Using the Jacobi identity and the commutation relations (2.116) we have that
if o« and S are roots then

[Hi7 [EOH E,BH - _[EOH [Eﬂv HZH - [EB’ [Hiv EOéH
(i + B3i) [Ea, Eg] (2.122)

Since the algebra is closed under the commutator we have that [E,, Fs] must
be an element of the algebra. We have then three possibilities

1. o+ [ is a root of the algebra and then [E,, Eg] ~ E,ip
2. o+ B is not a root and then [E,, Ez] =0

3. o+ = 0 and consequently [E,, E3] must be an element of the Cartan
subalgebra since it commutes with all H; .

Since in a semisimple Lie algebra the roots are not degenerated (see (2.121)),
we conclude from (2.122) that 2« is never a root.

We then see that the knowlegde of the roots of the algebra provides all
the information about the commutation relations and consequently about the
structure of the algebra. From what we have learned so far, we can write the
commutation relations of a semisimple Lie algebra G as

[Hi, H;] = 0 (2.123)
[H;, Eo] = B, (2.124)
NopEotrp if o+ B is a root
[Eo, Eg] = H, ifa+8=0 (2.125)

0 otherwise

where H, = 2a.H/a?, 4,5 = 1,2, ... rank G (see discussion leading to (2.129)
and (2.130)). The structure constants N,g will be determined later. The basis
{H;, E.} is called the Weyl-Cartan basis of a semisimple Lie algebra.



Using the cyclic property of the trace (2.47) (or equivalently, the invariance
property (2.46)) we get that, in a given representation

Tr(|H;, Eo)Es) = Tr(E.|Es, Hy)) (2.126)

and so
(@ + B)Tr(EaEy) = 0 (2.127)

The step operators are orthogonal unless they have equal and opposite roots.
In particular E, is orthogonal to itself. If it was orthogonal to all others, the
Killing form would have vanishing determinant and the algebra would not be
semisimple. Therefore for semisimple algebras if « is a root then —a must also
be a root, and Tr(E,E_,) # 0. The value of Tr(E,E_,) is connected to the
structure constant of the second relation in (2.125). We know that [E,, E_,]
must be an element of the Cartan subalgebra. Therefore we write

[Ea, E_a] = IL’ZHI (2128)

Using (2.108) and the cyclic property of the traceweg\

Tr(z;H;H;) = x; [ B, Boa] = a2

= Tr([E.,E_oJH) —
= Tr([H;, Eo]E-,)
= a;Tr(EE_,)

operators such that

2
Tr(EE_o) = —
o

we obtain the second relation in (2.125).



Again using the invariance property (2.46) we have that

Tr([H;, E,JH;) =Tr([H;, Hi|E,) (2.131)
and so
a;Tr(H;E,) =0 (2.132)
Since by assumption « is a root and therefore different from zero we get
Tr(H;E,) =0 (2.133)

From the above results and (2.108) we see that we can normalize the Cartan
subalgebra generators H; and the step operator E,, such that the Killing form
becomes

T’)“(HZHJ) = 5ij ; ’I,,] — 1,2, ..rank g
TT(HZ'EO) = 0

2
Tr(EaEs) = 50aspo (2.134)

This is the usual normalization of the Weyl-Cartan basis.

Notice that linear combinations (F, + E_,) diagonalizes the Killing form
(2.134). However, by taking real linear combinations of H;, (E, + E_,) and
i(E,— FE_,) one obtains a compact algebra since the eigenvalues of the Killing
form are all of the same sign. On the hand, if one takes real linear combinations
of H;, (F, + E_,) and (E, — E_,) one obtains a non compact algebra.



Example 2.6 In section 2.5 we have discussed the algebra of the group SU(2).
In that case the Cartan subalgebra is generated by T5 only. The step operators
are T, and T corresponding to the roots +1 and —1 respectively . So the rank
of SU(2) is one. We can represent these roots by the diagram 2.1

Y

Figure 2.1: The root diagram of A; (su(2),s0(3) or si(2))



The algebra SU(3)

The group SU(3): 3 x 3 complex unitary matrices with unity determinant

g = el T is hemitian

232 -3°-1=238
det g =1 Tr(T) =0

Gell-Mann matrices

01 0) 0 —i 0
M= 1005 Ad=[7 0 0];
00 0) 0 0 0 Tr(\A;) = 26
1 0 O\ [0 0 1)
Az= 0 =105 A=100 0 [;
00 0) \1 0 0
)\52(8 8 _OZ\ )\6:(8 8 (1)\ simple and compact
\i 0 0 ) \0 1 0)
(00 0 10 0
M=|00 —i|; XN=5[010
\0 i 0 ) 00 -2



. . 1]k fijk
Commutation relations 112131 2
1[4]7] 1
1[5]6] -1
[)\ia)\j] =3 ijk)\k 214161| 1
215 7] 1
3145 1
3167 -1
415|843
67843
Cartan subalgebra: A3 and Ag
Hl — L)\B 9 HQ — L)\8 9 TT(HZH]) N 5ZJ
V2 V2
Eiw = 2Oy £id) . Fywy = ~Og2ie)  Tr(BanBoo) = o



Roots

[Hy, Eya,] = £V2E ., [Hy, Es,] =0;
V2
[Hla Eﬂ:ag] — :|:7Eia2 : [H27 Eﬂ:ag] = *
V2
[H17 E:l:a3] — :|:7Eia3 : [H27 E:l:ag] ==
(07 a3 T
3
root diagram : A on
V2 [3 V2
a1 = (\/57 0) y Qg = (—7, 5) y Q3 = (7,



%)

a3

[Eal ? E_al]

[EOQ ? E_OQ ]

[Ea3 ? E_a3] _

- From the root diagram one can read:
[Eom Ea3] — [Eozsv Eoza] — [Eozza E—al] =0
[E—om E—Oz:a] — [E—ozsa E—aQ] — [E—ozzv Eal] =0
V2H,
\/§ 3 [Ea17 EOéQ] - EOég ; [E—Oéw E—O@] - _E—Ot:s
__Hl + §H2 [quv E—Oé3] — _E—OéQ 5 [E—(Jél?EOés] — ECVQ 3
\/i 3 [Ea:s? E_CYQ] = Fq, ; [E—a?n Eaz] = —FE_,,



Algebra of SU(3): real linear combinations of

H; ; (Eo, +E_o ) ; i (By, —E_, ) 1=12
m=1,2,3

Algebra of SL(3): real linear combinations of

Some other non-compact form: real linear combinations of

HZ 7 (Eaa _|_ E_aa) 7 Z (Eaa o E_aa) Z: 1’2

=12
(EOég T E—Oég) (EOé:a - E—Oés) ¢ 7



2.8 The Properties of roots

We have seen that for a semisimple Lie algebra G, if o is a root then, —« is
also a root. This means that for each step operator FE, there exists a corre-
sponding step operator E,. Together with H, = 2a.H/a? they constitute a
sl(2) subalgebra of G, since from (2.124) and (2.125) one gets

[HaaE:I:a] — :|:2E:ta
E,.E..| = H, (2.145)

This subalgebra is isomorphic to si(2) since H, plays the role of 273 , E,
and F_, play the role of T, and T_ respectively (see section 2.5). Therefore
to each pair of roots a and —a we can construct a sl(2) subalgebra. These
subalgebras, however, do not have to commute among themselves.

We have learned in section 2.5 that T3 , the third component of the angular
momentum, has half integer eigenvalues, and consenquently H, (= 273 ) must
have integer eigenvalues. From (2.124) we have

2003
2

[H,, Es] = Es (2.146)

(87

Therefore if | m) is an eigenstate of H, with an integer eigenvalue m them the

state Eg | m) has eigenvalue m + 2235 since

HoEg|m) = (EgHo+ Ha, Egl) | m)

— (m + 20"5> Es | m) (2.147)

a2



This implies that
200

a2

= integer (2.148)

for any roots a and . This result is crucial in the study of the structure of
semisimple Lie algebras. In order to satisfy this condition the roots must have
some very special properties. From Schwartz inequality we get (The roots live
in a Euclidean space since they inherit the scalar product from the Killing form

of G restricted to the Cartan subalgebra by a.f = Tr(a. HB.H) = Y799 o, 3,)
a.f=|allB]|coshd <|al|p| (2.149)

where 6 is the angle between o and . Consenquently

2.0 2a0.0
o2 B2

=mn = 4(cos0)* < 4 (2.150)

where m and n are integers according to (2.148), and so

0<mn<4 (2.151)

2225 22;/3 0 g_z mn =

0 0 5 | undetermined 1. 227 = +2 and 222’8 =+2 —
_11 _11 % 1 2. 20 — 41 and 2 = +4 —

1 2 | 7 2 3.2 =4dand 2 =41 —
-1 | -2 2 2 2

1 3 | % 3 % =2 and & = 3 then it follows that
-1 | -3 |°F 3

2

B

only two lengths allowed

+5

+2 3

_ 2

3



2.9 The Weyl group

In the section 2.8 we have shown that to each pair of roots a and —« of a
semisimple Lie algebra we can construct a sl(2) (or su(2)) subalgebra generated
by the operators H, , F, and E_, (see eq. (2.145)). We now define the

hermitian operators:

Ti(a) = %(Ea + E_,)

1
T = —(F, — FE_,
2(a) = o |
which satisty the commutation relations

H;, T\ (a)] i T ()
H;, Th(a)] = —iq;Ti(a)

(

Ti(@), Ty(0)] = -H,

(2.152)

(2.153)



The operator T;(«) is the generator of rotations about the 2-axis, and a rota-
tion by 7 is generated by the element

o = exp(inTh(a)) (2.154)

Using (2.27) and (2.153) one can check that

Sy(x.H)S' = x.H+x.oT)(a)sinT + %Q.H(COSW —1)
Q
Q
= o4(x).H (2.155)

where we have defined the operator o,, acting on the root space, by

T.Q
oo(T) =1 — 2?04 (2.156)

This operator corresponds to a reflection w.r.t the plane perpendicular to «.
.

Indeed, if 6 is the angle between x and « then “Fa =| x | cos 015~ Therefore

o.(x) is obtained from x by subtracting a vector parallel (or anti-parallel)
to a and with lenght twice the projection of x in the direction of a. These
reflections are called Weyl reflections on the root space.






We now want to show that if a and § are roots of a given Lie algebra G,
then o,(3) is also a root. Let us introduce the operator

Es = S,EsS. ! (2.157)

where Ej is a step operator of the algebra and S, is defined in (2.154). From
the fact that (see (2.124))

we get, using (2.155) that
Solz.H,EglS;' = [Sax.HS, ', S EsS,"
— [0q(x).H, Eg] (2.159)
= 1.8S,E35," (2.160)
— 1.8E; (2.161)
and so
[0a(2).H, B3] = 2.6E;3 (2.162)

However, if we perform a reflection twice we get back to where we started, i.e.,
0% = 1. Therefore denoting o,(z) by y we get that o,(y) = x, and then from
(2.162)

ly.H, Es] = 04(y)-BEg (2.163)

and so
|H;, E/g] = JQ(B)ZEB (2.164)

Therefore E/B, defined in (2.157), is a step operator corresponding to the root
o.(08). Consequently if o and (8 are roots, o,(f) is necessarily a root (similarly

op(a) ).



Example 2.7 In section 2.7 we have discussed the algebra of the group SU(3).
The root diagram with the planes perpendicular to the roots is given in figure

2.3. One can sees that the root diagram is invariant under Weyl reflections.
We have

01 : O <> —O1 Qy <> (3 —Qy <> —O3
09 : a1 <> O3 Oy <> —0ly —Qq <7 —Q3
O3 . (1 <7 —Qy Q9 <> —Q 3 <7 —0O3

plane 1

plane 2

plane 3

Figure 2.3: The planes orthogonal to the roots of Ay (SU(3) or SL(3))

a1 — QA Qg — —OQi3 Q3 — —Qq
0109 .
—1 —> —O0p —0O9p —> g —Q3 — QA

02071 { o oy o (2.165)

—(X1 —> g —0g — —O1 —Q3 — Q9
Notice that the composition of Weyl reflections is not necessarily a reflection
and that reflections do not commute. In this particular case the operation o401
1s a rotation by an angle o %” and o109 1S its inverse. The set of a Weyl
reflexions and the composition of two or more of them form a group called
the Weyl group. It leaves the root diagram of su(3) invariant. This group is
isomorphic to Ss , and in fact the Weyl group of su(N) is Sy , the group of
permutations of N elements.



Definition 2.15 The Weyl group of a Lie algebra, or of its root system, s
the finite discrete group generated by the Weyl reflections.

Oa s 08, Ony ...
Oa08 , Oq 0~ , Ox03 ...
O 03 On

It is generated by reflection, but not all elements are reflections

It leaves the root system invariant.

But it does not necessarily contain all the symmetries of the root system.

inversion o <> —a  rotations of are symmetries of the SU(3) root system.

But do not belong to its Weyl group.



Automorphisms

Conjugation by S, = exp(inTy()) 1Map

r-H—o,(x) H Eg — E,_(p)

Those are inner automorphisms

Symmetries of the root system which are not in the Weyl group give rise to
outer automorphisms

Example:

H,—~-H, b, - —-FE_,and £F_, — —F,

Due to the invariance of root system under o < —«



Root Systems or Root Diagrams

Definition 2.16 A set ® of vectors in a Fuclidean space 1s the root system
or root diagram of a semistmple Lie algebra G if

1. ® does not contain zero, spans an Euclidean space of the same dimension
as the rank of the Lie algebra G and the number of elements of ® is equal

to dim G - rank G.

2. If a € ® then the only multiples of a in ® are £«

3. Ifa, B € ®, then 2%£ is an integer

o2

4. If a, 8 € ®, then 0,(8) € D, i.e., the Weyl group leaves ® invariant.

Root diagrams of simple Lie algebras - I e
can not decompose into orthogonal sub-diagrams

Figure 2.4: The root diagram of su(2) @ su(2)



Weyl Chambers

The hyperplanes perpendicular to the roots, defined in section 2.9 partition
the root space into finitely many regions. These connected regions (without
the hyperplanes) are called Weyl Chambers . Due to the regularity of the root
systems all the Weyl chambers have the same form and are equivalent.

—Q «

IIIIIIIIIIIIIIIII
IIIIIIIIII

Figure 2.5: The Weyl chambers of A; (su(2),s0(3) or sl(2))

plane 1

0%) \ plane 2

& Weyl Chamber
L

071

»
-

A

plane 3

Figure 2.6: The Weyl chambers of Ay (SU(3) or SL(3))



Fundamental Weyl Chamber (FWC): just a choice

Positive roots

plane 1

Weyl Chamber

- Q7

plane 3

r-a>0—a>0

Definition 2.17 Let x be any vector inside the Fundamental Weyl chamber.
We say a is a positive root if a.x > 0 and a negative root if a.x < 0.

Simple Roots

Definition 2.18 We say a positive root is a simple root if it can not be written

as the sum of two positive roots.



Theorem 2.5 Let o and 8 be non proportional roots. Then
1. ifa.B >0, a— B 15 a root
2. if a.f <0, a+ B is a root

Proof If a.f > 0 we see from table 2.2 that either 2335 or 2;‘—25 is equal to 1.

Without loss of generality we can take 2355 = 1. Therefore

200.3
02

go(B) =B — a=p—«a (2.166)

So, from the invariance of the root system under the Weyl group, 5 — « is also
a root, as well as o — 3. The proof for the case a.f < 0 is similar. O

Theorem 2.6 Let o and [ be distinct simple roots. Then o« — [ 1s not a root
and .0 < 0.

Proof Suppose a — 8 =~y is a root. If v is positive we write a = v+ 3, and if
it is negative we write 8 = a + (—7). In both cases we get a contradiction to
the fact o and [ are simple. Therefore o — 3 can not be a root. From theorem
2.5 we conclude «.fBcan not be positive. O



Theorem 2.7 Let aq, ao,... «, be the set of all stmple roots of a semisimple
Lie algebra G. Then r = rank G and each root o of G can be written as

a=) Ny, (2.167)
a=1

where n, are integers, and they are positive or zero if o is a positive root and
negative or zero if o 1s a negative root.

Proof Suppose the simple roots are linear dependent. Denote by x, and
—1, the positive and negative coeflicients, respectively, of a vanishing linear
combination of the simple roots. Then write

Z TaOly = Z Yplp = U (2.168)
a=1 b=s+1

with each «, being different from each «;. Therefore

v? = Zxayboza.ozb <0 (2.169)
ab

Since v is a vector on an Euclidean space it follows that that the only possibility
is v2 = 0, and so v = 0. But this implies 2, = 1, = 0 and consequently the
simple roots must be linear independent. Now let a be a positve root. If it is
not simple then o = 5 4+ v with 8 and ~ both positive. If 5 and/or v are not
simple we can write them as the sum of two positive roots. Notice that o can
not appear in the expansion of 8 and/or v in terms of two positive roots, since
if x is a vector of the Fundamental Weyl Chamber we have x.ao = x.6 + x.7.
Since they are all positive roots we have rz.a > x.8 and x.av > a.y. Therefore
f or v can not be written as a4+ 0 with ¢ a positive root. For the same reason
£ and v will not appear in the expansion of any further root appearing in

this process. Thus, we can continue such process until « is written as a sum
of simple roots, i.e. a = > _;n,a, with each n, being zero or a positive
integer. Since, for semisimple Lie algebras, the roots come in pairs (« and
—a) it follows that the negative roots are written in terms of the simple roots
in the same way, with n, being zero or negative integers. We then see that
the set of simple roots span the root space. Since they are linear independent,
they form a basis and consequently » = rank G. O



Cartan Matrix

o 2050,-041)
Kab — 9
ey,

a,b=1,2,3...,r =rank

Wraps away redundancy in choice of FWC

SU(2) : K =2
2 0
SO(4) =SU(2) & SU(2) : KZ(O 2)

SU(3) - K = ( ° _21)



1. It provides the angle between any two simple roots since

Qg .Op Oy . Oy

KoKy, = 4 (2.171)

2 2
ab aa

with no summation on a or b, and so

1
0 = — -/ KisKa 2.172
COS 9 bL) b ( 7)

where 6 is the angle between «, and «;,. We take the minus sign because,
according to theorem 2.6, the simple roots always form obtuse angles.

2. The Cartan matrix gives the ratio of the lenghts of any two simple roots

since " )
ab a
=2 2.173
Kba 0412) ( )

3. K., = 2. The diagonal elements do not give any information.
4. From the properties of the roots discussed in section 2.8 we see that
Koy Kpe =4 (cos8)” =0,1,2,3 (2.174)

we do not get 4 because we are taking a # b. But from theorem 2.6 we
have a4.cp < 0 and so the off diagonal elements of the Cartan matrix
can take the values

Kyp=0,—1,-2 -3 (2.175)

with a # b. From the table 2.2 we see that if K,, = —2 or —3 then we
necessarily have K, = —1.

5. If a, and «y are orthogonal, obviously K,, = K;, = 0. At the end of
section 2.9 we have shown that if the root diagram decomponses into
two or more mutually orthogonal subdiagrams then the corresponding
algebra is not simple. As a consequence of that if follows that the Cartan
matrix of a Lie algebra, which is not simple, necessarily has a block-
diagonal form.

6. The Cartan matrix is symmetric only when all roots have the same
lenght.



Dynkin Diagrams

1. Draw r points, each corresponding to one of the r simple roots of the
algebra (r is the rank of the algebra).

2. Join the point a to the point b by K, K, lines. Remember that the
number of lines can be 0, 1, 2 or 3.

3. If the number of lines joining the points a and b exceeds 1 put an arrow
on the lines directed towards the one whose corresponding simple root
has a shorter lenght than the other.

When K., K;,, = 2 or 3 the corresponding simple roots, a, and a; , have
different lenghts. In order to see this, remember that K, or K, is equal to
—1. Taking K, = —1, we have Ky, = —K 1Ky, = —2 or —3. But

% _ Ky 1 (2.180)
Oég B Kba B Kabea .

and consenquently af > a2. So the number of lines joining two points in a

Dynkin diagram gives the ratio of the squared lenghts of the corresponding
simple roots.



SU(2)

SO(4) = SU(2) @ SU(2) ;

SU(3) :



By = S0O(5)

Example 2.14 The algebra of SO(5) has dimension 10 and rank 2. So it
has 8 roots. It root diagram is shown wn figure 2.7. The Fundamental Weyl
Chamber 1is the shaded region. Notice that all roots lie on the hyperplanes
perpendicular to the roots. The positive roots are oy, ag, as and oy as shown
on the diagram. All the others are negative. The simple roots are o and o,

and the ratio of their squared lenghts 1s 2. The angle between them s ?jf. The
Cartan matriz of so(b) is
2 -1
K = < 9 9 ) (2.178)

Oy

~Weyl Chamber

- 1

Figure 2.7: The root diagram and Fundamental Weyl chamber of so(5) (or

sp(2))
(=)




G

Example 2.15 The last simple Lie algebra of rank 2 is the exceptional algebra
Gy . Its root diagram 1s shown wn figure 2.8. It has 12 roots and therefore
dimenston 14. The Fundamental Weyl Chamber is the shaded region. The
positive roots are the ones labelled from 1 to 6 on the diagram. The simple
roots are a; and as. The Cartan matrix s given by

K = ( _23 _21 ) (2.179)

% Weyl Chamber

a3 Qly
Q9 s

Figure 2.8: The root diagram and Fundamental Weyl Chamber of G

=



