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Multivariate process monitoring - Introduction

I Simultaneous Monitoring or control of two or more related
quality characteristics

I The use of separate control chart for each characteristic may
be misleading

I α∗=type I error for the joint control procedure:

I p statistically independent quality characteristics and α is the
type I error for each X , then α∗ = 1− (1− α)p)

I But if p s are not independent, the above equation does not
hold.
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About multivariate normal distribution

I Consider p variables, given by X′ = (X1 X2 . . . Xp)

I With its respective means µ′ = (µ1 µ2 . . . µp)

I And their variances and covariances described by a matrix
Σp×p

I The multivariate normal probability density function is

f (X) =
1

(2π)p/2|Σ|1/2
exp−1/2(X−µ)′Σ−1(X−µ)
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About multivariate normal distribution - random sample

I A random sample of size n: X1,X2, . . . ,Xn

I Sample mean vector

X =
1

n

n∑
i=1

Xi =
[

X 1 X 2 . . . X p

]′
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χ2 control chart

I When µ and Σ are known

I Monitored statistic

χ2
0 = n(X− µ)′Σ−1(X− µ)

I Upper control limit: UCL=χ2
α,p
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T 2 Control Chart

I In practice, it is usually necessary to estimate µ and Σ

I Assuming the process is in-control, take m samples of size n

I Obtain

x jk =
1

n

n∑
i=1

xijk , S2
jk =

1

n − 1

n∑
i=1

(xijk − x jk)2

j = 1, . . . , p; k = 1, . . . ,m

I and the covariance between quality characteristics j and h in
the k-th sample

Sjhk =
1

n − 1

n∑
i=1

(xijk − x jk)(xihk − xhk), k = 1, . . . ,m; j 6= h
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T 2 Control Chart

I Estimates of mean, variance and covariance are respectively
given as:

x j =
1

m

m∑
k=1

x jk ; S
2
j =

1

m

m∑
k=1

S2
jk ; j = 1, . . . , p

S jh =
1

m

m∑
k=1

Sjhk , j 6= h

I x j is the j-th element of the vector x, an unbiased estimator of
the vector µ

I S
2
j is the j-th element of diagonal of the matrix S and S jh is

the jh-th element of the same matrix. Matrix S is an unbiased
estimator of Σ
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T 2 Control Chart

I This procedure is called Hotelling T 2 control chart

I The monitored statistics is

T 2 = n(x− x)′S−1(x− x)
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T 2 Control Chart

I Careful selection of the control limit must be taken for T 2

statistic

I It depends on the phases of control chart usage

I Phase 1 - use of charts for establishing control; that is, testing
whether the process was in control when the m preliminary
subgroups were drawn and the estimates computed - called
retrospective analysis

UCL =
p(m − 1)(n − 1)

mn −m − p + 1
Fα,p,mn−m−p+1
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T 2 Control Chart

I Phase 2 - the chart is used for monitoring future production

UCL =
p(m + 1)(n − 1)

mn −m − p + 1
Fα,p,mn−m−p+1

PRO 5859 USP



Multivariate process monitoring References

T 2 Control chart: interpreting out-of-control signals

I One difficult in any multivariate control chart - practical
interpretation of the signals

I Which of p variable is responsible for the signal?

I Standard practices:

I Alt (1985): plot univariate X charts on the individual
variables with Bonferroni-type control limits (use zα/(2p) in
place of zα/2)
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Figure 1: Two no-correlated and correlated variables- ellipsoid contours
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T 2 Control chart: interpreting out-of-control signals

I One difficult in any multivariate control chart - practical
interpretation of the signals

I Which of p variable is responsible for the signal?
I Standard practices:

I Runger et al. (1996): Decomposition of T 2 into components
that reflects the contribution of each individual variable:

di = T 2 − T 2
(i); T 2

(i)

is the statistic for all variables except the ith one, i=1,. . . , p
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T 2 control chart: Questions for seminars

I Describe the procedures: Case 1 - Haridy et al. (2014)- a
procedure to build for exact simultaneous confidence intervals

I Case 2 - Jackson (1980): use of control charts based on p
principal components

I Case 3: Murphy (1987); Case 4: Chua & Montgomery (1992)-
, Case 5-Tracy et al. (1996) Mason et al. (1995, 1996)

I How is the performance of all these methods?

I Find other related contributions in the literature
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T 2 control chart for individual observation

I Some industrial settings the subgroup size n=1 like chemical
process

I m samples, each of size n = 1 are available
I Let X and the matrix S the sample mean vector and

covariance matrix of these observations

T 2 = (x− x)′S−1(x− x)

I Phase 2 control limit:

UCL =
p(m + 1)(m − 1)

m2 −mp
Fα,p,m−p or χ2

α,p if m > 100

I Phase 1 control limit

UCL =
(m − 1)2

m
βα,p/2,(m−p−1)/2

βα,p/2,(m−p−1)/2 is the upper α percentage of a Beta
distribution with parameters p/2,(m-p-1)/2
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Multivariate control chart (MCC) to monitor space-time
count series

I Vectors of the deviance residuals (after fitting a STARMA
model) used to build MCUSUM and MEWMA control charts
to monitor multivariate space-time count series.

I Chart parameters estimated by simulation to meet a desired
in-control average run length and to minimize out-of-control
average run length
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MCC to monitor space-time count series

I A complementary simulation study is performed to measure
the impact of the omission of the spatial dependencies on the
performance of the control charts.

I Results highlight that false alarms will be signaled much
earlier on average.
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MCC to monitor space-time count series

I For illustrative purposes, consider the data set of the monthly
rates of vehicle robberies registered in 93 police districts
located in São Paulo City (Brazil).

I Data from January 2001 to December 2013 are used to fit the
STARMA model. Chart parameters are searched by simulation

I Observed vehicle robberies from January 2014 to April 2016
and used to draw the control charts.
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MCC to monitor space-time count series

I The control charts signal as out-of-control for almost all
months of 2014 and the beginning of 2015.

I An exploratory analysis is used to identify which districts are
responsible for these signals.

I In the case of omission of spatial dependencies, in the current
application, these control charts will give false alarms on
average 2.5 (MEWMA) and 7 months (MCUSUM) earlier due
to this fault.
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MCC to monitor space-time count series
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Figure 2: Rates of vehicle robbery in São Paulo city (Brazil) in 2002.
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MCC to monitor space-time count series
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Figure 3: Vehicle robbery rate per one thousand vehicles.
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MCC to monitor space-time count series

I STARMA(p, λp, q, δq) model

Z∗t =

p∑
k=1

λk∑
j=0

φk,jWjZ
∗
t−k −

q∑
k=1

δk∑
j=0

θk,jWjεt−k + εt , (1)

where

I p and q are the lags of autoregressive and moving average
components, respectively;

I λk is the degree of spatial dependency within the k-th
autoregressive lag component;

I δk is the degree of spatial dependency within the k-th moving
average lag component;

I φk,j are the parameters of the autoregressive components; and
I θk,j are the parameters of the moving average component.
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MCC to monitor space-time count series

I εt = {ε1,t , ..., εN,t} in (1) are normally distributed with µ = 0
and variance-covariance matrix Σ = σ2IN , where IN is the
N × N identity matrix.

I The standardized matrix Wj , with dimension N × N, is used
to describe the spatial neighborhood relationship of order j
among N locations.

I For an order j , the elements wimj
> 0 indicate the

neighborhood relationship strength between i-th and m-th
locations with wiij = 0 and

∑N
m=1 wimj

= 1, where
i = 1, ...,N.

I For j = 0, the matrix W0 = I. So φk,0 and θk,0 are,
respectively, the “pure” temporal components of the
autoregressive and the moving average in the STARMA model.
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Frame Title

I Order 1: Matrix W1—for the police districts whose minimum
distance δ is ≤ 0.5 km;

I Order 2: Matrix W2—for the police districts whose minimum
distance δ ∈ ]0.5km; 3km];

I Order 3: Matrix W3—for the police districts whose minimum
distance δ ∈ ]3km; 6km]
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MCC to monitor space-time count series

I Xi ,t be the monthly number of vehicle robberies at the i-th
location at time t.

I It is assumed that Xi ,t follows a Negative Binomial
distribution (as overdispersion is also observed,

I Z ∗i ,t =
Xi ,t

flt
× 106 is the respective rate of vehicle robberies,

where flt is the fleet of registered vehicles at time t and
i = 1, . . . ,N.

I For N (here N = 93) locations, Z∗t = (Z ∗1,t ,Z
∗
2,t , · · · ,Z ∗N,t) at

instant t.
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Frame Title

I In the checking stage of the STARMA model, normality
assumption was not considered reasonable,

I some possible transformations in the response variable that
would allow to consider the normality assumption as satisfied
are evaluated.

I After evaluating several possibilities, we observed that
deviance residuals yield the symmetrical variable presented the
best results in the sense of not rejecting the hypotheses of the
model.
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MCC to monitor space-time count series
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Figure 4: Histogram of the rate of vehicle robbery and its transformations.
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MCC to monitor space-time count series

I

ZDR
i ,t = sign(Z ∗i ,t − µi )

√
g2
i ,t , (2)

where g2
i ,t is calculated as follows:

g2
i ,t =

2γi ln (1 + µi/γi ) if Z ∗i ,t = 0

2Z ∗i ,t ln (Z ∗i ,t/µi )− 2γi (1 + Z ∗i ,t/γi ) ln
(
1+Z∗i,t/γi
1+µi/γi

)
if Z ∗i ,t > 0.

(3)
µi in (2) and (3) is replaced by the sample mean Z

∗
i for any t,

I and parameter γi is estimated by satisfying
Var(Z ∗i ,t) = γiπi/(1− πi )2, with πi = µi/(µi + γi ).

I These equalities are due to the assumption that the original
random count variable Xi ,t follows a Negative Binomial
Distribution

PRO 5859 USP



Multivariate process monitoring References

MCC to monitor space-time count series

Ẑt = + 0.80409 Zt−1 + 0.04687 Zt−12

+ 0.22849W1Zt−1 − 0.10124W1Zt−2

− 0.51406 ε̂t−1 (4)
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MCC to monitor space-time count series
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Figure 5: Observed versus fitted theft rates
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MCC to monitor space-time count series
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Figure 6: Aggregate rate - observed versus fitted
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MCC to monitor space-time count series
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Figure 7: MCUSUM and MEWMA control chart.
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MCC to monitor space-time count series
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Figure 8: Locations which average robbery rates may have shifted -
MCUSUM
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Monitoring bivariate means by attribute charts

I Some contributions are found in the literature like:
I npxy and npw proposed by Ho & Costa (2015) and
I Max D by Melo et al. (2017b)

I Like other attribute charts for monitoring a variable quality
characteristic, the items are classified using some device.

I In bivariate processes, the classifications are made on the
dimensions X and Y.

I What differs among the proposals is the statistics used to
monitoring.
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npxy and npw charts proposed by Ho & Costa (2015)

I Some assumptions: the values of the dimensions X and Y are
standardized

I Only upper discriminating limit (UDL) is used and equal for
the (standardized) dimensions X and Y.

I Items are classified as first, second or third class according to
the UDL

I First class: if (X <UDL) and (Y< UDL)
I Thirs class: if (X > UDL) and (Y> UDL)
I Otherwise results: the item is classified as
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npxy and npw charts proposed by Ho & Costa (2015)

I Let p1= P[ (X <UDL) and (Y< UDL)] - the probability of an
item be of the first class

I p3 =P[ (X > UDL) and (Y> UDL)] - the probability of an
item be of the third class

I And p2= 1− p1 − p3= probability of the item be of the
second class

I After classification: n1, n2, and n3 items classified as the first,
second and third class

I n1, n2, n3 follows a trinomial distribution with parameters:
n, p1, p2, p3
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npxy and npw charts proposed by Ho & Costa (2015)

I Control chart npxy : the monitored statistic is M = n2 + n3
I The process is declared out of control whenever M > UCLxy

I M follows a binomial distribution with parameters: n; (1− p0)

I Control chart npw : the monitored statistic is W = n2 + 2n3
I The process is declared out of control whenever W > UCLw
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npxy and npw charts proposed by Ho & Costa (2015)

Figure 9: Some resultsPRO 5859 USP
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npxy and npw charts proposed by Ho & Costa (2015)

Figure 10: Some resultsPRO 5859 USP
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npxy and npw charts proposed by Ho & Costa (2015)

Figure 11: Some resultsPRO 5859 USP
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npxy and npw charts proposed by Ho & Costa (2015)

Figure 12: Some resultsPRO 5859 USP
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npxy and npw charts proposed by Ho & Costa (2015)

Figure 13: Some resultsPRO 5859 USP
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Max D proposed by Melo et al. (2017b)

I Each item is classified as approved or disapproved in respect
to each quality characteristic by a gauge

I An item is classified as disapproved in i-th quality
characteristic if its value is out of discriminating limits: wL; wU

I Let Di = number of disapproved items in i-th quality
characteristics in a sample of n units

I The monitor statistic is Max D= max(D1,D2, . . . ,Dp)

I A signal is triggered whenever Max D > L, L, the control limit
set to satisfy a performance metric
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Max D: comparing to T 2

Figure 14: Some resultsPRO 5859 USP
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Max D: comparing to T 2

Figure 15: Some resultsPRO 5859 USP
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Max D: comparing to T 2

Figure 16: Some resultsPRO 5859 USP
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Max D

Figure 17: Minimum sample size needed to outperform T 2 with n=3PRO 5859 USP
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Monitoring bivariate means by attribute+variable charts

I Max D-T 2 chart proposed by Melo et al. (2017a)

I The sample of n units is split into 2 sub-samples: n1 and
n2 = n − n1

I Evaluate n1 attributively by a gauge and get the statistic Max
D

I If Max D > C, then measure n2 units and calculate T 2. If
T 2 > L, then the process is stopped for adjustment
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Max D-T 2

Figure 18: Some designsPRO 5859 USP
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Max D-T 2

Figure 19: Comparing Max D-T 2 and pure T 2PRO 5859 USP
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Max D-T 2

Figure 20: Comparing Max D-T 2 and pure T 2PRO 5859 USP
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Max D-T 2

Figure 21: Comparing Max D-T 2 and pure T 2PRO 5859 USP
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Max D-T 2

Figure 22: Comparing Max D-T 2 and pure T 2PRO 5859 USP
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Max D-T 2

Figure 23: Comparing Max D-T 2 and pure T 2PRO 5859 USP
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Max D-T 2

Figure 24: Comparing Max D-T 2 and pure T 2PRO 5859 USP
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Principal Component chart

I T 2 control chart is effective if p (the number of quality
characteristics) is not very large

I As p increases, the performance metric as ARL1 to detect a
specified shift also increases

I It looks like the shift ”diluted” in the p-dimensional space of
variables

I Most common alternative - monitor by principal component
charts
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Principal Component chart

I Original variables: X=(X1, . . . Xp) find new variables Y=(Y1,
. . . , Yp) as

Y = XC

cij , constants to be determined such Y are no correlated
variables

I Cp×p is determined such that

C′ΣC = λ

I λ - a diagonal matrix, the main diagonal elements λ1, . . . , λp
are the eigenvalues of the matrix Σ
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Principal component chart

I Properties: Σ and λ:

tr(Σ) =

p∑
i=1

σ2i =

p∑
i=1

λi

σ2i - the variance of the Xi

I λ1 ≥ λ2 . . . ,≥ λp ≥ 0

I λi is the variance of the new variable Yi

I C = (c1, c2, . . . , cp), ci=(c1i , c2i , . . . , cpi ) is the eigenvector
related to the eigenvalue λi
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Principal Component chart

I For the j-th observation xj=(x1j , . . . , xpj)

I Principal component scores can be obtained as

y1j = c11x1j + . . .+ c1pxpj

y2j = c21x1j + . . .+ c2pxpj

. . .

ypj = cp1x1j + . . .+ cppxpj

I In general the first r components are retained for analysis such
that ∑r

i=1 λi∑p
i=1 λi

> k
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Principal component chart - General framework

I In general the first two principal components are retained

I A 95% (or another level) confidence contour is drawn, and
score values of z1i and z2i are plotted.
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Principal component chart

Figure 25: Data setPRO 5859 USP
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Principal Component chart

Figure 26: Plots of the first 20 scoresPRO 5859 USP
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Principal component chart

Figure 27: Data set - 2nd partPRO 5859 USP
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Principal Component chart

Figure 28: Plots of the last 10 scoresPRO 5859 USP
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Principal component chart

I If more than 2 components are retained - analysis pairwise
scatter plots

I For r > 4, may have some difficulties of interpretation of the
meaning of the principal components
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Monitoring matrix of covariance-variance

I Similar approach of the univariate chart S2

I The statistic W is calculated

W = −pn + pn ln(n)− n ln

(
|A|
|Σ|

)
+ tr(Σ−1A)

I A = (n − 1)S, S, the observed matrix of covariance-variance

I W follows asymptotically a Chi-square distribution with
0.5p(p + 1) degrees of freedom
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Monitoring matrix of covariance-variance

I Approach based on the first two moments of |S|
I Central line and control limits build as:

CL = E (|S|) = b1|Σ|,with b1 =
1

(n − 1)p

p∏
i=1

(n − i)

Control limits:E (|S|)± 3Var(|S|)

Var(|S|) = b2|Σ|2,

b2 =
1

(n − 1)2p

p∏
i=1

(n − i)

 p∏
j=1

(n − j − 2)−
p∏

j=1

(n − j)
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Monitoring matrix of covariance-variance

I Another approach based on asymptotic distribution of |S|
I For p = 2,

2(n − 1)

(
|S|
|Σ|

)0.5

follows a Chi-square distribution with (2n-4) degrees of
freedom

I Let S, a covariance matrix with n degrees of freedom. Then

√
n

(
|S|
|Σ|
− 1

)
is asymptotically normally distributed with mean 0 and
variance 2p
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Other approaches: VMax

I VMax chart- proposed by Costa & Machado (2009):

I Let S2
i =

n∑
j=1

z2
ij

n
, zij =

Xij − µi
σi

I VMax=max(S2
1 ,S

2
2 , . . . ,S

2
p ), a signal is triggered whenever

VMax > L, L, the control limit satisfying some performance
metric
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Other approaches: VMax

Figure 29: Comparison VMax versus |S|, p = 2PRO 5859 USP
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Other approaches: VMax

Figure 30: Comparison VMax versus |S|, p = 3PRO 5859 USP
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Other approaches: VMax

Figure 31: Comparison VMax versus |S|, p = 4PRO 5859 USP
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Other approaches: VMax

Figure 32: Comparison VMax versus |S|, p = 4 - equicorrelation casePRO 5859 USP
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Other approaches: RMax proposed by Costa & Machado
(2011)

I For a sample of n units, let Ri=max (X1i ,X2i , . . . ,Xni ) - min
(X1i ,X2i , . . . ,Xni )

I RMax=max(R1,R2, . . . ,Rp)

I A signal is triggered whenever RMax > L, L, the control limit
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Other approaches: RMax

Figure 33: Comparison RMax versus |S|, p = 2, 3PRO 5859 USP
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Other approaches: RMax

Figure 34: Comparison RMax versus Vmax, p = 2PRO 5859 USP
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Other approaches: RMax

Figure 35: Comparison RMax versus VMax, p = 3PRO 5859 USP
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Other approaches: VMix proposed by Quinino et al.
(2012)- for p=2

I Consider W1 and W2 two normal correlated random variables

I Let

X1 = Z1 and X2 =
Z2 − ρX1√

1− ρ2
,

with Z1 =
W1 − µ1

σ1
,Z2 =

W2 − µ2
σ2

I VMix =

∑n
i=1 X 2

1i + X 2
2i

2n
, 2n × VMix follows a chi-square

distribution with 2n degrees of freedom
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Other approaches: VMix

Figure 36: Comparison VMix with other competitorsPRO 5859 USP
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Other approaches: VMix

Figure 37: Comparison VMix-EWMA with other competitorsPRO 5859 USP
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MCUSUM

I There are many versions of MCUSUM
I One of them is the proposed by Crosier (1988) which states:

St =

{
(St−1 + Zt − µ)

(
1− k

dt

)
if dt > k;

0, otherwise
(5)

with µ= E (Zt), k is the solution for k2 = k
′
Σ−1k

dt =
[
(St−1 + Zt − µ)

′
Σ−1 (St−1 + Zt − µ)

] 1
2

and St = (S1,t ,S2,t , . . . ,Sn,t) with

Sj ,t = max

[
0, (Sj ,t−1 + Zj ,t − µj)

(
1− k

dt

)]
(6)

for j = 1, . . . ,N, to include the directional approach presented by
Fricker Jr et al. (2008). Starting with S0 = 0 the control chart

signals whenever Ct =
(
S
′
tΣ
−1St

) 1
2
> h.
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MEWMA

I Like MCUSUM, there are several proposal for MEWMA. The
one proposed by Lowry et al. (1992) with directional approach
of Joner et al. (2008) is shown here

Yt = max [0, λ(Zt − µ) + (1− λ)Yt−1] (7)

can be obtained, choosing a weight λ ∈ ]0; 1[,
Yt = (Y1,t ,Y2,t , . . . ,Yn,t) with

Yj ,t = max[0; λ(Zj ,t − µi ) + (1− λ)Yj ,t−1] (8)

for j = 1, . . . ,N. Starting at t = 0 with Y0 = 0, MEWMA chart
signals whenever Et = Y

′
tΣ
−1
Yt

Yt > b with

ΣYt =
λ[1− (1− λ)2t ]

2− λ
ΣZ (9)

ΣZ = σ2IN , IN is identity matrix N × N.
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MCUSUM and MEWMA: Question for Seminar

I Research for other versions of MCUSUM and MEWMA

I Compare them, find common points, advantages and
disadvantages, etc
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