \ \hat{\varepsilon}_{t-1}$$
(4)

æ

イロト イヨト イヨト イヨト



Figure 5: Observed versus fitted theft rates



Figure 6: Aggregate rate - observed versus fitted



Figure 7: MCUSUM and MEWMA control chart.



1 . . . . . . . .

#### Monitoring bivariate means by attribute charts

- Some contributions are found in the literature like:
  - $np_{xy}$  and  $np_w$  proposed by Ho & Costa (2015) and
  - *Max D* by Melo et al. (2017*b*)
- Like other attribute charts for monitoring a variable quality characteristic, the items are classified using some device.
- In bivariate processes, the classifications are made on the dimensions X and Y.
- What differs among the proposals is the statistics used to monitoring.

# $np_{xy}$ and $np_w$ charts proposed by Ho & Costa (2015)

- Some assumptions: the values of the dimensions X and Y are standardized
- Only upper discriminating limit (UDL) is used and equal for the (standardized) dimensions X and Y.
- Items are classified as first, second or third class according to the UDL
  - ► First class: if (X <UDL) and (Y< UDL)
  - ▶ Thirs class: if (X > UDL) and (Y> UDL)
  - Otherwise results: the item is classified as
- Let p<sub>1</sub>= P[ (X <UDL) and (Y< UDL)] the probability of an item be of the first class</p>
- ▶ p<sub>3</sub> =P[ (X > UDL) and (Y> UDL)] the probability of an item be of the third class
- And p<sub>2</sub>= 1 − p<sub>1</sub> − p<sub>3</sub>= probability of the item be of the second class
- ► After classification: n<sub>1</sub>, n<sub>2</sub>, and n<sub>3</sub> items classified as the first, second and third class
- ▶ n<sub>1</sub>, n<sub>2</sub>, n<sub>3</sub> follows a trinomial distribution with parameters: n, p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub>

《曰》《卽》《臣》《臣》

- Control chart  $np_{xy}$ : the monitored statistic is  $M = n_2 + n_3$ 
  - The process is declared out of control whenever  $M > UCL_{xy}$
  - *M* follows a binomial distribution with parameters: n;  $(1 p_0)$
- Control chart  $np_w$ : the monitored statistic is  $W = n_2 + 2n_3$ 
  - The process is declared out of control whenever  $W > UCL_w$

| Table I.       | ARL values for | $n = 6$ and $\rho = 0.8$ |         |        |                 |        |        |
|----------------|----------------|--------------------------|---------|--------|-----------------|--------|--------|
| k <sub>x</sub> | k <sub>y</sub> | np <sub>xy</sub>         | chart   |        | np <sub>w</sub> | chart  |        |
| 0.0            | 0.00           | 370.31                   | 370.35  | 370.40 | 370.40          | 370.40 | 370.40 |
| 0.00           | 0.25           | 149.06                   | 148.41* | 170.88 | 164.82          | 167.94 | 166.03 |
| 0.00           | 0.50           | 53.51*                   | 53.85   | 81.89  | 79.78           | 84.99  | 84.54  |
| 0.00           | 0.75           | 19.59*                   | 20.05   | 40.82  | 41.68           | 46.53  | 48.27  |
| 0.00           | 1.00           | 8.06*                    | 8.40    | 20.91  | 23.15           | 27.25  | 30.30  |
| 0.25           | 0.25           | 83.14                    | 81.87   | 85.22  | 77.13           | 76.32  | 75.60* |
| 0.25           | 0.50           | 38.85                    | 38.52*  | 43.86  | 39.18           | 39.46  | 39.03  |
| 0.25           | 0.75           | 16.84*                   | 17.02   | 23.47  | 21.52           | 22.50  | 22.53  |
| 0.25           | 1.00           | 7.58*                    | 7.83    | 13.11  | 12.70           | 13.82  | 14.37  |
| 0.50           | 0.50           | 23.86                    | 23.61   | 24.44  | 21.05           | 20.78  | 20.67* |
| 0.50           | 0.75           | 12.89                    | 12.92   | 14.08  | 12.19*          | 12.23  | 12.21  |
| 0.50           | 1.00           | 6.68*                    | 6.85    | 8.46   | 7.59            | 7.85   | 7.94   |
| 0.75           | 0.75           | 8.71                     | 8.76    | 8.78   | 7.49            | 7.42*  | 7.46   |
| 0.75           | 1.00           | 5.40                     | 5.51    | 5.67   | 4.93*           | 4.95   | 5.00   |
| 1.00           | 1.00           | 4.00                     | 4.10    | 3.95   | 3.44            | 3.42*  | 3.48   |
|                | UCL            | 3                        | 4       | 4      | 6               | 7      | 8      |
|                | UDL            | 1.380                    | 0.989   | 1.602  | 1.143           | 0.978  | 0.736  |

| Table II.      | ARL values for | $n = 6$ and $\rho = 0.5$ |         |        |                 |        |        |
|----------------|----------------|--------------------------|---------|--------|-----------------|--------|--------|
| k <sub>x</sub> | k <sub>y</sub> | np <sub>xy</sub>         | chart   |        | np <sub>w</sub> | chart  |        |
| 0.0            | 0.00           | 370.21                   | 370.05  | 370.40 | 370.40          | 370.40 | 370.40 |
| 0.00           | 0.25           | 150.16                   | 148.34* | 156.94 | 151.31          | 151.60 | 153.47 |
| 0.00           | 0.50           | 55.57*                   | 56.89   | 68.42  | 66.94           | 68.76  | 72.03  |
| 0.00           | 0.75           | 20.92*                   | 22.54   | 31.14  | 32,24           | 34.53  | 38.07  |
| 0.00           | 1.00           | 8.72*                    | 9.81    | 15.03  | 16.96           | 19.17  | 22.50  |
| 0.25           | 0.25           | 81.44                    | 76.34   | 74.48  | 67.51           | 66.49* | 66.77  |
| 0.25           | 0.50           | 38.38                    | 36.21   | 36.25  | 32,53           | 32.27* | 32.85  |
| 0.25           | 0.75           | 17.11                    | 16.89*  | 18.37  | 17.01           | 17.29  | 18.14  |
| 0.25           | 1.00           | 7.90*                    | 8.24    | 9.83   | 9.68            | 10.20  | 11.14  |
| 0.50           | 0.50           | 23.05                    | 21.06   | 19.61  | 17.02           | 16.73* | 16.97  |
| 0.50           | 0.75           | 12.57                    | 11.69   | 11.00  | 9.64            | 9.56*  | 9.82   |
| 0.50           | 1.00           | 6.68                     | 6.52    | 6.48   | 5.91*           | 5.99   | 6.29   |
| 0.75           | 0.75           | 8.35                     | 7.64    | 6.79   | 5.88            | 5.82*  | 5.95   |
| 0.75           | 1.00           | 5.23                     | 4.90    | 4.38   | 3.88            | 3.87*  | 4.00   |
| 1.00           | 1.00           | 3.83                     | 3.57    | 3.08   | 2.74            | 2.72*  | 2.81   |
|                | UCL            | 3                        | 4       | 4      | 6               | 7      | 8      |
|                | UDL            | 1.469                    | 1.094   | 1.494  | 1.040           | 0.836  | 0.633  |

| Table III      | . ARL values fo | r $n = 6$ and $\rho = 0.3$ |        |        |                 |        |        |
|----------------|-----------------|----------------------------|--------|--------|-----------------|--------|--------|
| k <sub>x</sub> | k <sub>y</sub>  | np <sub>xy</sub>           | chart  |        | np <sub>w</sub> | chart  |        |
| 0.0            | 0.00            | 370.21                     | 370.29 | 370.40 | 370.40          | 370.40 | 370.40 |
| 0.00           | 0.25            | 147.69                     | 146.16 | 148.00 | 143.13*         | 143.58 | 145.78 |
| 0.00           | 0.50            | 56.08*                     | 56.15  | 60.96  | 60.26           | 62.10  | 65.44  |
| 0.00           | 0.75            | 21.97*                     | 22.50  | 26.55  | 27.95           | 30.08  | 33.40  |
| 0.00           | 1.00            | 9.45*                      | 9.92   | 12.50  | 14.37           | 16.32  | 19.26  |
| 0.25           | 0.25            | 75.03                      | 72.82  | 67.96  | 61.66           | 60.81* | 61.26  |
| 0.25           | 0.50            | 35.07                      | 34.20  | 31.92  | 28.76           | 28.60* | 29.26  |
| 0.25           | 0.75            | 16.13                      | 16.07  | 15.71  | 14.68*          | 14.97  | 15.80  |
| 0.25           | 1.00            | 7.79*                      | 7.97   | 8.27   | 8.24            | 8.71   | 9.57   |
| 0.50           | 0.50            | 20.03                      | 19.43  | 16.96  | 14.79           | 14.58* | 14.85  |
| 0.50           | 0.75            | 10.94                      | 10.75  | 9.37   | 8.27            | 8.24*  | 8.50   |
| 0.50           | 1.00            | 6.04                       | 6.08   | 5.49   | 5.06*           | 5.14   | 5.43   |
| 0.75           | 0.75            | 7.04                       | 6.94   | 5.77   | 5.04            | 5.00*  | 5.15   |
| 0.75           | 1.00            | 4.46                       | 4.47   | 3.73   | 3.34*           | 3.34   | 3.47   |
| 1.00           | 1.00            | 3.22                       | 3.24   | 2.65   | 2.38            | 2.38*  | 2.46   |
|                | UCL             | 3                          | 4      | 4      | 6               | 7      | 8      |
|                | UDL             | 1.502                      | 1.138  | 1.429  | 0.978           | 0.773  | .569   |

| Table IV       | . ARL values fo | $r n = 6 and \rho = 0$ |        |        |                 |        |        |
|----------------|-----------------|------------------------|--------|--------|-----------------|--------|--------|
| k <sub>x</sub> | k <sub>y</sub>  | np <sub>xy</sub>       | chart  |        | np <sub>w</sub> | chart  |        |
| 0.0            | 0.00            | 370.16                 | 370.38 | 370.40 | 370.40          | 370.40 | 370.40 |
| 0.00           | 0.25            | 143.99                 | 141.31 | 136.29 | 131.18*         | 131.52 | 133.67 |
| 0.00           | 0.50            | 54.11                  | 53.46  | 52.01  | 51.42*          | 53.07  | 56.08  |
| 0.00           | 0.75            | 21.20*                 | 21.39  | 21.42  | 22.68           | 24.50  | 27.28  |
| 0.00           | 1.00            | 9.17*                  | 9.50   | 9.80   | 11.35           | 12.93  | 15.26  |
| 0.25           | 0.25            | 70.59                  | 67.31  | 59.63  | 53.18           | 52.28* | 52.71  |
| 0.25           | 0.50            | 32.39                  | 30.88  | 26.64  | 23.62           | 23.43* | 24.02  |
| 0.25           | 0.75            | 14.86                  | 14.45  | 12.63  | 11.67*          | 11.90  | 12.60  |
| 0.25           | 1.00            | 7.24                   | 7.24   | 6.53   | 6.47*           | 6.84   | 7.53   |
| 0.50           | 0.50            | 20.03                  | 19.43  | 13.79  | 11.80           | 11.60* | 11.86  |
| 0.50           | 0.75            | 10.94                  | 10.75  | 7.47   | 6.50            | 6.47*  | 6.70   |
| 0.50           | 1.00            | 6.04                   | 6.08   | 4.35   | 3.98*           | 4.04   | 4.28   |
| 0.75           | 0.75            | 6.15                   | 5.89   | 4.58   | 3.97            | 3.94*  | 4.07   |
| 0.75           | 1.00            | 3.90                   | 3.81   | 2.99   | 2.66*           | 2.67   | 2.78   |
| 1.00           | 1.00            | 2.80                   | 2.76   | 2.15   | 1.94*           | 1.95   | 2.02   |
|                | UCL             | 3                      | 4      | 4      | 6               | 7      | 8      |
|                | UDL             | 1.531                  | 1.182  | 1.342  | 0.885           | 0.678  | 0.472  |

| Table X        | Table XI. np <sub>xy</sub> , np <sub>w</sub> and T <sup>2</sup> control charts |                |                  |                  |                 |        |                       |                  |                  |                 |        |  |  |
|----------------|--------------------------------------------------------------------------------|----------------|------------------|------------------|-----------------|--------|-----------------------|------------------|------------------|-----------------|--------|--|--|
|                |                                                                                |                |                  |                  | /               | 0      |                       |                  |                  |                 |        |  |  |
|                |                                                                                |                |                  | 0.5              |                 |        |                       |                  | 0                |                 |        |  |  |
|                |                                                                                | T <sup>2</sup> | np <sub>xy</sub> | np <sub>xy</sub> | np <sub>w</sub> | npw    | <b>T</b> <sup>2</sup> | np <sub>xy</sub> | np <sub>xy</sub> | np <sub>w</sub> | npw    |  |  |
|                |                                                                                |                |                  | n                |                 |        |                       |                  | n                |                 |        |  |  |
| k <sub>x</sub> | k <sub>y</sub>                                                                 | 3              | 3                | 6                | 3               | 6      | 3                     | 3                | 6                | 3               | 6      |  |  |
| 0              | 0                                                                              | 370.37         | 370.11           | 370.21           | 370.40          | 370.40 | 370.37                | 370.04           | 370.16           | 370.40          | 370.40 |  |  |
| 0              | 0.25                                                                           | 161.87         | 184.93           | 150.16           | 194.65          | 151.31 | 230.61                | 179.14           | 143.99           | 172.30          | 131.18 |  |  |
| 0              | 0.5                                                                            | 42.26          | 86.82            | 55.57            | 107.22          | 66.94  | 90.90                 | 83.46            | 54.11            | 84.30           | 51.42  |  |  |
| 0              | 0.75                                                                           | 12.82          | 40.58            | 20.92            | 61.56           | 32.24  | 35.18                 | 39.30            | 21.20            | 44.00           | 22.68  |  |  |
| 0              | 1                                                                              | 4.98           | 19.78            | 8.72             | 36.89           | 16.96  | 14.99                 | 19.43            | 9.17             | 24.80           | 11.35  |  |  |
| 0.25           | 0.25                                                                           | 214.84         | 111.38           | 81.44            | 105.45          | 67.51  | 159.77                | 102.35           | 70.59            | 86.60           | 53.18  |  |  |
| 0.25           | 0.5                                                                            | 84.34          | 61.37            | 38.38            | 60.16           | 32.53  | 72.26                 | 55.01            | 32.39            | 45.50           | 23.62  |  |  |
| 0.25           | 0.75                                                                           | 25.26          | 32.42            | 17.11            | 36.01           | 17.01  | 30.40                 | 29.04            | 14.86            | 25.30           | 11.67  |  |  |
| 0.25           | 1                                                                              | 8.71           | 17.21            | 7.90             | 22.54           | 9.68   | 13.61                 | 15.65            | 7.24             | 15.00           | 6.47   |  |  |
| 0.5            | 0.5                                                                            | 77.10          | 39.57            | 23.05            | 35.43           | 17.02  | 41.18                 | 33.88            | 20.03            | 25.60           | 11.80  |  |  |
| 0.5            | 0.75                                                                           | 35.08          | 23.93            | 12.57            | 21.96           | 9.64   | 20.69                 | 20.14            | 10.94            | 15.10           | 6.50   |  |  |
| 0.5            | 1                                                                              | 13.29          | 14.10            | 6.68             | 14.29           | 5.91   | 10.46                 | 11.96            | 6.04             | 9.50            | 3.98   |  |  |
| 0.75           | 0.75                                                                           | 28.02          | 16.49            | 8.35             | 14.06           | 5.88   | 12.41                 | 13.39            | 6.15             | 9.50            | 3.97   |  |  |
| 0.75           | 1                                                                              | 14.88          | 10.87            | 5.23             | 9.46            | 3.88   | 7.24                  | 8.77             | 3.90             | 6.30            | 2.66   |  |  |
| 1              | 1                                                                              | 11.55          | 7.99             | 3.83             | 6.56            | 2.73   | 4.82                  | 6.29             | 2.80             | 4.30            | 1.94   |  |  |
| UCL            |                                                                                | 11.829         | 2                | 3                | 3               | 6      | 11.829                | 2                | 3                | 3               | 6      |  |  |
| UDL            |                                                                                |                | 1.394            | 0.690            | 1.394           | 1.040  |                       | 1.459            | 1.531            | 1.166           | 0.885  |  |  |

니 제 제 바 제 문 제 제 문

-2

## Max D proposed by Melo et al. (2017b)

- Each item is classified as approved or disapproved in respect to each quality characteristic by a gauge
- An item is classified as disapproved in i-th quality characteristic if its value is out of discriminating limits: w<sub>L</sub>; w<sub>U</sub>
- ▶ Let D<sub>i</sub> = number of disapproved items in *i*-th quality characteristics in a sample of *n* units
- The monitor statistic is Max  $D = max(D_1, D_2, \dots, D_p)$
- A signal is triggered whenever Max D > L, L, the control limit set to satisfy a performance metric

# Max D: comparing to $T^2$

Table 1 Values of  $ARL_1$  of  $T^2$  and MaxD control charts: n = 1

|            |            | ρ     |        |        |       |        |        |       |        |        |       |        |        |
|------------|------------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|
|            |            | 0.0   |        |        | 0.3   |        |        | 0.5   |        |        | 0.8   |        |        |
| $\delta_x$ | $\delta_y$ | $d^2$ | Max D  | $T^2$  |
| 0.00       | 0.00       | 0.00  | 370.00 | 370.00 | 0.00  | 370.00 | 370.00 | 0.00  | 370.00 | 370.00 | 0.00  | 370.00 | 370.00 |
|            | 0.25       | 0.06  | 230.76 | 310.80 | 0.07  | 231.14 | 305.80 | 0.08  | 231.47 | 294.47 | 0.17  | 230.52 | 237.56 |
|            | 0.50       | 0.25  | 131.91 | 202.04 | 0.27  | 132.46 | 192.34 | 0.33  | 132.40 | 172.07 | 0.69  | 129.21 | 97.76  |
|            | 1.00       | 1.00  | 41.47  | 67.27  | 1.10  | 41.53  | 60.43  | 1.33  | 41.32  | 47.85  | 2.78  | 38.98  | 16.91  |
|            | 2.00       | 4.00  | 6.25   | 9.40   | 4.40  | 6.25   | 8.05   | 5.33  | 6.20   | 5.84   | 11.11 | 5.87   | 1.93   |
| 0.25       | 0.25       | 0.13  | 167.75 | 265.73 | 0.10  | 168.60 | 285.10 | 0.08  | 169.84 | 294.47 | 0.07  | 173.06 | 305.19 |
|            | 0.50       | 0.31  | 108.66 | 178.87 | 0.26  | 109.42 | 197.63 | 0.25  | 110.48 | 202.04 | 0.31  | 112.16 | 178.87 |
|            | 1.00       | 1.06  | 38.90  | 62.82  | 1.00  | 39.16  | 67.06  | 1.08  | 39.30  | 61.43  | 1.84  | 38.12  | 31.18  |
|            | 2.00       | 4.06  | 6.20   | 9.16   | 4.13  | 6.21   | 8.90   | 4.75  | 6.18   | 7.08   | 9.06  | 5.87   | 2.54   |
| 0.50       | 0.50       | 0.50  | 80.63  | 129.68 | 0.38  | 81.45  | 156.96 | 0.33  | 82.73  | 172.07 | 0.28  | 86.04  | 191.19 |
|            | 1.00       | 1.25  | 34.65  | 51.83  | 1.04  | 35.14  | 64.09  | 1.00  | 35.64  | 67.27  | 1.25  | 35.94  | 51.83  |
|            | 2.00       | 4.25  | 6.10   | 8.51   | 4.01  | 6.14   | 9.36   | 4.33  | 6.13   | 8.24   | 7.36  | 5.87   | 3.47   |
| 1.00       | 1.00       | 2.00  | 22.20  | 27.71  | 1.54  | 22.85  | 39.80  | 1.33  | 23.59  | 47.85  | 1.11  | 25.23  | 59.66  |
|            | 2.00       | 5.00  | 5.62   | 6.50   | 4.18  | 5.76   | 8.76   | 4.00  | 5.86   | 9.40   | 5.00  | 5.80   | 6.50   |
| 2.00       | 2.00       | 8.00  | 3.42   | 3.06   | 6.15  | 3.66   | 4.62   | 5.33  | 3.87   | 5.84   | 4.44  | 4.27   | 7.90   |
| UCL        |            |       | 0      | 11.827 |       | 0      | 11.827 |       | 0      | 11.827 |       | 0      | 11.827 |
| $w_U$      |            |       | 2.999  |        |       | 2.997  |        |       | 2.990  |        |       | 2.999  |        |

オロトオロドオ ミトオ ミトニ ミニ ぞうべい

# Max D: comparing to $T^2$

|            |            | ρ     |        |        |       |        |        |       |        |        |       |        |                |
|------------|------------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|----------------|
|            |            | 0.0   |        |        | 0.3   |        |        | 0.5   |        |        | 0.8   |        |                |
| $\delta_x$ | $\delta_y$ | $d^2$ | Max D  | $T^2$  | $d^2$ | Max D  | $T^2$  | $d^2$ | MaxD   | $T^2$  | $d^2$ | Max D  | T <sup>2</sup> |
| 0.00       | 0.00       | 0.00  | 370.00 | 370.00 | 0.00  | 370.00 | 370.00 | 0.00  | 370.00 | 370.00 | 0.00  | 370.00 | 370.00         |
|            | 0.25       | 0.19  | 170.92 | 230.39 | 0.21  | 171.16 | 221.35 | 0.25  | 171.17 | 202.04 | 0.52  | 170.30 | 125.55         |
|            | 0.50       | 0.75  | 70.11  | 90.82  | 0.82  | 70.23  | 92.68  | 1.00  | 70.09  | 67.27  | 2.08  | 68.44  | 26.12          |
|            | 1.00       | 3.00  | 14.09  | 14.98  | 3.30  | 14.09  | 12.89  | 4.00  | 14.03  | 9.40   | 8.33  | 13.53  | 2.87           |
|            | 2.00       | 12.00 | 2.09   | 2.76   | 13.19 | 2.09   | 1.58   | 16.00 | 2.09   | 1.32   | 33.33 | 2.05   | 1.01           |
| 0.25       | 0.25       | 0.38  | 111.22 | 159.63 | 0.29  | 111.74 | 187.26 | 0.25  | 112.70 | 202.04 | 0.21  | 115.57 | 220.27         |
|            | 0.50       | 0.94  | 57.43  | 72.21  | 0.78  | 57.99  | 87.06  | 0.75  | 58.49  | 90.92  | 0.94  | 59.76  | 72.21          |
|            | 1.00       | 3.19  | 13.53  | 13.60  | 3.01  | 13.60  | 14.92  | 3.25  | 13.63  | 13.19  | 5.52  | 13.38  | 5.52           |
|            | 2.00       | 12.19 | 2.09   | 1.73   | 12.40 | 2.09   | 1.69   | 14.25 | 2.09   | 1.46   | 27.19 | 2.05   | 1.03           |
| 0.50       | 0.50       | 1.50  | 38.92  | 41.15  | 1.15  | 39.49  | 57.07  | 1.00  | 40.15  | 67.24  | 0.83  | 42.17  | 81.75          |
|            | 1.00       | 3.75  | 12.23  | 10.45  | 3.13  | 12.42  | 13.99  | 3.00  | 12.59  | 14.98  | 3.75  | 12.80  | 10.45          |
|            | 2.00       | 12.75 | 2.07   | 1.64   | 12.03 | 2.08   | 1.73   | 13.00 | 2.08   | 1.61   | 22.08 | 2.05   | 1.09           |
| 1.00       | 1.00       | 6.00  | 7.43   | 4.82   | 4.62  | 7.71   | 7.42   | 4.00  | 7.99   | 9.40   | 3.33  | 8.70   | 12.66          |
|            | 2.00       | 15.00 | 1.95   | 1.40   | 12.53 | 1.99   | 1.67   | 12.00 | 2.02   | 1.76   | 15.00 | 2.04   | 1.40           |
| 2.00       | 2.00       | 24.00 | 1.38   | 1.06   | 18.46 | 1.44   | 1.19   | 16.00 | 1.50   | 1.32   | 13.33 | 1.63   | 1.57           |
| UCL        |            |       | 2      | 11.827 |       | 2      | 11.827 |       | 2      | 11.827 |       | 2      | 11.827         |
| $w_U$      |            |       | 1.223  |        |       | 1.222  |        |       | 1.220  |        |       | 1.203  |                |

Table 2 Values of  $ARL_1$  of  $T^2$  and Max D control charts: n = 3

# Max D: comparing to $T^2$

Table 3 Values of  $ARL_1$  of  $T^2$  and MaxD control charts: n = 6

|            |      | ρ     |        |        |       |        |        |       |        |        |       |        |                |
|------------|------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|----------------|
|            |      | 0.0   |        |        | 0.3   |        |        | 0.5   |        |        | 0.8   |        |                |
| $\delta_x$ | δy   | $d^2$ | Max D  | $T^2$  | $d^2$ | MaxD   | $T^2$  | $d^2$ | Max D  | $T^2$  | $d^2$ | Max D  | T <sup>2</sup> |
| 0.00       | 0.00 | 0.00  | 370.00 | 370.00 | 0.00  | 370.00 | 370.00 | 0.00  | 370.00 | 370.00 | 0.00  | 370.00 | 370.00         |
|            | 0.25 | 0.38  | 126.95 | 159.63 | 0.42  | 127.80 | 149.71 | 0.50  | 127.17 | 149.71 | 1.04  | 128.61 | 64.25          |
|            | 0.50 | 1.50  | 38.81  | 41.15  | 1.64  | 39.06  | 36.29  | 2.00  | 38.80  | 36.30  | 4.16  | 37.98  | 8.79           |
|            | 1.00 | 6.00  | 5.85*  | 4.82   | 6.60  | 5.87*  | 4.13   | 8.00  | 5.85*  | 4.13   | 26.66 | 5.71*  | 1.28           |
|            | 2.00 | 24.00 | 1.17*  | 1.06   | 26.38 | 1.17*  | 1.04   | 32.00 | 1.17*  | 1.04   | 66.66 | 1.16*  | 1.00           |
| 0.25       | 0.25 | 0.76  | 76.71  | 90.82  | 0.58  | 77.85  | 115.37 | 70.50 | 78.02  | 115.37 | 0.42  | 80.30  | 148.55         |
|            | 0.50 | 1.88  | 32.44  | 30.37  | 1.56  | 32.93  | 38.88  | 1.50  | 33.05  | 38.88  | 1.88  | 33.70  | 30.37          |
|            | 1.00 | 6.38  | 5.71*  | 4.36   | 6.02  | 5.76*  | 4.80   | 6.50  | 5.76*  | 4.80   | 11.04 | 5.68*  | 1.95           |
|            | 2.00 | 24.38 | 1.17*  | 1.06   | 24.80 | 1.17*  | 1.05   | 28.5  | 1.17*  | 1.05   | 54.38 | 1.16*  | 1.00           |
| 0.50       | 0.50 | 3.00  | 20.70  | 14.98  | 2.30  | 21.21  | 22.46  | 2.00  | 21.53  | 22.46  | 1.66  | 22.74  | 35.76          |
|            | 1.00 | 7.50  | 5.27*  | 3.37   | 6.26  | 5.38*  | 4.49   | 6.00  | 5.45*  | 4.49   | 7.50  | 5.52*  | 3.37           |
|            | 2.00 | 25.50 | 1.16*  | 1.04   | 24.06 | 1.17*  | 1.06   | 26.00 | 1.17*  | 1.06   | 44.16 | 1.16*  | 1.00           |
| 1.00       | 1.00 | 12.00 | 3.22*  | 1.76   | 9.24  | 3.38*  | 2.48   | 8.00  | 3.52*  | 2.48   | 6.66  | 3.82*  | 4.06           |
|            | 2.00 | 30.00 | 1.14*  | 1.02   | 25.06 | 1.15*  | 1.05   | 24.00 | 1.16*  | 1.05   | 30.00 | 1.16*  | 1.02           |
| 2.00       | 2.00 | 48.00 | 1.02*  | 1.00   | 37.92 | 1.03*  | 1.00   | 32.00 | 1.04*  | 1.00   | 26.66 | 1.07*  | 1.03           |
| UCL        |      |       | 4      | 11.827 |       | 4      | 11.827 |       | 4      | 11.827 |       | 4      | 11.827         |
|            |      |       | 3*     |        |       | 3*     |        |       | 3*     |        |       | 3*     |                |
| $w_U$      |      |       | 0.866  |        |       | 0.867  |        |       | 0.864  |        |       | 0.856  |                |
|            |      |       | 1.271* |        |       | 1.272* |        |       | 1.270* |        |       | 1.261* |                |

< ロ > < ロ > < 三 > < 三 > < 三 > <) Q(</li>

## Max D

Table 4 Minimum sample size (MSS) needed for Max D control chart to outperform  $T^2$  control chart with n = 3

|            |            | ρ      |        |     |                |         |     |        |        |     |        |        |     |
|------------|------------|--------|--------|-----|----------------|---------|-----|--------|--------|-----|--------|--------|-----|
|            |            | 0.0    |        |     | 0.3            |         |     | 0.5    |        |     | 0.8    |        |     |
|            |            | $T^2$  | MaxD   |     | T <sup>2</sup> | MaxD    |     | $T^2$  | Ma     | xD  | $T^2$  | MaxD   |     |
| $\delta_x$ | $\delta_y$ | ARL1   | ARL1   | MSS | ARL1           | $ARL_1$ | MSS | ARL1   | ARL1   | MSS | ARL1   | ARL1   | MSS |
| 0.00       | 0.25       | 230.39 | 193.33 | 2   | 221.35         | 193.66  | 2   | 202.04 | 194.02 | 2   | 125.55 | 116.43 | 7   |
| 0.00       | 0.50       | 90.82  | 90.37  | 2   | 82.68          | 70.23   | 3   | 67.27  | 57.38  | 4   | 26.12  | 24.27  | 9   |
| 0.00       | 1.00       | 14.98  | 14.09  | 3   | 12.89          | 9.95    | 4   | 9.40   | 7.35   | 5   | 2.87   | 2.54   | 11  |
| 0.00       | 2.00       | 1.76   | 1.52   | 4   | 1.58           | 1.52    | 4   | 1.32   | 1.31   | 5   | 1.01   | 1.01   | 11  |
| 0.25       | 0.25       | 159.63 | 130.97 | 2   | 187.26         | 131.65  | 2   | 202.04 | 132.82 | 2   | 220.27 | 135.78 | 2   |
| 0.25       | 0.50       | 72.21  | 57.43  | 3   | 87.06          | 74.55   | 2   | 90.82  | 75.29  | 2   | 72.21  | 59.76  | 3   |
| 0.25       | 1.00       | 13.60  | 13.53  | 3   | 14.92          | 13.60   | 3   | 13.19  | 9.70   | 4   | 5.52   | 4.57   | 7   |
| 0.25       | 2.00       | 1.73   | 1.52   | 4   | 1.69           | 1.52    | 4   | 1.46   | 1.31   | 5   | 1.03   | 1.03   | 9   |
| 0.50       | 0.50       | 41.15  | 38.92  | 3   | 57.07          | 52.34   | 2   | 67.27  | 53.28  | 2   | 81.75  | 55.64  | 2   |
| 0.50       | 1.00       | 10.45  | 8.79   | 4   | 13.99          | 12.42   | 3   | 14.98  | 12.59  | 3   | 10.45  | 9.17   | 4   |
| 0.50       | 2.00       | 1.64   | 1.51   | 4   | 1.75           | 1.52    | 4   | 1.61   | 1.52   | 4   | 1.09   | 1.05   | 8   |
| 1.00       | 1.00       | 4.82   | 3.99   | 5   | 7.42           | 5.52    | 4   | 9.40   | 7.99   | 3   | 12.66  | 8.70   | 3   |
| 1.00       | 2.00       | 1.40   | 1.26   | 5   | 1.67           | 1.48    | 4   | 1.76   | 1.49   | 4   | 1.40   | 1.30   | 5   |
| 2.00       | 2.00       | 1.06   | 1.06   | 5   | 1.19           | 1.17    | 4   | 1.32   | 1.21   | 4   | 1.57   | 1.27   | 4   |

#### Monitoring bivariate means by attribute+variable charts

- ▶ Max D-*T*<sup>2</sup> chart proposed by Melo et al. (2017*a*)
- The sample of *n* units is split into 2 sub-samples:  $n_1$  and  $n_2 = n n_1$
- Evaluate n<sub>1</sub> attributively by a gauge and get the statistic Max
   D
- If Max D > C, then measure n₂ units and calculate T². If T² > L, then the process is stopped for adjustment

| Table | I. Some de | signs of M | $ax D - T^2$ | control c             | hart  |                  |   |       |            |        |                |
|-------|------------|------------|--------------|-----------------------|-------|------------------|---|-------|------------|--------|----------------|
|       |            |            |              |                       |       |                  |   | Max D |            | T      | 2              |
| ρ     | $\delta_1$ | $\delta_2$ | <i>n</i> 1   | <i>n</i> <sub>2</sub> | ASS   | ARL <sub>1</sub> | С | w     | $\alpha_D$ | L      | $\alpha_{T^2}$ |
| 0.0   | 0          | 0.5        | 2            | 4                     | 2.721 | 57.098           | 1 | 0.503 | 0.180      | 8.399  | 0.015          |
|       |            |            | 3            | 6                     | 4.622 | 34.972           | 1 | 0.705 | 0.270      | 9.210  | 0.010          |
|       |            |            | 6            | 6                     | 6.404 | 27.066           | 3 | 0.694 | 0.068      | 6.438  | 0.040          |
|       |            |            | 7            | 5                     | 7.118 | 27.801           | 4 | 0.690 | 0.024      | 4.326  | 0.115          |
|       | 0.5        | 0.5        | 2            | 4                     | 2.721 | 21.052           | 1 | 0.503 | 0.180      | 8.399  | 0.015          |
|       |            |            | 3            | 6                     | 4.622 | 11.617           | 1 | 0.705 | 0.270      | 9.210  | 0.010          |
|       |            |            | 6            | 6                     | 6.649 | 9.024            | 3 | 0.583 | 0.108      | 7.378  | 0.025          |
|       |            |            | 7            | 5                     | 7.300 | 9.947            | 4 | 0.513 | 0.060      | 6.202  | 0.045          |
| 0.5   | 0          | 0.5        | 2            | 4                     | 3.081 | 43.741           | 1 | 0.237 | 0.270      | 9.210  | 0.010          |
|       |            |            | 3            | 6                     | 6.243 | 25.310           | 1 | 0.226 | 0.541      | 10.597 | 0.005          |
|       |            |            | 6            | 6                     | 6.811 | 20.829           | 3 | 0.506 | 0.135      | 7.824  | 0.020          |
|       |            |            | 7            | 5                     | 7.270 | 22.868           | 4 | 0.524 | 0.054      | 5.991  | 0.050          |
|       | 0.5        | 0.5        | 2            | 4                     | 2.360 | 33.236           | 1 | 0.758 | 0.090      | 7.013  | 0.030          |
|       |            |            | 3            | 6                     | 3.811 | 19.726           | 1 | 0.956 | 0.135      | 7.824  | 0.020          |
|       |            |            | 6            | 6                     | 6.295 | 14.102           | 3 | 0.753 | 0.049      | 5.801  | 0.055          |
|       |            |            | 7            | 5                     | 7.113 | 14.418           | 4 | 0.691 | 0.023      | 4.241  | 0.120          |
| 0.8   | 0          | 0.5        | 2            | 4                     | 4.162 | 16.837           | 1 | 0.698 | 0.541      | 10.597 | 0.005          |
|       |            |            | 3            | 6                     | 6.243 | 8.811            | 1 | 0.140 | 0.541      | 10.597 | 0.005          |
|       |            |            | 6            | 6                     | 9.243 | 8.073            | 3 | 0.316 | 0.541      | 10.597 | 0.005          |
|       |            |            | 7            | 5                     | 8.351 | 10.047           | 3 | 0.418 | 0.270      | 9.210  | 0.010          |
|       | 0.5        | 0.5        | 2            | 4                     | 2.270 | 40.099           | 1 | 0.817 | 0.068      | 6.438  | 0.040          |
|       |            |            | 3            | 6                     | 3.649 | 24.665           | 1 | 0.993 | 0.108      | 7.378  | 0.025          |
|       |            |            | 6            | 6                     | 6.203 | 17.075           | 3 | 0.813 | 0.034      | 5.051  | 0.080          |
|       |            |            | 7            | 5                     | 7.073 | 16.864           | 4 | 0.752 | 0.015      | 3.375  | 0.185          |

ASS: average sample size.

| Table II. Valu         | es of ARL1 of Max | $D-T^2$ : $ ho=0.0, \delta_1$ | $=$ 0.0 and $\delta_2 = 0$ | 0.5                  |           |         |         |
|------------------------|-------------------|-------------------------------|----------------------------|----------------------|-----------|---------|---------|
|                        |                   |                               | Sub-sam                    | ole size n1: Attribu | ute chart |         |         |
| <b>n</b> 2             | 1                 | 2                             | 3                          | 4                    | 5         | 6       | 7       |
| 1                      | 132.207 #         | 90.416                        | 70.173                     | 57.402               | 46.138    | 38.879  | 32.972  |
|                        | (1.003)           | (2.003)                       | (3.003)                    | (4.003)              | (5.003)   | (6.003) | (7.003) |
| 2                      | 107.162           | 86.619                        | 70.013                     | 57.342               | 46.090    | 38.838  | 32.938  |
|                        | (1.216)           | (2.031)                       | (3.007)                    | (4.005)              | (5.005)   | (6.005) | (7.005) |
| 3                      | 80.928*           | 71.260                        | 62.591                     | 52.704               | 44.708    | 38.536  | 32.834  |
|                        | (1.811)           | (2.270)                       | (3.090)                    | (4.054)              | (5.024)   | (6.014) | (7.011) |
| 4                      | 62.426            | 57.098 °                      | 51.488                     | 45.175               | 39.924    | 35.262  | 30.841  |
|                        | (3.162)           | (2.721)                       | (3.541)                    | (4.216)              | (5.103)   | (6.075) | (7.044) |
| 5                      | 49.061            | 46.103                        | 42.221                     | 38.164               | 34.645    | 31.028  | 27.801  |
|                        | (3.703)           | (3.351)                       | (3.901)                    | (4.541)              | (5.270)   | (6.193) | (7.118) |
| 6                      | 39.642            | 37.913                        | 34.972                     | 32.291               | 29.861    | 27.066  | 24.693  |
|                        | (4.243)           | (5.243)                       | (4.622)                    | (4.811)              | (5.541)   | (6.405) | (7.249) |
| 7                      | 32.741            | 31.313                        | 29.438                     | 27.501               | 25.645    | 23.609  | 21.838  |
|                        | (4.784)           | (5.784)                       | (4.892)                    | (5.261)              | (6.261)   | (6.757) | (7.473) |
| T <sup>2</sup> chart   | 202.043#          | 129.684*                      | 90.824 <sup>•</sup>        | 67.268 <sup>♠</sup>  | 51.833▲   | 41.150  | 33.445  |
| <b>η</b> <sub>72</sub> | (1)               | (2)                           | (3)                        | (4)                  | (5)       | (6)     | (7)     |

| Table III. Valu         | es of ARL1 of Max | $D-T^2:\rho=0.0,\delta_1$ | $_1 = 0.5$ and $\delta_2 =$ | 0.5                  |           |         |         |
|-------------------------|-------------------|---------------------------|-----------------------------|----------------------|-----------|---------|---------|
|                         |                   |                           | Sub com                     | olo cizo n . Attribu | uto chart |         |         |
|                         |                   |                           | Sub-sam                     | ple size n1. Attribu | utechart  |         |         |
| <b>n</b> <sub>2</sub>   | 1                 | 2                         | 3                           | 4                    | 5         | 6       | 7       |
| 1                       | 73.705#           | 51.297                    | 39.057                      | 31.319               | 24.792    | 20.722  | 17.470  |
|                         | (1.025)           | (2.005)                   | (3.003)                     | (4.003)              | (5.003)   | (6.003) | (7.003) |
| 2                       | 48.794            | 39.118                    | 32.939                      | 27.085               | 22.881    | 19.739  | 16.907  |
|                         | (1.270)           | (2.098)                   | (3.049)                     | (4.047)              | (5.023)   | (6.023) | (7.013) |
| 3                       | 33.189            | 28.315                    | 24.699                      | 21.065               | 18.498    | 16.306  | 14.402  |
|                         | (1.811)           | (2.324)                   | (3.270)                     | (4.147)              | (5.095)   | (6.081) | (7.056) |
| 4                       | 23.904 *          | 21.052°                   | 18.676                      | 16.439               | 14.803    | 13.228  | 11.942  |
|                         | (2.081)           | (2.721)                   | (3.541)                     | (4.360)              | (5.240)   | (6.197) | v7.144) |
| 5                       | 17.823            | 16.149                    | 14.544                      | 13.087               | 11.994    | 10.844  | 9.947   |
|                         | (3.703)           | (3.351)                   | (3.901)                     | (4.676)              | (5.450)   | (6.386) | (7.300) |
| 6                       | 13.741            | 12.804 🕈                  | 11.617                      | 10.636               | 9.841     | 9.024   | 8.376   |
|                         | (4.243)           | (3.622)                   | (4.622)                     | (5.081)              | (5.811)   | (6.649) | (7.463) |
| 7                       | 10.962            | 10.395                    | 9.504                       | 8.835                | 8.213     | 7.620 🐣 | 7.144   |
|                         | (4.784)           | (5.784)                   | (4.892)                     | (5.261)              | (6.261)   | (6.946) | (7.757) |
| T <sup>2</sup> chart    | 129.684#          | 67.268*                   | 41.150°                     | 27.708               | 19.900▲   | 14.982  | 11.697  |
| <b>n</b> <sub>T</sub> 2 | (1)               | (2)                       | (3)                         | (4)                  | (5)       | (6)     | (7)     |

| <b>Table IV.</b> Values of $ARL_1$ of $Max D - T^2$ : $\rho = 0.5$ , $\delta_1 = 0.0$ and $\delta_2 = 0.5$ |          |                                                         |                     |                     |          |         |                     |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------|---------------------|---------------------|----------|---------|---------------------|--|--|--|--|
|                                                                                                            |          | Sub-sample size <i>n</i> <sub>1</sub> : Attribute chart |                     |                     |          |         |                     |  |  |  |  |
| n <sub>2</sub>                                                                                             | 1        | 2                                                       | 3                   | 4                   | 5        | 6       | 7                   |  |  |  |  |
| 1                                                                                                          | 127.731# | 90.533                                                  | 70.132              | 57.416              | 46.067   | 38.851  | 32.924              |  |  |  |  |
|                                                                                                            | (1.020)  | (2.003)                                                 | (3.003)             | (4.003)             | (5.003)  | (6.003) | (7.003)             |  |  |  |  |
| 2                                                                                                          | 90.053   | 77.231 *                                                | 66.086              | 55.024              | 45.726   | 38.796  | 32.881              |  |  |  |  |
|                                                                                                            | (1.541)  | (2.108)                                                 | (3.032)             | (4.021)             | (5.009)  | (6.006) | (7.005)             |  |  |  |  |
| 3                                                                                                          | 63.158   | 57.861                                                  | 52.017              | 45.468              | 40.070   | 35.342  | 30.868              |  |  |  |  |
|                                                                                                            | (2.622)  | (2.541)                                                 | (3.324)             | (4.147)             | (5.071)  | (6.054) | (7.035)             |  |  |  |  |
| 4                                                                                                          | 46.105   | 43.741 •                                                | 40.134              | 36.413              | 33.209   | 29.802  | 26.722              |  |  |  |  |
|                                                                                                            | (3.162)  | (3.081)                                                 | (3.721)             | (4.432)             | (5.240)  | (6.180) | (7.120)             |  |  |  |  |
| 5                                                                                                          | 35.230   | 33.708                                                  | 31.497              | 29.283              | 27.205   | 24.877  | 22.868              |  |  |  |  |
|                                                                                                            | (3.703)  | (4.703)                                                 | (4.351)             | (4.901)             | (5.676)  | (6.450) | (7.270)             |  |  |  |  |
| 6                                                                                                          | 27.852   | 26.649                                                  | 25.310              | 23.838              | 22.402   | 20.829  | 19.451              |  |  |  |  |
|                                                                                                            | (4.243)  | (5.243)                                                 | (6.243)             | (5.622)             | (6.081)  | (6.811) | (7.541)             |  |  |  |  |
| 7                                                                                                          | 22.613   | 21.636                                                  | 20.549              | 19.773              | 18.642 🐣 | 17.569  | 16.603              |  |  |  |  |
|                                                                                                            | (4.784)  | (5.784)                                                 | (6.784)             | (5.892)             | (6.892)  | (7.261) | (7.946)             |  |  |  |  |
| T <sup>2</sup> chart                                                                                       | 172.071# | 101.527*                                                | 67.268 <sup>•</sup> | 47.854 <sup>♠</sup> | 35.755▲  | 27.708  | 22.090 <sup>♣</sup> |  |  |  |  |
| <b>n</b> <sub>T<sup>2</sup></sub>                                                                          | (1)      | (2)                                                     | (3)                 | (4)                 | (5)      | (6)     | (7)                 |  |  |  |  |

| <b>Table V.</b> Values of <i>ARL</i> <sub>1</sub> of <i>Max D</i> – $T^2$ : $\rho = 0.5$ , $\delta_1 = 0.5$ and $\delta_2 = 0.5$ |                                                         |          |                     |                     |         |         |                                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|---------------------|---------------------|---------|---------|-----------------------------------|--|--|--|
|                                                                                                                                  | Sub-sample size <i>n</i> <sub>1</sub> : Attribute chart |          |                     |                     |         |         |                                   |  |  |  |
| <i>n</i> <sub>2</sub>                                                                                                            | 1                                                       | 2        | 3                   | 4                   | 5       | 6       | 7                                 |  |  |  |
| 1                                                                                                                                | 82.726                                                  | 53.304   | 40.191              | 32.396              | 25.726  | 21.562  | 18.233                            |  |  |  |
|                                                                                                                                  | (1.003)                                                 | (2.003)  | (3.003)             | (4.003)             | (5.003) | (6.003) | (7.003)                           |  |  |  |
| 2                                                                                                                                | 67.868                                                  | 50.176   | 39.656              | 32.108              | 25.693  | 21.534  | 18.209                            |  |  |  |
|                                                                                                                                  | (1.108)                                                 | (2.026)  | (3.011)             | (4.009)             | (5.005) | (6.005) | (7.005)                           |  |  |  |
| 3                                                                                                                                | 51.378                                                  | 41.259   | 34.622              | 28.570              | 24.059  | 20.804  | 17.789                            |  |  |  |
|                                                                                                                                  | (1.405)                                                 | (2.147)  | (3.068)             | (4.051)             | (5.029) | (6.020) | (7.018)                           |  |  |  |
| 4                                                                                                                                | 39.423*                                                 | 33.236   | 28.832              | 24.299              | 21.097  | 18.536  | 16.210                            |  |  |  |
|                                                                                                                                  | (2.081)                                                 | (2.360)  | (3.270)             | (4.144)             | (5.090) | (6.075) | (7.050)                           |  |  |  |
| 5                                                                                                                                | 30.933                                                  | 26.973   | 23.705              | 20.539              | 18.224  | 16.182  | 14.418                            |  |  |  |
|                                                                                                                                  | (2.351)                                                 | (2.676)  | (3.541)             | (4.300)             | (5.193) | (6.159) | (7.113)                           |  |  |  |
| 6                                                                                                                                | 24.906                                                  | 22.177°  | 19.726              | 17.442              | 15.732  | 14.102  | 12.746                            |  |  |  |
|                                                                                                                                  | (4.243)                                                 | (3.081)  | (3.811)             | (4.541)             | (5.360) | (6.295) | (7.203)                           |  |  |  |
| 7                                                                                                                                | 20.221                                                  | 18.442   | 16.601              | 14.940▲             | 13.648  | 12.334  | 11.276                            |  |  |  |
|                                                                                                                                  | (4.784)                                                 | (3.892)  | (4.261)             | (4.757)             | (5.631) | (6.473) | (7.344)                           |  |  |  |
| T <sup>2</sup> chart                                                                                                             | 172.071#                                                | 101.527* | 67.268 <sup>•</sup> | 47.854 <sup>•</sup> | 35.755▲ | 27.708  | <b>22.090</b> <sup><b>♣</b></sup> |  |  |  |
| <b>n</b> <sub>T<sup>2</sup></sub>                                                                                                | (1)                                                     | (2)      | (3)                 | (4)                 | (5)     | (6)     | (7)                               |  |  |  |

| Table VI. Valu                    | ues of ARL <sub>1</sub> of Max      | $D-T^2:\rho=0.8,\delta$ | $_1=0.0$ and $\delta_2=$ | 0.5                 |         |         |          |  |  |  |
|-----------------------------------|-------------------------------------|-------------------------|--------------------------|---------------------|---------|---------|----------|--|--|--|
|                                   | Sub-sample size n1: Attribute chart |                         |                          |                     |         |         |          |  |  |  |
| n <sub>2</sub>                    | 1                                   | 2                       | 3                        | 4                   | 5       | 6       | 7        |  |  |  |
| 1                                 | 86.298#                             | 74.112                  | 63.712                   | 53.079              | 44.777  | 37.950  | 32.238   |  |  |  |
|                                   | (1.270)                             | (2.054)                 | (3.018)                  | (4.012)             | (5.003) | (6.003) | (7.003)  |  |  |  |
| 2                                 | 43.709*                             | 41.571                  | 38.007                   | 34.529              | 31.556  | 28.311  | 25.566   |  |  |  |
|                                   | (2.081)                             | (2.541)                 | (3.360)                  | (4.216)             | (5.135) | (6.098) | (7.064)  |  |  |  |
| 3                                 | 26.228                              | 25.095                  | 23.850                   | 22.472              | 21.082  | 19.619  | 18.352   |  |  |  |
|                                   | (2.622)                             | (3.622)                 | (4.622)                  | (4.811)             | (5.541) | (6.405) | (7.270)  |  |  |  |
| 4                                 | 17.597•                             | 16.837                  | 16.002                   | 15.503              | 14.792  | 14.058  | 13.348   |  |  |  |
|                                   | (3.162)                             | (4.162)                 | (5.162)                  | (6.162)             | (6.081) | (7.081) | (7.721)  |  |  |  |
| 5                                 | 12.713 🕈                            | 12.164                  | 11.561                   | 11.201              | 11.077  | 10.528  | 10.047   |  |  |  |
|                                   | (3.703)                             | (4.703)                 | (5.703)                  | (6.703)             | (6.351) | (7.351) | (8.351)  |  |  |  |
| 6                                 | 9.690                               | 9.271                   | 8.811                    | 8.537               | 8.268   | 8.073   | 7.890    |  |  |  |
|                                   | (4.243)                             | (5.243)                 | (6.243)                  | (7.243)             | (8.243) | (9.243) | (10.243) |  |  |  |
| 7                                 | 7.693                               | 7.361                   | 6.996                    | 6.778               | 6.565   | 6.409   | 6.264    |  |  |  |
|                                   | (4.784)                             | (5.784)                 | (6.784)                  | (7.784)             | (8.784) | (9.784) | (10.784) |  |  |  |
| T <sup>2</sup> chart              | 97.755*                             | 45.449*                 | 26.118 <sup>•</sup>      | 16.912 <sup>4</sup> | 11.850  | 8.790   | 6.811    |  |  |  |
| <b>n</b> <sub>T<sup>2</sup></sub> | (1)                                 | (2)                     | (3)                      | (4)                 | (5)     | (6)     | (7)      |  |  |  |

| <b>Table VII.</b> Values of <i>ARL</i> <sub>1</sub> of <i>Max D</i> – $T^2$ : $\rho = 0.8$ , $\delta_1 = 0.5$ and $\delta_2 = 0.5$ |                                             |          |                     |               |         |          |                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|---------------------|---------------|---------|----------|---------------------|--|--|--|
|                                                                                                                                    | Sub-sample size <i>n</i> 1: Attribute chart |          |                     |               |         |          |                     |  |  |  |
| n <sub>2</sub>                                                                                                                     | 1                                           | 2        | 3                   | 4             | 5       | 6        | 7                   |  |  |  |
| 1                                                                                                                                  | 84.643                                      | 55.684   | 42.222              | 33.989        | 27.150  | 22.788   | 19.310              |  |  |  |
|                                                                                                                                    | (1.003)                                     | (2.003)  | (3.003)             | (4.003)       | (5.003) | (6.003)  | (7.003)             |  |  |  |
| 2                                                                                                                                  | 76.715#                                     | 54.876   | 42.174              | 33.951        | 27.119  | 22.762   | 19.288              |  |  |  |
|                                                                                                                                    | (1.064)                                     | (2.013)  | (3.005)             | (4.005)       | (5.005) | (6.005)  | (7.005)             |  |  |  |
| 3                                                                                                                                  | 60.950                                      | 47.924 * | 39.435              | 32.218        | 26.638  | 22.676   | 19.259              |  |  |  |
|                                                                                                                                    | (1.324)                                     | (2.085)  | (3.037)             | (4.028)       | (5.015) | (6.011)  | (7.009)             |  |  |  |
| 4                                                                                                                                  | 48.204                                      | 40.099   | 34.389              | 28.541        | 24.409  | 21.293   | 18.371              |  |  |  |
|                                                                                                                                    | (1.721)                                     | (2.270)  | (3.127)             | (4.094)       | (5.055) | (6.048)  | (7.031)             |  |  |  |
| 5                                                                                                                                  | 38.652                                      | 33.405   | 29.082              | 24.827        | 21.742  | 19.156   | 16.864              |  |  |  |
|                                                                                                                                    | (2.351)                                     | (2.541)  | (3.386)             | (4.208)       | (5.129) | (6.104)  | (7.073)             |  |  |  |
| 6                                                                                                                                  | 31.660                                      | 28.009 • | 24.665              | 21.543        | 19.208  | 17.075   | 15.265              |  |  |  |
|                                                                                                                                    | (2.622)                                     | (3.081)  | (3.649)             | (4.405)       | (5.249) | (6.203)  | (7.141)             |  |  |  |
| 7                                                                                                                                  | 26.206                                      | 23.728   | 21.099 🕈            | 18.747 🔺      | 16.960  | 15.198 🐣 | 13.755              |  |  |  |
|                                                                                                                                    | (4.784)                                     | (3.261)  | (3.946)             | (4.631)       | (5.420) | (6.344)  | (7.236)             |  |  |  |
| T <sup>2</sup> chart                                                                                                               | 191.190#                                    | 119.089* | 81.747 <sup>•</sup> | <b>59.659</b> | 45.449▲ | 35.755   | 28.848 <sup>♣</sup> |  |  |  |
| <b>n</b> <sub>T<sup>2</sup></sub>                                                                                                  | (1)                                         | (2)      | (3)                 | (4)           | (5)     | (6)      | (7)                 |  |  |  |

#### Principal Component chart

- ► T<sup>2</sup> control chart is effective if p (the number of quality characteristics) is not very large
- As p increases, the performance metric as ARL<sub>1</sub> to detect a specified shift also increases
- It looks like the shift "diluted" in the *p*-dimensional space of variables
- Most common alternative monitor by principal component charts

#### Principal Component chart

▶ Original variables: X=(X<sub>1</sub>, ..., X<sub>p</sub>) find new variables Y=(Y<sub>1</sub>, ..., Y<sub>p</sub>) as
Y = XC

 $c_{ij},$  constants to be determined such  ${\bf Y}$  are no correlated variables

▶ **C**<sub>**p**×**p**</sub> is determined such that

#### $\mathsf{C}'\Sigma\mathsf{C}=\lambda$

 λ - a diagonal matrix, the main diagonal elements λ<sub>1</sub>,..., λ<sub>p</sub> are the eigenvalues of the matrix Σ

- 4 同 1 4 三 1 4 三 1

#### Principal component chart

• Properties:  $\Sigma$  and  $\lambda$ :

$$tr(\boldsymbol{\Sigma}) = \sum_{i=1}^{p} \sigma_i^2 = \sum_{i=1}^{p} \lambda_i$$

$$\sigma_i^2$$
 - the variance of the  $X_i$ 

$$\blacktriangleright \lambda_1 \geq \lambda_2 \ldots, \geq \lambda_p \geq 0$$

- $\lambda_i$  is the variance of the new variable  $Y_i$
- ►  $\mathbf{C} = (\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_p), c_i = (c_{1i}, c_{2i}, \dots, c_{pi})$  is the eigenvector related to the eigenvalue  $\lambda_i$

#### Principal Component chart

- For the *j*-th observation  $\mathbf{x}_j = (x_{1j}, \dots, x_{pj})$
- Principal component scores can be obtained as

$$y_{1j}=c_{11}x_{1j}+\ldots+c_{1p}x_{pj}$$

$$y_{2j} = c_{21}x_{1j} + \ldots + c_{2p}x_{pj}$$

$$y_{pj} = c_{p1}x_{1j} + \ldots + c_{pp}x_{pj}$$

In general the first r components are retained for analysis such that

$$\frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{p} \lambda_i} > k$$

#### Principal component chart - General framework

- In general the first two principal components are retained
- ► A 95% (or another level) confidence contour is drawn, and score values of z<sub>1i</sub> and z<sub>2i</sub> are plotted.

## Principal component chart

#### **Chemical Process Data**

| Original Data |                       |                       |                       |       |          |          |  |  |
|---------------|-----------------------|-----------------------|-----------------------|-------|----------|----------|--|--|
| Observation   | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$ | $z_1$    | Z2       |  |  |
| 1             | 10                    | 20.7                  | 13.6                  | 15.5  | 0.291681 | -0.6034  |  |  |
| 2             | 10.5                  | 19.9                  | 18.1                  | 14.8  | 0.294281 | 0.491533 |  |  |
| 3             | 9.7                   | 20                    | 16.1                  | 16.5  | 0.197337 | 0.640937 |  |  |
| 4             | 9.8                   | 20.2                  | 19.1                  | 17.1  | 0.839022 | 1.469579 |  |  |
| 5             | 11.7                  | 21.5                  | 19.8                  | 18.3  | 3.204876 | 0.879172 |  |  |
| 6             | 11                    | 20.9                  | 10.3                  | 13.8  | 0.203271 | -2.29514 |  |  |
| 7             | 8.7                   | 18.8                  | 16.9                  | 16.8  | -0.99211 | 1.670464 |  |  |
| 8             | 9.5                   | 19.3                  | 15.3                  | 12.2  | -1.70241 | -0.36089 |  |  |
| 9             | 10.1                  | 19.4                  | 16.2                  | 15.8  | -0.14246 | 0.560808 |  |  |
| 10            | 9.5                   | 19.6                  | 13.6                  | 14.5  | -0.99498 | -0.31493 |  |  |
| 11            | 10.5                  | 20.3                  | 17                    | 16.5  | 0.944697 | 0.504711 |  |  |
| 12            | 9.2                   | 19                    | 11.5                  | 16.3  | -1.2195  | -0.09129 |  |  |
| 13            | 11.3                  | 21.6                  | 14                    | 18.7  | 2.608666 | -0.42176 |  |  |
| 14            | 10                    | 19.8                  | 14                    | 15.9  | -0.12378 | -0.08767 |  |  |
| 15            | 8.5                   | 19.2                  | 17.4                  | 15.8  | -1.10423 | 1.472593 |  |  |
| 16            | 9.7                   | 20.1                  | 10                    | 16.6  | -0.27825 | -0.94763 |  |  |
| 17            | 8.3                   | 18.4                  | 12.5                  | 14.2  | -2.65608 | 0.135288 |  |  |
| 18            | 11.9                  | 21.8                  | 14.1                  | 16.2  | 2.36528  | -1.30494 |  |  |
| 19            | 10.3                  | 20.5                  | 15.6                  | 15.1  | 0.411311 | -0.21893 |  |  |
| 20            | 8.9                   | 19                    | 8.5                   | 14.7  | -2.14662 | -1.17849 |  |  |

PRO 5859

#### Principal Component chart



**FIGURE 11.16** Scatter plot of the first 20 principal component scores  $z_{i1}$  and  $z_{i2}$  from Table 11.6, with 95% confidence ellipse.

#### Principal component chart

| New Data    |                       |                       |                       |                       |          |          |  |  |  |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|----------|----------|--|--|--|
| Observation | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> | Z1       | Z.2      |  |  |  |
| 21          | 9.9                   | 20                    | 15.4                  | 15.9                  | 0.074196 | 0.239359 |  |  |  |
| 22          | 8.7                   | 19                    | 9.9                   | 16.8                  | -1.51756 | -0.21121 |  |  |  |
| 23          | 11.5                  | 21.8                  | 19.3                  | 12.1                  | 1.408476 | -0.87591 |  |  |  |
| 24          | 15.9                  | 24.6                  | 14.7                  | 15.3                  | 6.298001 | -3.67398 |  |  |  |
| 25          | 12.6                  | 23.9                  | 17.1                  | 14.2                  | 3.802025 | -1.99584 |  |  |  |
| 26          | 14.9                  | 25                    | 16.3                  | 16.6                  | 6.490673 | -2.73143 |  |  |  |
| 27          | 9.9                   | 23.7                  | 11.9                  | 18.1                  | 2.738829 | -1.37617 |  |  |  |
| 28          | 12.8                  | 26.3                  | 13.5                  | 13.7                  | 4.958747 | -3.94851 |  |  |  |
| 29          | 13.1                  | 26.1                  | 10.9                  | 16.8                  | 5.678092 | -3.85838 |  |  |  |
| 30          | 9.8                   | 25.8                  | 14.8                  | 15                    | 3.369657 | -2.10878 |  |  |  |

#### Principal Component chart



**FIGURE 11.17** Principal components trajectory chart, showing the last 10 observations from Table 11.6.

#### Principal component chart

- If more than 2 components are retained analysis pairwise scatter plots
- For r > 4, may have some difficulties of interpretation of the meaning of the principal components

#### Monitoring matrix of covariance-variance

- Similar approach of the univariate chart S<sup>2</sup>
- ▶ The statistic *W* is calculated

$$W = -pn + pn \ln(n) - n \ln\left(\frac{|\mathbf{A}|}{|\mathbf{\Sigma}|}\right) + tr(\mathbf{\Sigma}^{-1}\mathbf{A})$$

- $\mathbf{A} = (n-1)\mathbf{S}$ ,  $\mathbf{S}$ , the observed matrix of covariance-variance
- ► W follows asymptotically a Chi-square distribution with 0.5p(p+1) degrees of freedom

#### Monitoring matrix of covariance-variance

- Approach based on the first two moments of |S|
- Central line and control limits build as:

$$CL = E(|\mathbf{S}|) = b_1|\mathbf{\Sigma}|, \text{with } b_1 = \frac{1}{(n-1)^p} \prod_{i=1}^p (n-i)$$

Control limits: 
$$E(|\mathbf{S}|) \pm 3Var(|\mathbf{S}|)$$
  
 $Var(|\mathbf{S}|) = b_2|\mathbf{\Sigma}|^2,$   
 $b_2 = \frac{1}{(n-1)^{2p}} \prod_{i=1}^p (n-i) \left[ \prod_{j=1}^p (n-j-2) - \prod_{j=1}^p (n-j) \right]$ 

#### Monitoring matrix of covariance-variance

- Another approach based on asymptotic distribution of  $|\mathbf{S}|$
- For p = 2,  $2(n-1)\left(\frac{|\mathbf{S}|}{|\boldsymbol{\Sigma}|}\right)^{0.5}$

follows a Chi-square distribution with (2n-4) degrees of freedom

Let **S**, a covariance matrix with *n* degrees of freedom. Then

$$\sqrt{n}\left(rac{|\mathbf{S}|}{|\mathbf{\Sigma}|}-1
ight)$$

is asymptotically normally distributed with mean 0 and variance 2p

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Other approaches: VMax

VMax chart- proposed by Costa & Machado (2009):

• Let 
$$S_i^2 = \sum_{j=1}^n \frac{z_{ij}^2}{n}$$
,  $z_{ij} = \frac{X_{ij} - \mu_i}{\sigma_i}$ 

► VMax=max(S<sub>1</sub><sup>2</sup>, S<sub>2</sub><sup>2</sup>,..., S<sub>p</sub><sup>2</sup>), a signal is triggered whenever VMax > L, L, the control limit satisfying some performance metric

# Other approaches: VMax

Table 3 The ARL for the VMAX chart and for the |S| chart (p=2,  $\rho=0.5$ )

|            |     | n        | n      |         |       |        |       |  |  |  |  |
|------------|-----|----------|--------|---------|-------|--------|-------|--|--|--|--|
|            |     | 4        |        |         | 5     |        |       |  |  |  |  |
|            |     | <b>S</b> | VMAX   | VMAX    |       | VMAX   |       |  |  |  |  |
|            |     |          | Case I | Case II |       | Case I | Case  |  |  |  |  |
| $\gamma^2$ | UCL | 6.134    | 4.094  | 4.094   | 5.375 | 3.668  | 3.668 |  |  |  |  |
| 1.0        |     | 200.0    | 200.0  | 200.0   | 200.0 | 200.0  | 200.0 |  |  |  |  |
| 1.1        |     | 146.8    | 136.6  | 143.0   | 141.4 | 132.5  | 139.7 |  |  |  |  |
| 1.2        |     | 112.5    | 92.4   | 107.0   | 104.6 | 86.8   | 102.4 |  |  |  |  |
| 1.3        |     | 89.1     | 63.9   | 82.9    | 80.5  | 58.3   | 78.0  |  |  |  |  |
| 1.4        |     | 73.3     | 45.7   | 66.1    | 64.1  | 40.7   | 61.4  |  |  |  |  |
| 1.5        |     | 60.4     | 33.9   | 54.1    | 51.9  | 29.6   | 49.6  |  |  |  |  |
| 2.0        |     | 30.2     | 11.6   | 25.4    | 24.1  | 9.62   | 22.3  |  |  |  |  |
| 3.0        |     | 13.6     | 4.09   | 10.7    | 10.2  | 3.38   | 9.0   |  |  |  |  |
| 5.0        |     | 6.37     | 1.95   | 4.77    | 4.58  | 1.67   | 3.9   |  |  |  |  |

# Other approaches: VMax

|               |     | n         | n      |             |          |       |        |         |       |  |  |  |
|---------------|-----|-----------|--------|-------------|----------|-------|--------|---------|-------|--|--|--|
|               |     | 4         |        |             |          | 5     | 5      |         |       |  |  |  |
|               |     | <b> S</b> | VMAX   | VMAX        |          |       | VMAX   |         |       |  |  |  |
|               |     |           | Case I | Case II     | Case III |       | Case I | Case II | Case  |  |  |  |
| $\gamma$ $^2$ | UCL | 4.050     | 4.313  | 4.313 4.313 | 4.313    | 4.620 | 3.851  | 3.851   | 3.851 |  |  |  |
| 1.0           |     | 200.0     | 200.0  | 200.0       | 200.0    | 200.0 | 200.0  | 200.0   | 200.0 |  |  |  |
| 1.1           |     | 160.4     | 149.9  | 155.9       | 157.8    | 155.2 | 146.3  | 153.0   | 155.2 |  |  |  |
| 1.2           |     | 135.3     | 107.7  | 123.0       | 127.7    | 125.3 | 101.9  | 118.6   | 123.8 |  |  |  |
| 1.3           |     | 116.9     | 76.8   | 98.7        | 105.8    | 103.5 | 70.5   | 93.5    | 101.3 |  |  |  |
| 1.4           |     | 102.9     | 55.6   | 80.4        | 89.5     | 87.3  | 49.7   | 75.1    | 84.7  |  |  |  |
| 1.5           |     | 89.4      | 41.3   | 66.6        | 77.1     | 74.5  | 36.1   | 61.4    | 72.3  |  |  |  |
| 2.0           |     | 54.6      | 13.7   | 31.7        | 42.6     | 41.6  | 11.3   | 27.8    | 38.6  |  |  |  |
| 3.0           |     | 29.8      | 4.55   | 12.9        | 20.9     | 20.7  | 3.72   | 10.9    | 18.2  |  |  |  |
| 5.0           |     | 15.8      | 2.06   | 5.49        | 9.86     | 9.93  | 1.75   | 4.55    | 8.3   |  |  |  |
## Other approaches: VMax

| $\rho$ value<br>$\rho_{12} = \rho_{13}$ |           | Value  |       |         |       |          |       |         |     |  |  |
|-----------------------------------------|-----------|--------|-------|---------|-------|----------|-------|---------|-----|--|--|
|                                         |           | 0.5    | 0.7   | 0.5     | 0.7   | 0.5      | 0.7   | 0.5     | 0.7 |  |  |
| $\rho_{14} = \rho_{24} = \rho_{24}$     | 23<br>934 | 0.5    | 0.2   | 0.5     | 0.2   | 0.5      | 0.5   | 0.5     | 0.3 |  |  |
|                                         |           | Case I |       | Case II |       | Case III |       | Case IV |     |  |  |
| $\gamma$ $^2$                           | UCL       | 3.980  | 3.970 | 3.980   | 3.970 | 3.980    | 3.970 | 3.980   | 3.9 |  |  |
| 1.0                                     |           | 200.0  | 200.0 | 200.0   | 200.0 | 200.0    | 200.0 | 200.0   | 200 |  |  |
| 1.1                                     |           | 152.7  | 158.6 | 160.0   | 162.9 | 162.5    | 164.9 | 164.5   | 166 |  |  |
| 1.2                                     |           | 112.9  | 116.9 | 128.8   | 130.1 | 134.7    | 138.8 | 135.8   | 139 |  |  |
| 1.3                                     |           | 79.4   | 82.1  | 105.2   | 108.1 | 114.6    | 114.8 | 118.0   | 115 |  |  |
| 1.4                                     |           | 56.9   | 57.9  | 85.4    | 87.9  | 97.3     | 99.9  | 99.6    | 102 |  |  |
| 1.5                                     |           | 41.4   | 41.9  | 70.9    | 73.7  | 82.9     | 84.7  | 88.7    | 89  |  |  |
| 2.0                                     |           | 12.6   | 12.8  | 32.5    | 33.7  | 45.3     | 48.3  | 52.9    | 54  |  |  |
| 3.0                                     |           | 3.95   | 3.92  | 12.4    | 13.1  | 20.9     | 22.8  | 27.9    | 28  |  |  |
| 5.0                                     |           | 1.80   | 1.80  | 5.05    | 5.37  | 9.49     | 10.1  | 13.5    | 14  |  |  |

**Table 7** The ARL for the VMAX chart (p=4, n=5)

## Other approaches: VMax

|            |     | $ \mathbf{S} $ | VMAX   |         |          |        |  |  |  |  |
|------------|-----|----------------|--------|---------|----------|--------|--|--|--|--|
| $\gamma^2$ |     |                | Case I | Case II | Case III | Case I |  |  |  |  |
|            | UCL | 2.000          | 3.980  | 3.980   | 3.980    | 3.980  |  |  |  |  |
| 1.0        |     | 200.0          | 200.0  | 200.0   | 200.0    | 200.0  |  |  |  |  |
| 1.1        |     | 166.8          | 152.7  | 160.0   | 162.5    | 164.5  |  |  |  |  |
| 1.2        |     | 145.6          | 112.9  | 128.8   | 134.7    | 135.8  |  |  |  |  |
| 1.3        |     | 127.9          | 79.4   | 105.2   | 114.6    | 118.0  |  |  |  |  |
| 1.4        |     | 108.5          | 56.9   | 85.4    | 97.3     | 99.6   |  |  |  |  |
| 1.5        |     | 96.9           | 41.4   | 70.9    | 82.9     | 88.7   |  |  |  |  |
| 2.0        |     | 61.1           | 12.6   | 32.5    | 45.3     | 52.9   |  |  |  |  |
| 3.0        |     | 35.7           | 3.95   | 12.4    | 20.9     | 27.9   |  |  |  |  |
| 5.0        |     | 19.2           | 1.80   | 5.05    | 9.49     | 13.5   |  |  |  |  |

**Table 8** The *ARL* for the VMAX chart and for the chart (p=4, n=5,  $\rho_{12}=\rho_{13}=\rho_{14}=\rho_{23}=\rho_{24}=\rho_{34}=0.5$ )

# Other approaches: RMax proposed by Costa & Machado (2011)

- For a sample of *n* units, let  $R_i = \max(X_{1i}, X_{2i}, ..., X_{ni})$  min  $(X_{1i}, X_{2i}, ..., X_{ni})$
- RMax=max $(R_1, R_2, \ldots, R_p)$
- A signal is triggered whenever RMax > L, L, the control limit

### Other approaches: RMax

|              | р               | = 2       |       |                 |                 | p = 3                 |       |       |
|--------------|-----------------|-----------|-------|-----------------|-----------------|-----------------------|-------|-------|
| С            | L               | <b> S</b> | RMAX  |                 | CL              |                       | S     | RMAX  |
| $a_1$        | $a_2$           | 5.375     | 5.145 | $a_1$           | $a_2$           | <i>a</i> <sub>3</sub> | 4.620 | 5.294 |
| 1.0          | 1.0             | 200.0     | 200.0 | 1.0             | 1.0             | 1.0                   | 200.0 | 200.0 |
| $\sqrt{1.2}$ | 1.0             | 104.6     | 96.9  | $\sqrt{1.2}$    | 1.0             | 1.0                   | 125.3 | 96.9  |
| $\sqrt{1.4}$ | 1.0             | 64.1      | 49.6  | $\sqrt{1.4}$    | 1.0             | 1.0                   | 87.3  | 49.6  |
| $\sqrt{2}$   | 1.0             | 24.1      | 13.0  | $\sqrt{2}$      | 1.0             | 1.0                   | 41.6  | 13.0  |
| $\sqrt{3}$   | 1.0             | 10.2      | 4.53  | $\sqrt{3}$      | 1.0             | 1.0                   | 20.7  | 4.53  |
| $\sqrt{5}$   | 1.0             | 4.58      | 2.08  | $\sqrt{5}$      | 1.0             | 1.0                   | 9.93  | 2.08  |
| 1.0          | 1.0             | 200.0     | 200.0 | 1.0             | 1.0             | 1.0                   | 200.0 | 200.0 |
| √1.2         | $\sqrt[4]{1.2}$ | 104.6     | 110.6 | $\sqrt[4]{1.2}$ | $\sqrt[4]{1.2}$ | 1.0                   | 125.3 | 127.4 |
| √1.4         | $\sqrt[4]{1.4}$ | 64.1      | 70.0  | $\sqrt[4]{1.4}$ | $\sqrt[4]{1.4}$ | 1.0                   | 87.3  | 85.4  |
| ∜2           | $\sqrt[4]{2}$   | 24.1      | 27.8  | $\sqrt[4]{2}$   | $\sqrt[4]{2}$   | 1.0                   | 41.6  | 35.0  |
| \$√3         | ∜3              | 10.2      | 12.0  | ∜3              | ∜3              | 1.0                   | 20.7  | 14.6  |
| ∜5           | ∜5              | 4.58      | 5.28  | ∜5              | ∜5              | 1.0                   | 9.93  | 6.17  |
|              |                 |           |       | 1.0             | 1.0             | 1.0                   | 200.0 | 200.0 |
|              |                 |           |       | √1.2            | √1.2            | √1.2                  | 125.3 | 132.0 |
|              |                 |           |       | $\sqrt[9]{1.4}$ | $\sqrt[6]{1.4}$ | $\sqrt[6]{1.4}$       | 87.3  | 94.4  |
|              |                 |           |       | $\sqrt[n]{2}$   | $\sqrt[n]{2}$   | $\sqrt[3]{2}$         | 41.6  | 46.4  |
|              |                 |           |       | \$3             | ∜3              | \$3                   | 20.7  | 23.0  |
|              |                 |           |       | ∜5              | ∜5              | ∜5                    | 9.93  | 11.0  |

Table 6. The ARL for the RMAX chart and for the  $|\mathbf{S}|$  chart  $(n = 5, \rho_{12} = \rho_{13} = \rho_{23} = 0.5)$ .

## Other approaches: RMax

Table 4. The ARL for the RMAX and VMAX charts ( $p = 2, \rho = 0.5$ ).

|                                                 |                                         |    | n                                             |                                               |                                           |                                               |                                               |                                      |  |  |
|-------------------------------------------------|-----------------------------------------|----|-----------------------------------------------|-----------------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------|--|--|
|                                                 |                                         |    |                                               | 4                                             |                                           |                                               | 5                                             |                                      |  |  |
| <i>a</i> <sub>1</sub>                           | $a_2$                                   | CL | VMAX<br>4.094                                 | RMAX<br>4.960                                 | %                                         | VMAX<br>3.668                                 | RMAX<br>5.145                                 | $P_v$ (%)                            |  |  |
| 1.0<br>1.25<br>1.25<br>1.5<br>1.5<br>1.5<br>1.5 | 1.0<br>1.0<br>1.25<br>1.0<br>1.5<br>1.5 |    | 200.0<br>28.5<br>16.2<br>8.11<br>6.94<br>4.69 | 200.0<br>35.8<br>20.5<br>10.9<br>9.24<br>6.24 | 0<br>25.6<br>26.5<br>34.4<br>33.1<br>33.1 | 200.0<br>24.7<br>13.9<br>6.70<br>5.78<br>3.91 | 200.0<br>31.5<br>17.9<br>9.09<br>7.72<br>5.20 | 27.5<br>28.8<br>35.7<br>33.6<br>33.0 |  |  |

### Other approaches: RMax

Table 5. The ARL for the RMAX chart and for the VMAX chart (p = 3,  $\rho_{12} = \rho_{13} = \rho_{23} = 0.5$ ).

|                                    |                                   |                           |    |                                       | n                                     |                                   |                                       |                                       |                              |  |  |  |
|------------------------------------|-----------------------------------|---------------------------|----|---------------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------|------------------------------|--|--|--|
|                                    |                                   |                           |    |                                       | 4                                     |                                   |                                       | 5                                     |                              |  |  |  |
| $a_1$                              | $a_2$                             | <i>a</i> <sub>3</sub>     | CL | VMAX<br>4.313                         | RMAX 5.113                            | %<br>_                            | VMAX<br>3.851                         | RMAX 5.294                            | $P_v$ (%                     |  |  |  |
| 1.0<br>1.25<br>1.25<br>1.25<br>1.5 | 1.0<br>1.0<br>1.25<br>1.25<br>1.5 | 1.0<br>1.0<br>1.25<br>1.5 |    | 200.0<br>34.8<br>19.9<br>14.4<br>4.05 | 200.0<br>43.9<br>25.6<br>18.4<br>5.38 | 0<br>26.1<br>28.6<br>27.8<br>32.8 | 200.0<br>30.1<br>17.1<br>12.3<br>3.39 | 200.0<br>38.8<br>22.3<br>16.0<br>4.45 | 28.9<br>30.4<br>30.1<br>31.3 |  |  |  |

## Other approaches: VMix proposed by Quinino et al. (2012)- for p=2

• Consider  $W_1$  and  $W_2$  two normal correlated random variables

► Let  $X_1 = Z_1 \text{ and } X_2 = \frac{Z_2 - \rho X_1}{\sqrt{1 - \rho^2}},$ with  $Z_1 = \frac{W_1 - \mu_1}{\sigma_1}, Z_2 = \frac{W_2 - \mu_2}{\sigma_2}$ ►  $VMix = \frac{\sum_{i=1}^n X_{1i}^2 + X_{2i}^2}{2n}, 2n \times VMix \text{ follows a chi-square distribution with } 2n \text{ degrees of freedom}$ 

### Other approaches: VMix

| TABLE 1 | Performance of | VMIX co | ompared to | the | competitor | charts: | comparison | of ARL <sub>1</sub> | values |
|---------|----------------|---------|------------|-----|------------|---------|------------|---------------------|--------|
|---------|----------------|---------|------------|-----|------------|---------|------------|---------------------|--------|

| (k <sub>x</sub> ; k <sub>y</sub> ) | VMIX    | VMAX    | S       | NT      | W       | Vt     |
|------------------------------------|---------|---------|---------|---------|---------|--------|
| (1.1025; 1)                        | 128.583 | 130.677 | 140.291 | 134.201 | 193.586 | 144.88 |
| (1.1025; 1.1025)                   | 88.278  | 97.108  | 100.448 | 95.579  | 188.343 | 100.32 |
| (1.21; 1)                          | 84.12   | 82.983  | 101.976 | 87.796  | 181.837 | 101.92 |
| (1.21; 1.21)                       | 44.625  | 52.489  | 56.024  | 49.595  | 161.372 | 55.72  |
| (1.5625; 1)                        | 27.986  | 24.653  | 46.395  | 31.989  | 103.051 | 46.27  |
| (1.5625; 1.5625)                   | 10.391  | 13.359  | 15.403  | 12.485  | 62.937  | 15.45  |
| (2.25; 1)                          | 7.98    | 6.700   | 18.415  | 9.493   | 27.419  | 18.69  |
| (2.25; 2.25)                       | 2.919   | 3.669   | 4.529   | 3.530   | 11.979  | 4.55   |
| (4; 1)                             | 2.399   | 2.134   | 6.299   | 2.849   | 5.067   | 6.31   |
| (4; 4)                             | 1.266   | 1.396   | 1.692   | 1.421   | 2.352   | 1.69   |

## Other approaches: VMix

|                                    | VMIX   | EWMA    | VMAX   | EWMA    | v <sub>t</sub> EWMA |        |  |
|------------------------------------|--------|---------|--------|---------|---------------------|--------|--|
| (k <sub>x</sub> ; k <sub>y</sub> ) | λ=0.2  | λ=0.4   | λ=0.2  | λ=0.4   | λ=0.2               | λ=0.4  |  |
| (1.1025; 1)                        | 73.217 | 100.908 | 77.688 | 104.004 | 141.383             | 158.37 |  |
| (1.1025; 1.1025)                   | 34.206 | 57.284  | 40.798 | 65.261  | 76.104              | 107.60 |  |
| (1.21; 1)                          | 32.274 | 52.963  | 33.597 | 53.039  | 84.510              | 98.77  |  |
| (1.21; 1.21)                       | 9.408  | 20.718  | 12.120 | 25.828  | 24.669              | 43.84  |  |
| (1.5625; 1)                        | 5.015  | 11.483  | 4.758  | 10.845  | 17.864              | 31.99  |  |
| (1.5625; 1.5625)                   | 1.452  | 3.125   | 1.701  | 4.034   | 3.358               | 6.88   |  |
| (2.25; 1)                          | 1.330  | 2.620   | 1.263  | 2.369   | 4.172               | 8.69   |  |
| (2.25; 2.25)                       | 1.002  | 1.146   | 1.007  | 1.253   | 1.209               | 1.91   |  |
| (4; 1)                             | 1.001  | 1.094   | 1.000  | 1.062   | 1.454               | 2.55   |  |
| (4; 4)                             | 1.000  | 1.000   | 1.000  | 1.001   | 1.004               | 1.10   |  |

TABLE 2 Performance of the VMIX EWMA compared to the competitor charts: comparison of ARL1 values

## MCUSUM

- There are many versions of MCUSUM
- One of them is the proposed by Crosier (1988) which states:

$$\mathbf{S}_{t} = \begin{cases} (\mathbf{S}_{t-1} + \mathbf{Z}_{t} - \boldsymbol{\mu}) \left(1 - \frac{k}{d_{t}}\right) \text{ if } d_{t} > k; \\ \mathbf{0}, \text{ otherwise} \end{cases}$$
(5)

with  $\mu = E(\mathbf{Z}_t)$ , k is the solution for  $k^2 = \mathbf{k}' \Sigma^{-1} \mathbf{k}$ 

$$d_t = \left[ \left( \mathsf{S}_{t-1} + \mathsf{Z}_t - \pmb{\mu} 
ight)' \Sigma^{-1} \left( \mathsf{S}_{t-1} + \mathsf{Z}_t - \pmb{\mu} 
ight) 
ight]^rac{1}{2}$$

and  $\mathbf{S}_t = (S_{1,t}, S_{2,t}, \dots, S_{n,t})$  with

$$S_{j,t} = \max\left[0, \ (S_{j,t-1} + Z_{j,t} - \mu_j)\left(1 - \frac{k}{d_t}\right)\right]$$
 (6)

for j = 1, ..., N, to include the directional approach presented by Fricker Jr et al. (2008). Starting with  $\mathbf{S}_0 = \mathbf{0}$  the control chart signals whenever  $C_* = \left(\mathbf{S}'_* \boldsymbol{\Sigma}^{-1} \mathbf{S}_*\right)^{\frac{1}{2}} > h$ 

PRO 5859

## MEWMA

 Like MCUSUM, there are several proposal for MEWMA. The one proposed by Lowry et al. (1992) with directional approach of Joner et al. (2008) is shown here

$$\mathbf{Y}_{t} = \max\left[\mathbf{0}, \ \lambda(\mathbf{Z}_{t} - \boldsymbol{\mu}) + (\mathbf{1} - \lambda)\mathbf{Y}_{t-1}\right]$$
(7)

can be obtained, choosing a weight  $\lambda \in ]0; 1[$ ,  $\mathbf{Y}_t = (Y_{1,t}, Y_{2,t}, \dots, Y_{n,t})$  with

$$Y_{j,t} = \max[0; \ \lambda(Z_{j,t} - \mu_i) + (1 - \lambda)Y_{j,t-1}]$$
(8)

for j = 1, ..., N. Starting at t = 0 with  $\mathbf{Y}_0 = \mathbf{0}$ , MEWMA chart signals whenever  $E_t = \mathbf{Y}_t' \boldsymbol{\Sigma}_{Y_t}^{-1} \mathbf{Y}_t > b$  with

$$\Sigma_{Y_t} = \frac{\lambda [1 - (1 - \lambda)^{2t}]}{2 - \lambda} \Sigma_Z$$
(9)

イロト イボト イヨト イヨト

 $\Sigma_Z = \sigma^2 \mathbf{I}_N$ ,  $\mathbf{I}_N$  is identity matrix  $N \times N$ .

### MCUSUM and MEWMA: Question for Seminar

- Research for other versions of MCUSUM and MEWMA
- Compare them, find common points, advantages and disadvantages, etc

- Alt, F. (1985), 'Multivariate quality control encyclopedia of statistical sciences, vol. 6, edited by NL Johnson and S. Kotz'.
- Chua, M.-K. & Montgomery, D. C. (1992), 'Investigation and characterization of a control scheme for multivariate quality control', *Quality and Reliability Engineering International* 8(1), 37–44.
- Costa, A. F. B. & Machado, M. A. G. (2009), 'A new chart based on sample variances for monitoring the covariance matrix of multivariate processes', *International Journal of Advanced Manufacturing Technology* **41**, 770–779.
- Costa, A. F. B. & Machado, M. A. G. (2011), 'A control chart based on sample ranges for monitoring the covariance matrix of the multivariate processes', *Journal of Applied Statistics* 38, 233–245.
- Crosier, R. B. (1988), 'Multivariate Generalizations of Cumulative Sum Quality-Control Schemes', *Technometrics* **30**(3), 291–303.

- Fricker Jr, R. D., Knitt, M. C. & Hu, C. X. (2008), 'Comparing directionally sensitive MCUSUM and MEWMA procedures with application to biosurveillance', *Quality Engineering* 20(4), 478–494.
- Haridy, S., Wu, Z., Lee, K. & A, R. (2014), 'An attribute chart for monitoring the process mean and variance', *International Journal* of Production Research 52(11), 3366–3380.
- Ho, L. L. & Costa, A. F. B. (2015), 'Attribute charts for monitoring the mean vector of bivariate processes', *Quality and Reliability Engineering International* **31**(4), 683–693. DOI: 10.1002/qre.1628.
- Jackson, J. E. (1980), 'Principal components and factor analysis: part i-principal components', *Journal of Quality Technology* **12**(4), 201–213.
- Joner, M. D., Woodall, W. H., Reynolds, M. R. & Fricker, R. D. (2008), 'A one-sided MEWMA chart for health surveillance', *Qual. Reliab. Engng. Int.* **24**(5), 503–518.

- Lowry, C. A., Woodall, W. H., Champ, C. W. & Rigdon, S. E. (1992), 'A Multivariate Exponentially Weighted Moving Average Control Chart', *Technometrics* 34(1), 46–53.
- Mason, R. L., Tracy, N. D. & Young, J. C. (1995), 'Decomposition of t2 for multivariate control chart interpretation', *Journal of quality technology* 27(2), 99–108.
- Mason, R. L., Tracy, N. D., Young, J. C. et al. (1996), 'Monitoring a multivariate step process', *QUALITY CONTROL AND APPLIED STATISTICS* **41**, 377–382.
- Melo, M. S., Ho, L. L. & Medeiros, P. G. (2017*a*), 'A 2-stage attribute-variable control chart to monitor a vector of process means', *Quality and Reliability Engineering International* p. to appear.
- Melo, M. S., Ho, L. L. & Medeiros, P. G. (2017b), 'Max D: An attribute control chart to monitor a bivariate process mean', *International Journal of Advanced Manufacturing Technology* DOI 10.1007/500170-016-9368-8, to appear.

- Murphy, B. (1987), 'Selecting out of control variables with the t<sup>2</sup> multivariate quality control procedure', *The Statistician* pp. 571–581.
- Quinino, R., Costa, A. F. B. & Ho, L. L. (2012), 'A single statistic for monitoring the covariance matrix of bivariate processes', *Quality Engineering* 24(3), 423–430.
- Runger, G. C., Alt, F. B. & Montgomery, D. C. (1996), 'Contributors to a multivariate statistical process control chart signal', *Communications in Statistics*-Theory and Methods 25(10), 2203–2213.
- Tracy, N. D., Young, J. C. & Mason, R. L. (1996), 'Some aspects of hotelling's t<sup>2</sup> statistic for multivariate quality control', *STATISTICS TEXTBOOKS AND MONOGRAPHS* **153**, 77–100.

くロ と く 同 と く ヨ と 一