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NLRP1 restricts butyrate producing commensals
to exacerbate inflammatory bowel disease
Hazel Tye1,2, Chien-Hsiung Yu1,2, Lisa A. Simms3, Marcel R. de Zoete4,5, Man Lyang Kim1,2, Martha Zakrzewski6,

Jocelyn S. Penington 7, Cassandra R. Harapas1,2, Fernando Souza-Fonseca-Guimaraes2,8,

Leesa F. Wockner 9, Adele Preaudet1,2, Lisa A. Mielke2,8,10, Stephen A. Wilcox2,11, Yasunori Ogura12,

Sinead C. Corr13, Komal Kanojia14, Konstantinos A. Kouremenos14, David P. De Souza14,

Malcolm J. McConville14,15, Richard A. Flavell4,16, Motti Gerlic 17, Benjamin T. Kile2,18,19,

Anthony T. Papenfuss 2,7,20,21, Tracy L. Putoczki1,2, Graham L. Radford-Smith 3,22,23 & Seth L. Masters 1,2

Anti-microbial signaling pathways are normally triggered by innate immune receptors when

detecting pathogenic microbes to provide protective immunity. Here we show that the

inflammasome sensor Nlrp1 aggravates DSS-induced experimental mouse colitis by limiting

beneficial, butyrate-producing Clostridiales in the gut. The colitis-protective effects of Nlrp1

deficiency are thus reversed by vancomycin treatment, but recapitulated with butyrate

supplementation in wild-type mice. Moreover, an activating mutation in Nlrp1a increases IL-18

and IFNγ production, and decreases colonic butyrate to exacerbate colitis. We also show that,

in patients with ulcerative colitis, increased NLRP1 in inflamed regions of the colon is asso-

ciated with increased IFN-γ. In this context, NLRP1, IL-18 or IFN-γ expression negatively cor-

relates with the abundance of Clostridiales in human rectal mucosal biopsies. Our data identify

the NLRP1 inflammasome to be a key negative regulator of protective, butyrate-producing

commensals, which therefore promotes inflammatory bowel disease.
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Inflammatory bowel disease (IBD) predominantly affects peo-
ple in westernized countries1, and includes both Crohn’s dis-
ease (CD) and ulcerative colitis (UC). Since the underlying

cause of IBD is not well understood, there is a need to understand
the molecular mechanisms that drive pathogenesis in order to
improve therapeutic options and patient quality of life. Two
inflammatory cytokines central to the pathogenesis of IBD are
interleukin (IL)-1β and IL-18. IL-1β is increased in the mucosa of
patients with IBD and is associated with the proliferation of
pathogenic T helper 17 (Th17) cells2. Despite this, in acute
models of IBD, deletion of IL-1β has been shown to contribute to
defective repair of the epithelial barrier, resulting in increased
disease3. Regarding IL-18, increased levels were detected in the
serum of IBD patients compared to healthy controls4. IL-18 has
been shown to enhance interferon-γ (IFNγ) production in
T cells5, with a genetic association between a single-nucleotide
polymorphism in IFNG and increased severity of CD and UC6.
Collectively, this would suggest that the effect of IL-18 on IFNγ-
producing Th1 cells may be pathogenic in IBD. However, the
genetic deletion of IL-18 from mice has opposing effects in
models of colitis, depending on whether it is produced by
hematopoietic or non-hematopoietic cells7–9. Therefore, both IL-
1β and IL-18 may have pleiotropic effects in IBD, perhaps
depending on localization, disease severity, kinetics of cytokine
production or other factors such as microbiome colonization and
species differences.

IL-1β and IL-18 are both activated by cleavage, via an intra-
cellular complex of proteins containing Caspase-1, known as the
inflammasome. Inflammasome complexes are nucleated by an
innate immune receptor, including members of the Nod-Like
Receptor (NLR) family. The last decade has seen a dramatic
increase in research regarding the role of the microbiome and
inflammasomes in IBD7,10. This link was initially established with
the finding that severe dextran sulfate sodium (DSS)-induced
colitis observed in NLRP3- and NLRP6-deficient mice could be
transferred to co-housed wild-type (WT) mice7,10. More recently,
this pathway has been carefully re-examined through the analysis
of littermate control mice, and the conclusion reached was that
NLRP6, and indeed mice deficient for the inflammasome adaptor
ASC (apoptosis-associated speck like protein containing a caspase
recruitment domain), had no microbial dysbiosis or DSS-colitis
phenotype11. In spite of this, Caspase-1-deficient mice, even with
a normalized microbiome, exhibit protection against DSS-
colitis12, suggesting a possible role for ASC-independent
inflammasomes regulating IL-1β or IL-18 in IBD.

At least in mice, Nlrp1a can form an ASC-independent
inflammasome, as demonstrated by an activating mutation
(Nlrp1aQ593P/Q593P) which results in autoinflammatory disease
that is rescued by the genetic deletion of Caspase-1, but not
ASC13. Unlike humans, mice have three paralogs of the Nlrp1
gene (Nlrp1a, b, c)14 and while studies have shown anthrax lethal
toxin activates mouse Nlrp1b in macrophages15, this does not
hold true for human NLRP114. Since Nlrp1c is a pseudogene, it
may be that Nlrp1a is a closer functional homolog of human
NLRP1. Indeed, deletion of the N-terminal domain of Nlrp1a
renders the molecule auto-activated16, similar to loss-of-function
mutations in the N-terminal domain of human NLRP117. These
rare loss-of-function mutations in the N-terminal domain of
NLRP1 result in a familial autoinflammatory skin disease asso-
ciated with cancer. Additionally, rare mutations in a linker region
between the NACHT and LRR domains can cause a similar
disease18, which is the same location as we observed for the
mutation activating mouse Nlrp1a13.

Aside from familial mutations in NLRP1 that predispose
humans to skin cancer, common polymorphisms at the NLRP1
locus are associated with resistance to glucocorticoid treatment in

pediatric IBD, and several autoimmune diseases such as vitiligo,
celiac disease and psoriasis15,19–22. NLRP1 polymorphisms are
also strongly associated with skin extra-intestinal manifestations
in CD23. NLRP1 is expressed by a variety of cell types, which are
predominantly hematopoietic; however, expression is also seen
within glandular epithelial structures including the lining of the
small intestine, stomach and colon24.

Given these links between IBD and NLRP1, we use the model
of DSS-induced colitis in mice that are deficient for all three
paralogs of Nlrp1 (Nlrp1−/−) and find that they are protected
from severe disease pathology. Mice with single deletion of
Nlrp1a are also protected while conversely, mice with an acti-
vating mutation in Nlrp1a suffer more severe disease that can be
resolved by the genetic deletion of IL-18. Moreover, we demon-
strate that increased IL-18 is associated with an increased Th1
response during DSS-induced colitis, while loss of Nlrp1 prevents
this, and leads to increased butyrate-producing commensals from
the Clostridiales order. These data agree with the increased
expression of NLRP1 we observe in biopsies from patients with
UC, which is correlated with increased IFNγ expression and
decreased butyrate-producing Clostridiales.

Results
Loss of Nlrp1 suppresses DSS-induced colitis. In order to
determine the role of NLRP1 in acute colitis we administered
Nlrp1−/− mice with 3% (w/v) DSS ad libitum in their drinking
water for 6 days. As a comparison, we used WT mice that were
the F1 or F2 progeny of Nlrp1+/− matings, bred in the same
facility. Throughout the course of DSS-induced mucosal injury,
we observed that the Nlrp1−/− mice were protected from the
clinical features of colitis, as indicated by reduced weight loss,
sustained colon length and lower histology score compared to
WT mice (Fig. 1a–d). We also studied mice with single deletion of
Nlrp1a, and found a similar protection from DSS-induced colitis
associated with reduced weight loss and decreased severity of
inflammation quantified by colonoscopy (Supplementary Fig. 1a,
b). Serum cytokines were quantified at day 7, revealing that IL-18
was decreased in mice lacking Nlrp1a, and explant tissue from the
colon of these mice also produced less IL-18 and IFNγ ex vivo
(Supplementary Fig. 1c-e). In order to identify whether NLRP1
activity in the non-hematopoietic or hematopoietic compartment
was detrimental during DSS-induced colitis, we generated reci-
procal bone marrow chimeras, whereby WT and Nlrp1−/− mice
were lethally irradiated and reconstituted with either WT or
Nlrp1−/− bone marrow. At 12 weeks after reconstitution, mice
were challenged with DSS for 6 days. A gradient of disease
severity was observed with Nlrp1−/− mice receiving Nlrp1−/−

bone marrow exhibiting the least weight loss, shortening of the
colon and histology score (Fig. 1e–g). This was followed by
Nlrp1−/− mice receiving WT bone marrow, then WT mice
receiving Nlrp1−/− bone marrow, and finally WT mice receiving
WT bone marrow, which were the most severely affected, as
expected. These results indicate that NLRP1 activity from both
the hematopoietic and non-hematopoietic compartment influ-
ence the outcome of DSS-induced colitis, with a predominant role
of Nlrp1 from within the non-hematopoietic compartment.

Reduced Th1 response for Nlrp1−/− mice during DSS-colitis.
Since inflammasomes regulate IL-1β and IL-18 production, which
are implicated in Th17 and Th1 responses respectively, we
employed fluorescence-activated cell sorting (FACS) analysis to
assess the downstream consequences of the loss of NLRP1 on Th1
and Th17 populations. Following DSS treatment, the reduced
disease severity observed in the Nlrp1−/− mice was associated
with a significant decrease in the total number of CD4+ T cells in
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the colonic lamina propria (cLP) (Supplementary Fig. 2a). At
steady state (SS) no differences in the frequency of IFNγ+ (Th1),
IFNγ+IL-17a+ (Th1/Th17) or IL-17a+ (Th17) cells were
observed in the cLP or spleen of both WT and Nlrp1−/− mice
(Supplementary Fig. 2b-d). However, a significant reduction in
the frequency of IFNγ-producing CD4+ T cells was observed in
the cLP and spleen of DSS-treated Nlrp1−/− mice (Supplemen-
tary Fig. 2b-d). No significant differences in IFNγ+IL-17a+ and
IL-17a+CD4+ T cells were observed between the genotypes after
DSS treatment. This is consistent with our results above, in that
Nlrp1−/− mice display a reduced inflammatory capacity that is
predominantly associated with decreased Th1 effector T cells in
this mouse model of IBD.

Nlrp1−/− microbiome can be transferred to co-housed mice. As
an initial test to see if the DSS-colitis phenotype of Nlrp1-
deficient mice was related to a commensal imbalance, we per-
formed 16S ribosomal RNA sequencing on stool from littermates
of Nlrp1+/− matings, which had been housed individually for
6 weeks after weaning. This revealed that in the period of time
since weaning, a significant difference in the abundance of several
bacterial operational taxonomic units (OTUs) was observed for
Nlrp1−/− mice, from the Firmicutes and Bacteroidetes phyla
(Fig. 2a). There was no difference in microbial community
composition between WT and Nlrp1−/− mice, as determined by
redundancy analysis (RDA), canonical correspondence analysis
(CCA) and ADONIS using gender as covariate. Diversity and
richness were not associated with genotype (multiple regression
analysis, corrected for gender p > 0.1). To further establish which

of these may be associated with the DSS-colitis phenotype, we
looked to see if they could confer protection to co-housed WT
mice. To accomplish this, WT and Nlrp1−/− mice were co-
housed for 4 weeks to allow the transfer of dysbiotic microbes,
then subjected to DSS treatment. While single-housed WT mice
displayed severe DSS-induced colitis as expected, WT mice that
were co-housed with Nlrp1−/− mice and the single-house Nlrp1
−/− mice showed reduced signs of colitis (Fig. 2b–d). Prior to DSS
treatment, stool was collected from all mice for microbiome
analysis using 16S ribosomal RNA sequencing. The microbial
compositions of single-housed Nlrp1−/−, co-housed WT and co-
housed Nlrp1−/− mice were compared to single-housed WT
mice. We hypothesized that as Nlrp1−/− mice possess a compo-
sition of gut bacteria that provide protection from DSS-induced
colitis, the abundance of these bacteria should be increased in
protected mice compared to singly housed WT. Interestingly, we
found that all OTUs significantly upregulated in co-housed mice
were from the order Clostridiales, including species from the
Lachnospiraceae and Ruminococcaceae families (Fig. 2e). Similar
species have been reported to generate high levels of butyrate25,
which are known to play a role in alleviating intestinal
pathologies26.

Vancomycin or butyrate treatment of Nlrp1−/− mice. To
investigate whether bacteria of the Clostridiales order contribute to
the protection of Nlrp1−/− mice against DSS-induced colitis, we
treated WT and Nlrp1−/− mice with vancomycin (Gram-positive
specific antibiotic) for 4 weeks prior to DSS administration.
To ensure depletion of Clostridiales we performed quantitative
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12 weeks and were given 3% DSS for 6 days. Disease severity was measured by e percentage weight loss, f colon length and g histology score. Data are
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real-time PCR (RT-PCR) on stool samples before and after van-
comycin treatment with specific primers against one major group,
Clostridium coccoides27. Treatment with vancomycin significantly
reduced the abundance of coccoides in both WT and Nlrp1−/−

mice (Fig. 3a). As expected, depleting the elevated bacteria from
Nlrp1-deficient mice meant that they no longer had a protected
DSS-colitis phenotype compared to WT mice (Fig. 3b, c). To
determine whether the protective colitis phenotype of Nlrp1−/−

mice was associated with increased butyrate production by the gut
microbiota, the stools of WT and Nlrp1−/− mice, before and after
vancomycin treatment, were solvent extracted using a cryomill
and short chain fatty acids (SCFAs) analyzed by triple-quadrupole

gas chromatography mass spectrometry. A significant increase
of butyrate was observed in Nlrp1−/− stools compared to WT
stools, which decreased in both cases upon vancomycin treat-
ment (Fig. 3d). Significant differences in other SCFAs, such as
propionate, were not observed in WT and Nlrp1−/− stools at
steady state, although levels of propionate were reduced after
vancomycin treatment (Fig. 3e). In addition, we did not obser-
ve any differences in the total number of CD45+ and CD4+
cells in the colon of vancomycin-treated WT and Nlrp1−/− mice,
with the frequency of IFNγ+ (Th1), IFNγ+IL-17a+ (Th1/Th17)
or IL-17a+ (Th17) cells being similar in both genotypes
(Supplementary Fig. 3).
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To provide evidence that butyrate is the causal link between
elevated levels of Clostridiales and the protection of Nlrp1−/−

mice against DSS-induced colitis, we performed butyrate
supplementation by feeding mice 2% butyrate in drinking water
for 4 weeks before initiating DSS treatment. This regime largely
protected the WT mice from DSS-induced colitis, and as
expected, there was no longer a difference to Nlrp1−/− mice also
supplemented with butyrate, with regards to weight loss and
inflammation in the colon (Fig. 3f, g). Together, these results
indicate that increased colonization by bacteria from the order
Clostridiales lead to increased levels of butyrate which protect
Nlrp1−/− mice from DSS-induced colitis.

Nlrp1 exacerbates DSS-colitis independent of IL-1R signaling.
To confirm the pathogenic role of NLRP1 activation during
DSS-induced colitis, we utilized a mouse model that displays

hyper-activated Nlrp1a. We hypothesized that Nlrp1aQ593P/Q593P

mice would be highly susceptible to DSS-induced colitis. Further,
we genetically manipulated downstream signaling components
such as IL-1 or IL-18 to examine which pathway contributed to
NLRP1-mediated disease during IBD. Mice with hyper-activation
of Nlrp1a, but lacking the IL-1 receptor (Il-1r−/−Nlrp1aQ593P/
Q593P), were highly susceptible to DSS-induced colitis
compared to littermate controls (Il-1r−/−Nlrp1aQ593P/+), and
had to be ethically killed by day 5 (Fig. 4a). Additionally,
Il-1r−/−Nlrp1aQ593P/Q593P had a significant reduction in colon
length and increased mucosal damage and inflammatory cell
infiltrate highlighted by an increased histology score (Fig. 4b–d).
Given the increased abundance of Clostridiales in Nlrp1−/− mice,
we expect that these bacteria would be deficient in mice with an
activating mutation in the gene. In agreement with this, it was not
possible to transfer the phenotype of Il-1r−/−Nlrp1aQ593P/Q593P
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mice by co-housing, suggesting that the bacteria were not present
in their stool. This was supported by analysis of SCFA levels in
the stool of control and Il-1r−/−Nlrp1aQ593P/Q593P mice, which
showed that in line with increased colitis severity, butyrate was
significantly reduced in Il-1r−/−Nlrp1aQ593P/Q593P stool, while
propionate was not altered (Fig. 4e, f). This indicates that Nlrp1
activation contributes to DSS-induced colitis, with decreased
butyrate production, even in the absence of IL-1 signaling.

FACS analysis further highlighted that Il-1r−/−Nlrp1aQ593P/Q593P

mice have an increase in the total number of CD4+ T cells present

in the cLP, during both SS and DSS-induced colitis (Supplementary
Fig. 4a). Interestingly, at SS Il-1r−/−Nlrp1aQ593P/Q593P mice
displayed a significant increase in the frequency of IFNγ-
producing CD4+ T cells, which doubled upon DSS treatment in
the cLP (Supplementary Fig. 4b-c). However, no significant
differences were observed in the frequencies of IFNγ+IL-17A+
and IL-17A+CD4+ T cells in the cLP and spleen at SS or during
DSS. The increase in the IFNγ-producing CD4+ T cells was
associated with a significant increase in IL-18 production from cells
present in the cLP (Supplementary Fig. 4d), with IL-18 already
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reported to be a potent regulator of IFNγ-producing CD4
+T cells28. Since there is a role for NLRP1 in the non-
hematopoietic compartment, we also measured IL-18 in the
epithelial fraction; however, due to severe epithelial damage, the
recovery of viable epithelial cells was low, thus accounting for low
IL-18 production measured by enzyme-linked immunosorbent
assay (ELISA) (Supplementary Fig. 4d). These data suggest that
activation of Nlrp1 mediates DSS-induced colitis, possibly through
increased IL-18 production, which is associated with the expansion
of IFNγ-producing CD4+ T cells in the colon.

Deleting IL-18 reduces Th1 response from Nlrp1 in DSS-
colitis. Although genetic deletion of IL-1R did not rule out
a contribution from IL-1β downstream of Nlrp1 in DSS-colitis,
it did implicate IL-18 in this process. Unfortunately,
Il-18−/−Nlrp1aQ593P/Q593P mice have a spontaneous inflamma-
tory phenotype and die prematurely at approximately 7 weeks of
age13. For this reason we are unable to examine their phenotype
in the mouse model of DSS-induced colitis, and instead
we genetically deleted the gene encoding IL-18 on the
Il-1r−/−Nlrp1aQ593P/Q593P background. In the absence of IL-18
signaling, the activation of Nlrp1a did not lead to an increase in
disease pathology, indicated by no significant changes in colon
length or histopathological scores (Fig. 5a–d). While we observed
a modest increase in the absolute number of CD4+ T cells in the
cLP of Il-1r−/−Il-18−/−Nlrp1aQ593P/Q593P mice during DSS
(Supplementary Fig. 5a), the frequencies of IFNγ+, IFNγ+IL-
17A+ and IL-17A+ CD4+ T cells at SS and during DSS was not
significantly different in the cLP and spleen (Supplementary
Fig. 5b-c). This shows that IL-18 signaling after Nlrp1 activation

increases the disease severity of DSS-colitis, associated with
increased IFNγ-producing Th1 cells.

Increased NLRP1 in UC correlates with decreased Clostridiales.
To address the relevance of NLRP1 in human IBD, we per-
formed microarray analysis on inflamed human colon biopsies
from patients with UC and CD compared to healthy controls.
We observed a significant fold increase in NLRP1 gene
expression in the inflamed regions of the sigmoid colon and
rectum of UC patients compared to healthy controls, which was
not observed in CD patients (Fig. 6a, b). Although we do not
expect NLRP1 expression to affect IL-18 at the RNA level, there
was a positive correlation to IFNγ gene expression in the
inflamed distal regions of the colon (Fig. 6c). The 16S microbial
sequencing was performed on rectal mucosal biopsies from
healthy control and UC patients, and then tested for a negative
correlation to NLRP1, IL-18 or IFNγ expression. This analysis
revealed that of the eight OTUs that were statistically negatively
correlated to NLRP1 expression, half were of the order Clos-
tridiales (Supplementary Table 1), and the most significant of
which, Faecalibacterium prausnitzii, is documented to have
anti-inflammatory effects in models of IBD29. F. prausnitzii and
other Clostridiales also dominate the list of OTUs that are
negatively correlated with IL-18 and IFNγ expression (Supple-
mentary Tables 2 and 3). Taken together, these human data
confirm our observations from mice that NLRP1 may be
involved in promoting a Th1 response in the colon to deplete
beneficial butyrate-producing commensals and facilitate the
pathogenesis of UC.
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Discussion
We have shown that loss of the Nlrp1 inflammasome ameliorates
DSS-induced colitis by promoting expansion of beneficial gut
microbes belonging to the Clostridiales phylum, with concomitant
increased butyrate production in the colon. Our results contrast
with those of Williams et al.30 in a recent publication concerning
mice that are genetically deficient for Nlrp1b. These Nlrp1b−/−

mice displayed exacerbated DSS-induced colitis which was
mediated by reduced levels of both IL-1β and IL-18. One expla-
nation for this observation could be related to the genetics of
mouse strains used. Our Nlrp1−/− mice lack all three alleles of
Nlrp1, while the Nlrp1b−/− mice still encode functional Nlrp1a,
although it is from the parental 129 strain, where it is not
expressed in macrophages and the jejunum14,31. To clarify this,
we studied mice where only Nlrp1a was deleted, and again these
mice were protected from DSS-colitis. Our Nlrp1a−/− mice were
originally made on the 129 background and then backcrossed to
C57BL/6 and hence the Nlrp1b allele is still active, with respect to
activation by LT (Lethal Toxin). Moreover, these experiments
were performed in a separate animal facility, indicating that the
protection to DSS-colitis afforded by loss of Nlrp1a is not
restricted to a single set of environmental conditions. To inde-
pendently confirm these results, we have also shown that hyper-
activation of the Nlrp1a allele specifically exacerbates the patho-
genesis of DSS-induced colitis in C57BL/6 mice. In summary, our
results support a dominant role for Nlrp1a in this mouse model of
IBD.

We have shown that IL-18 is involved in the exacerbation of
DSS-colitis after activation of NLRP1. The role of IL-18 in IBD
has recently been clarified by studies which showed the impor-
tance of cell specificity for IL-18 signaling in colitis, as deletion of
IL-18 from epithelial cells, not myeloid cells, conferred protection
against DSS-induced colitis9. This also agrees with our

observation that deletion of NLRP1 from non-hematopoietic cells
conferred protection against DSS-induced colitis. In our studies,
NLRP1 activity and IL-18 production in colitic mice was asso-
ciated with increased IFNγ-producing CD4+ T cells in the cLP.
To support this notion, our human data confirm that NLRP1 gene
expression is significantly elevated in inflamed distal regions of
the colon from patients with UC, and that there is a positive
correlation between NLRP1 and IFNγ gene expression. Together,
these results are consistent with the observation that there is an
increase in IL-18 and Th1 responses in human IBD4,32.

Our understanding for the roles of ASC and Caspase-1 during
DSS-induced colitis are currently being re-defined. This was
necessary because earlier studies did not adequately normalize the
microbiota of these strains, for example by using littermate
control mice, or the F1/F2 progeny thereof, as we have done in
this study. These new data suggest that in fact, mice deficient for
ASC containing inflammasomes bear no impact on the outcome
of DSS-colitis11. That result is consistent with our study, as
NLRP1 can function independently of ASC in mice. Furthermore,
a new Caspase-1−/− allele, where Caspase-11 is still functional,
was examined in an enhanced barrier facility, and found to be
protected against DSS-colitis12. This is broadly consistent with
our observations, with the exception that no difference in Clos-
tridales was seen in that study. One potential explanation for this
is that Caspase-1 integrates signals from a wide variety of
inflammasome sensors, for example NLRC4, which may have a
dominant or confounding effect.

Dysbiosis in the gut microbiota of IBD patients is commonly
observed and is often associated with reduced colonization by
bacteria from the Clostridium cluster XIVa and IV33, which
includes bacteria from the Lachnospiraceae and Ruminococcaceae
families that were abundant in Nlrp1−/− mice. These bacteria
have also been reported to be good producers of butyrate25, which
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is consistent with increased butyrate production in fecal samples
isolated from Nlrp1−/− mice. Additionally, we have also
demonstrated that depletion of Clostridiales using the antibiotic
vancomycin reduces butyrate levels and increases DSS-induced
disease severity, such that there is no longer a difference between
WT and Nlrp1−/− mice. Moreover, there was a significant
negative correlation between NLRP1, IL-18 or IFNγ expression
and members of the Clostridiales order in human intestinal
biopsies. The species that was most significantly correlated to
NLRP1 expression and is also correlated to IL-18 expression
(F. prausnitzii) is a known butyrate-producing commensal that is
anti-inflammatory in models of IBD and is decreased in UC
compared to healthy controls29. To our knowledge, this is the first
description of NLRP1 regulating microbial species from the
Clostridiales order that are beneficial for IBD. This is a unique
feature for any pattern recognition receptor, which are usually
described as a limiting factor for the colonization of pathogenic
strains. Our results suggest that it may be possible to ther-
apeutically target the NLRP1 inflammasome pathway to increase
butyrate-producing commensals in the gut of patients who are
otherwise deficient, and thus prevent IBD.

Methods
Human colon biopsy collection. Human intestinal pinch biopsies were collected
by a single operator (G.L.R.-S.) at the time of colonoscopy using a standard biopsy
forcep technique (Boston Scientific Radial Jaw 4 (2.8 mm)). All subjects gave
written informed consent, and the study was approved by the Human Research
Ethics Committees of the Royal Brisbane and Women’s Hospital, Brisbane, Aus-
tralia (HREC/14/QRBW/323), and the QIMR Berghofer Medical Research Insti-
tute, Brisbane, Australia (HREC/P692). Patients included in the study were all
under the management of the Inflammatory Bowel Disease team with an estab-
lished diagnosis and well-characterized disease course. Healthy controls were
recruited from gastroenterology clinics and only included individuals who were
undergoing a screening colonoscopy for a family history of colorectal cancer, and
in whom the procedure was normal. A total of 101 subjects (33 CD, 56 UC and 22
healthy controls) were included in the study, the characteristics of which are
included as Supplementary Table 4. Biopsies were collected from representative
involved and adjacent uninvolved intestinal segments, including the terminal ileum
(CD), the cecum, transverse colon, sigmoid colon and rectum (UC). Biopsies were
snap frozen immediately and stored at −80 °C for RNA and DNA extraction.
Adjacent biopsies were also taken from these segments for histological analysis. An
inflammation score was generated for each biopsy site in each case, based upon a
validated scoring system34.

Mice. Mice that lack all three Nlrp1 genes in the murine Nlrp1abc locus (C57BL/6
background) and Il-1r−/−Nlrp1aQ593P/Q593P mice have been previously descri-
bed13, and were housed and bred in the same animal facility (WEHI). Mice that
lack Nlrp1a−/− were generated by replacing exon 3 with a neomycin selection
cassette on the 129 background and then backcrossed to C57BL/6 (C57BL/NTac
background). These mice were housed and bred in a separate facility (Yale). All
animal experiments were performed under the standards of, and were approved by,
the Walter and Eliza Hall Institute Animal Ethics Committee, or the Yale Uni-
versity Institutional Animal Care and Use Committee.

Bone marrow chimeras. C57BL/6 WT mice or Nlrp1−/− mice at 6 weeks of age
were reconstituted with 5 × 106 WT mice or Nlrp1−/− bone marrow cells. Recipient
mice received two 5.5 Gy doses of irradiation given 3 h apart and were treated with
Neomycin for 3 weeks. Mice were treated with DSS 12 weeks after irradiation.

Induction of DSS-induced colitis. To induce acute colitis in mice, 3% (w/v) DSS
(molecular mass 40-50 kDa; Affymetrix) was dissolved in sterile water and pro-
vided to the 8–12-week-old mice ad libitum twice for 3 days each (for 6 days in
total) followed by normal drinking water until day 8 or when mice had lost 20% of
their initial body weight. The disease severity parameters for this study were based
on the percentage weight loss, changes in colon length and histopathology scores of
the colon. Some mice were treated with 50 mg/L Vancomycin (Sigma) in drinking
water for 4 weeks to deplete intestinal microbiota prior to DSS challenge. For
butyrate supplementation, 2% (w/v) sodium butyrate (Sigma) was administrated in
drinking water for 4 weeks, prior to, and then continued throughout, DSS treat-
ment. All animal experiments were age- and sex-matched appropriately.

Histopathology and immunohistochemistry. Disease severity was determined by
histopathology scoring of a hematoxylin and eosin (H&E)-stained colon in a
blinded fashion, which is characterized by the recruitment of inflammatory cell

infiltration (score 0–3) and epithelial damage in the colon (score 0–5). The pre-
sence of occasional inflammatory cells in the lamina propria was scored as 0,
increased numbers of inflammatory cells in the lamina propria was scored as 1,
infiltration of inflammatory cells into the submucosa was scored as 2 and trans-
mural extension of the infiltrate was scored as 3. No epithelial damage was scored
as 0, hyperproliferation of the mucosa was scored as 1, less than 50% crypt loss was
scored as 2, more than 50% crypt loss was scored as 3, 100% crypt loss was scored
as 4 and the presence of an ulcer was scored as 5.

Organ cultures and cytokine measurements. The distal colon (2 cm from the
rectum) was isolated and flushed with sterile phosphate-buffered saline (PBS).
Epithelial cells were isolated using dissociation media (Hanks free+5 mM EDTA)
at 37 °C with gentle agitation for 30 min and cultured separately to the cLP for 6 h.
The supernatants were analyzed for IL-18 by ELISA using IL-18-specific antibodies
(R&D Systems, MN, USA). The concentration of IL-18 from the cEC (colonic
epithelium) and cLP were normalized to the total amount of protein present in cEC
measured by BCA protein assay (Life Technologies, CA, USA) and the weight of
tissue collected, respectively.

Isolation of colonic lamina propria. Whole colons were isolated and cut long-
itudinally from the distal colon to the cecum and thoroughly washed in sterile PBS.
The epithelial layer was isolated in dissociation media (Hanks free+5 mM EDTA)
at 37 °C with gentle agitation for 30 min. To isolate lymphocytes from the cLP, the
remaining colon was digested in digestion media (RPMI, 2% fetal calf serum, 1 mg/
mL Collagenase III (Worthington Biochemical Corporation, NJ, USA), 0.4 units
Dispase (Life Technologies, CA, USA), 1 µg/mL DNase (Life Technologies, CA,
USA)) at 37 °C with gentle agitation for 1 h. Lymphocytes were isolated by per-
forming a 40%/80% Percoll gradient followed by centrifugation at 900 × g for 20
min with no brakes. Lymphocytes are found at the 40/80% interface.

FACS analysis of T-cell subsets. Lymphocytes were isolated and re-stimulated
with 50 μg/mL phorbol myristate acetate + 1 μg/mL ionomycin and Brefeldin A at
37 °C and 5% CO2 for 4 h. Cells were washed and incubated with anti-Fc receptor
and stained for FACS analysis using the Foxp3/transcription factor staining buffer
set (eBioscience, CA, USA) with a combination of antibodies: CD45-APC (1:400
clone A20.1), CD3-A700 (1:200 clone KT3-1.1) and CD4-FITC (1:400 clone
GK1.5) obtained from our monoclonal antibody facility; IFNγ-PercpCy5.5 (1:300
clone XMG1.2) and IL-17A-pacific blue (1:300 clone 17B7) purchased from
eBioscience; and Live/Dead fixable dead cell stain (Life Technologies, CA, USA).

RNA isolation and microarray of human intestinal biopsies. Total RNA was
isolated from 2–3 pinch biopsy samples per site using Qiagen RNeasy kits (QIA-
GEN, Valencia, CA) as per the manufacturer’s instructions. RNA integrity was
determined using ExperionTm Automated Electrophoresis System (Bio-Rad
Laboratories, Hercules, CA). RNA quality indicator (RQI) number, range and
median, for each disease group, was as follows: CD (range, 6.3–9.5; median, 7.7),
UC (range, 4.4–9.7; median, 8.1) and healthy controls (range, 6.7–9.2; median, 8.3).

Using a concentration of 50 ng/µL, 1 µL was used for the Ovation RNA
Amplification System v2 (Nugen). Poly-A control spike-ins (Affymetrix) were
added prior to reverse transcription followed by SPIA (Single Primer Isothermal
Amplification). The reaction was split equally prior to SPIA amplification which
was performed in two stages: 30 min at 48 °C followed by addition of 3 µL WB
reagent before a further 30 min at 48 °C. The complementary DNA (cDNA)
product was purified (Qiagen QIAquick Reaction Cleanup Kit) and quantified by
spectroscopy (Nanodrop 2000). Only samples yielding >5 µg were further
processed using the Encore Biotin Module (Nugen) where 4.4 µg of cDNA was
fragmented and biotinylated. This was added to Oligo B2, 20× Eukaryotic
Hybridisation Controls, Herring Sperm DNA, acetylated bovine serum albumin, 2×
Hybridisation buffer, 100% dimethyl sulfoxide and nuclease-free water as described
for use with AffymetrixGeneChip® U133 Plus 2.0 arrays by Affymetrix. Then,
200 µL of the hybridisation cocktail was incubated with the array 18 h ± 2 h at
45 °C, 60 rpm rotation in a 645 Hybridization oven (Affymetrix). After incubation
the hybridization solution was recovered and the array filled with Wash Buffer A
(6× SSPE, 0.01% Tween 20) prior to wash/stain/scan on a Fluidics Station
450 using the EukGE-WS2v5_450 script, with all reagents prepared according to
Affymetrix guidelines. Arrays were scanned on a GeneChip Scanner 3000–7G.

16S metagenomics and bioinformatics analysis of mouse stool. Bacterial DNA
was isolated from mouse fecal samples using the QIAamp DNA Stool Mini Kit
(Qiagen, Limberg, The Netherlands). RT-PCR was performed to quantify coccoides
using specific primers (forward (Fwd) AAATGACGGTACCTGACTAA and reverse
(Rev) CTTTGAGTTTCATTCTTGCGAA) compared to total bacteria (Fwd
GGTGAATACGTTCCCGG and Rev TACGGCTACCTTGTTACGACTT). The
V3–V4 regions of the 16S ribosomal RNA gene were amplified using the primer pair
341F-805R (Fwd GTGACCTATGAACTCAGGAGTCCCTACGGGNGGC
WGCAG and Rev CTGAGACTTGCACATCGCAGCGACTACHVGGGTA
TCTAATCC) under PCR conditions: 95 °C for 10min, 18 cycles (95 °C for 30 s, 58 °C
for 30 s and 72 °C for 20 s) and 72 °C for 7min. Amplicons were purified and libraries
were prepared by annealing Illumina index primers using PCR conditions: 95 °C for 2
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min, 24 cycles (95 °C for 15 s, 60 °C for 30 s and 72 °C for 30 s) and 72 °C for 7 min.
Libraries were sequenced on the MiSeq using 2 × 310 nucleotide long reads.

Paired-end reads were joined using pear (v0.9.6) and primer sequences were
removed using cutadapt (v1.15). Reads were imported into QIIME (v1.9.1) and
clustered into OTU (pick_open_reference_otus.py, Greengenes v13.8, 97% identity
threshold). Representative sequences were assigned to taxonomy with uclust. The
taxonomic profile was imported into Calypso v8.68 using total sum normalization
and cumulative-sum scaling (CSS). RDA, CCA and ADONIS were used to
elucidate relationship between the overall microbial composition (OTU level) and
the explanatory variables genotype and gender. A generalized linear regression
model (GLM) including gender as factor was applied to identify significantly
different OTUs. Shannon diversity and richness indices were calculated at OTU
level and used as dependent variables in a GLM to assess associations between
diversity and genotype. For the co-housing experiment t-test was applied. All
p values were corrected using Benjamini Hochberg. Principal coordinate analysis
was performed using the Bray–Curtis distance metric.

16S metagenomics analysis of human intestinal biopsies. Bacterial DNA was
isolated from rectal mucosal biopsies using QIAGEN DNeasy Blood & Tissue kit
(Hilden, Germany). DNA samples were processed by the Australian Genome
Research Facility for microbial diversity profiling using the Illumina MiSeq platform,
with 16S sequences amplified using primer pair 341F-806R. Paired-end Illumina reads
were merged with the software PEAR v0.9.635. Subsequently, the merged reads were
processed using the QIIME pipeline v1.9136. Sequences were filtered for quality using
default setting with a quality phred threshold of at least Q20 and at least 75% of
original length. Forward and reverse PCR primers were removed allowing one mis-
match. Sequences were clustered into OTUs using an identity threshold of 97% and
the Greengenes database v13.5 as reference. Subsequently, unclustered sequences were
grouped using QIIME de novo approach. Finally, representative sequences of each
OTU were assigned to a taxonomic lineage using uclust consensus taxonomy
assigner37 and the Greengenes database v13.5. Representative sequences were sear-
ched for matches to sequences assigned to Eukaryotes in the National Center for
Biotechnology Information nucleotide (NCBI nt) database using blastn38 and
excluded from the analysis. OTUs with a size of at least 10 sequences were used for
the analysis. The taxonomic profile was imported to Calypso39 using the default
settings with CSS normalization and log transformation. The normalized table was
used in the software R to calculate Pearson's correlation between the normalized
expression of NLRP1, IL-18 or IFNγ and the predicted OTUs.

Short chain fatty acid analysis. Fecal pellets (10–20 mg) were weighed in a
cryomill tube (FastPrep-24, MP Biomedicals), and then suspended in 0.5%
orthophosphoric acid in water (250 µL, v/v) containing the internal standard 4-
methylvaleric acid (100 µM) to account for any losses during the extraction pro-
cedure. The extraction was further supplemented with 13C-labeled SCFA (13C2-
acetate (50 µM), 13C3-propionate (10 µM) and 13C3-butyrate (10 µM)) to allow
absolute quantitation of these SCFAs. The pellet was homogenized using a cryomill
(Precellys 24/Cryolys, Bertin Technologies) at 6800 rpm for 30 s with 3 cycles with
45 s intervals at 0 °C. Samples were centrifuged at 14,000 rpm for 10 min at 4 °C
and 200 µL of the supernatant mixed with equal volumes of ethyl acetate, prior to
analysis on an Agilent 7890 GC-QQQ-MS (Agilent Technologies, Australia).

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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