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Remind of some
theoretical 1ssues
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Continuous dynamical systems (1)

a continuous dynamical system is a time-
differential equation

X(1) = F(x(1), ), X(t,) =X,
and practically is defined by the function

f(X,1):QxI —>Q

where IcIR. Under mild conditions ( f lipschitzian)
the solution exists for all tc[t,,0[c ]

Qx] is the phase space
(Xp:tp) € QxI are the initial conditions
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Continuous dynamical systems (2)

if f(x) does not depend on time, the system is

autonomous, the phase space is QO and the initial
condition is X,

if xeQcIRY is an N-vector, the system is
N-dimensional

if xeQcfunctional space is a function, the system is
infinito-dimensional and the governing equation
Is a
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Discrete dynamical systems
a discrete dynamical system is a map
Xn+l — g(xn)

and practically is defined by the function
g(xX):Q—>Q

the solution is always defined in (discrete) time

Q) is the phase space
X, is the initial condition
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Stability

a solution is stable if solutions starting close to it
remain close in time (rough definition)

if neighbouring solutions converge to it, then it is
an attractor (rough definition) and it has its own
basin of attraction (the set of all initial conditions
leading to the attractor)

example of attractors are equilibrium, periodic,
quasi-periodic and chaotic solutions
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Basin (1)

basin, or ‘safe basin’:

a set of initial conditions sharing some common
properties

it is a subset of the phase space Qx/

what property? Whatever:

- same steady state behaviour (— same attractor)
- never escaping from a potential well

- never reaching a given displacement threshold
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Basin (2)

we will frequently (but not always) consider
‘basin of attraction’, i.e. the common property is
the attractor

sometimes the basin will be the union of different
basins of attraction

if f(x,0)=f(x,r+7), the system is T-periodic and
repeats itself every T; the basin is then a subset
of Q) for a fixed ¢,

(in dynamical system language we are considering a
stroboscopic Poincare section of the flux)
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What dynamical integrity 1s?
A phenomenological introduction
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Again on stability (1)

stability is a basic and very important concept

it means that under small perturbations the
system does not change the response
substantially

since we live in an imperfect world, in practice
we experience only stable solutions (persisting
after perturbations which are everywhere!)

(but unstable solution are important from a theoretical
point of view, be careful)
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Again on stability (2)

first key question: how small have to be
perturbations?

from a mathematical point of view the magnitude
of perturbations is not important (e.g. 100 js ok)

but from a practical point of view it is important,
since in our real world imperfections have a finite

magnitude
G

stability is not enough for practical applications
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Dynamical integrity (1)

in practice we need robustness to sufficiently
‘large’ perturbations to use an attractor

but perturbations are different initial conditions
— we need a ‘large’ basin of attraction

example: both are stable attractors, but with different
basins of attraction
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Dynamical integrity (2)

we need to study the basin of attraction

P

the study of the topology of basins, of their
evolution by varying parameters, etc., is the
subject of dynamical integrity

extending the previous idea and motivation,
dynamical integrity analyzes basins, not only
basins of attraction

second key question: how to measure the
dynamical integrity? (see later)
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From local to global

e stability is a local property of the attractor
e dynamical integrity is a global property

~ =

from local to global dynamics

-

more information, more knowledge of the system,
more useful

but more difficult (e.g. heavy numerical
simulations required)
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Some considerations

since basins can be complex
(even fractal), dynamical
integrity is not the simple
study of the magnitude of
basins

bad news for designer, good news for
researchers!

let us start the study in more detail, also by
introducing other useful tools
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Dynamical systems background
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unperturbed (no damp., no

excitat.)

Models (mech-math), phase space, potential
an overall picture of dynamical problems
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restoring force
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bounded oscillations  unbounded motion (i.e., ship capsizing)
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Main points for integrity

1) invariant manifolds

2) basin erosion, i.e., how a basin reduces
(in magnitude, in shape, etc.) by varying a
governing paramete

1171 11 1.1 11
from - - to
117 o T11 117 11
““““““““““““““““““
.04 X 1.9 -0.4 X 1.9

3) escape, or getting out of a potential well. It is
inevitable at the end of the erosion
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Relevance of invariant manifolds

Invariant manifolds “provide a useful stepping
stone in the understanding of the overall system

dynamics 7 [Katz & Dowell, 1994]

“...it iIs not an exaggeration to claim that in virtually
every manifestation of chaotic behaviour known thus
far, some type of homoclinic behaviour is lurking in

the baCkground. s o [Kovacic & Wiggins, 1992]

» stable manifold (inset) are boundaries of basins
of attractions (this is why they are so important
for dynamical integrity)

 skeleton of chaotic attractors

 involved in many topological phenomena
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Stable and unstable manifolds (and their distance)

distance=(costant part) eda, +(oscillating part) gy,cos(wt)a,(w)

Helmholtz: x*'+edx —x+x?=¢gy,sin(ot)

1]

unperturbed

-1

harmonic excitation
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intersection

intersection points | -1
T T T I T T T T

_0\.2 T T T T T T T x T 1.8‘

root of chaos and fractality
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Manifold distance: harmonic excitation

\'0'2 l 1'8\

O Y |
17: unstable manifold  stable manifold ;1

E saddle 6{ 7

; / ~ 0 d(t)=eda,+ey,cos(mt) a;()

‘-012 T T T I T T T T .‘x T T T T I T T T :\|-.8‘

The structure of the distance is system-independent

The coefficients are system-dependent, and can be computed
exactly (piece-wise linear systems) or approximately (Melnikov)

homoclinic bifurcation < 0=d=min{d(t)}=cda,—¢y,a;(®)
dy

a,(w)

Vi =0 homoclinic bifurcation threshold
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Relevance of homo/heteroclinic bifurcations

Homo/heteroclinic bifurcations of selected
saddles are the mechanisms responsible for:

» starting of fractalization of basin boundaries
and sensitivity to initial conditions

« appearance/disappearance of chaotic attractors or
their sudden enlargement/reduction

» triggering phenomena of basins erosion

suddenly leading to out-of-well dynamics:
 transition from single-well to cross-well chaos

in multi-well systems
« escape from potential well in single-well systems
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Homoclinic bifurcation, basins of attraction

homoclinic
bifurcation

detached manifolds  manifolds tangency manifolds intersection (tangle)

>
varying one parameter (e.g., increasing excitation amplitude)

associated .~ T T T
basins of i |
attraction \Q y y
erosion . s wow
uneroded basin erosion starts toward complete

erosion and
>| inevitable escape
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Escape from a potential well

e effects of overcoming a potential hill:

increasing dangerousness

\4

» scattered periodic

motions }  destroying the

« scattered chaotic structure by fatigue
motions

« unbounded motions} * failure of the

structure

dynamical effects practical effects

capsizing overturning




Dynamical integrity
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Background: attractors and basins

eroded basins is a critical || using the structure only when

state for the structure erosion is totally prevented
possibly corresponding is too conservative if the
to its incipient failure erosion is not sharp

~ =

necessity of a detailed investigation of the safe basin
integrity/erosion (and of its possible control)

(pioneering: J.M.T. Thompson and co-workers)
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Main lines of analysis of dynamical integrity

considering the definition of “safe basin”

(transient vs steady dynamics, fractality of the basin can be
accepted or must be prevented, etc.)

measuring the integrity of the safe basins
(crucial for quantitatively assessing structural reliability)
investigating basins evolution due to
variation of system parameters & “erosion
pr ofiles ™, which are of great practical interest

(erosion of safe basins is unwanted = necessity of

its reduction: side by side
with a non-controlled, reference, case; important, but out of the

scopes of this talk)
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Issues In the definition of safe basins (1)

e hardening vs softening systems

- different out-of-well phenomena after erosion (cross-
well motion, escape, overturning, etc.)

» hardening systems:
- erosion due to interpenetration of basins from adiacent wells
-> basins do not change in magnitude but become tangled
-> erosion does not usually entail immediate unwanted events

 softening systems:
-> erosion is owed to the penetration of the “infinity” attractor
-> basins reduce in magnitude

-> erosion is dangerous from a practical point of view, because it
leads to immediate failure of the system (e.g., ship capsizing)
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Issues In the definition of safe basins (2)

e basin boundaries being invariant manifolds or not

» theoretical interest

» explanation of erosion in terms of global bifurcations
or other “classical” dynamical events

e fractality vs compactness of the safe basin

 degree of fractality is important because linked to S.I.C.

» during erosion, the basin magnitude can remain
unchanged but becomes tangled, forewarning the boundary
crisis triggering the out-of-well phenomenon

 for fractal basins it makes more sense to refer to the
compact ‘core’ of the basin surrounding in-well
attractors
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Issues In the definition of safe basins (3)

e transient vs steady dynamics

* the correct framework is suggested by the considered

mechanical system (e.g., in some cases, temporary escape
from the potential well may be unessential, while it must be avoided
in other situations)

* in short excitation problems (impacts, seismic loads, etc.)
transient dynamics is important, while with stationary
excitations steady state dynamics are of major interest

 minor importance if the transient is short (e.g., highly
damped systems) while crucial when transient is long

e independence of the excitation phase

 recently highlighted (overturning of rigid blocks)
* need of phase-independent arguments
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Safe basin of attraction
e two possible definitions:

(1) “ine set of all i.c. approaching bounded atiraciors
oelonging to a given potential well as t—c”
- v of classical basins of attraction of all attr.s of a given potential well

- most intuitive and simple
-> ignores transient dynamics

(2) “..precluding any i.c. which leads to...an attractor
or transient which spans both wells...the set of
remaining i.c. that lead to steady state motion confined
to one well...is the safe basin of attraction” [mompson

- eliminates from previous defin. the i.c. leading to transient out-of-well

in both cases the safe basin is a property

of the potential well and not of the attractors
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Comparison of the two definitions

e it is the mechanical application which usually
suggests whether the transient is relevant for
the integrity or not & this automatically provides
the right definition of safe basin

e complementary elements of comparison:

are bounded by invariant manifolds (—
can be studied in terms of dynamical systems theory), and can
be computed by standard numerical techniques

- safe basins (2) require time consuming ad-hoc
algorithms (due to on-line continuous check on the state of the
system) and needs care in defining the boundary of
potential well in the dynamical case

 safe basins (2)
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Quantitative measures of integrity (1)

second key question: how to measure the basin
integrity?

the normalized
magnitude (. in 2D) of the safe basin

* most intuitive, but does not take care of the fractality
of the safe basin, and can be unuseful in practice

the normalized
attractor-basin boundary minimum

* rules out the fractality of the basins and focuses on the
compact part of safe basin surrounding the attractor

 property of the attractor and not of the potential well
* numerically onerous (especially with chaotic attractors)
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Quantitative measures of integrity (2)

e Integrity Factor (IF): normalized i
radius of the largest sphere
entirely belonging to safe basin :

« computationally easy
* measure of the compact part b .
 elimination of fractal tongues from integrity evaluation

I I I I NN NN NN NN NN NN NN NN EE NN NN NN NN NN NN NN NN EE NN NN NN NN NN NN EE NN NN NN NN NN EE NN NN NN NN EEE NN EEEE NN EEEEEEEEDR -
[}
u

(although they are
certainly somehow linked to classical dynamical
phenomena)
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Erosion profiles

e integrity measures permit to study ¢ .M.
how the structure reliability changes > |
when parameters vary

e erosion profiles: integrity measure
as a function of

e jrrespective of safe basin definitions;
exact/approximate information fro

« homo/heteroclinic bifurcation of the manifolds
surrounding the potential well which triggers the erosion

 then erosion proceeds with complex/mechanism's, which
may involve secondary homo/heteroclinic bifurcations

« erosion ends with the onset of out-of-well phenomena
which may represent the physical “failure nl
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Stability vs dynamical integrity analyses (1)

e the end of the erosion corresponds to the disappearance
of the attractor, i.e., to the loss of stability

1LM.4_

governing parameter
- >

Cuneroded | erosion | CUIGBISIESCADEN

safe: unsafe: no attractor:
stability detect it; stability miss it | stability detect it
dyn. int. detect it dyn. int. detect it, dyn. int. detect it
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Stability vs dynamical integrity analyses (2)

i~ ol
[ —d
e | e |
) D
S O
~1 J.,\l
- T
- e

. . I )
this threshold i1s not  governing parameter
|

)
.We” _deflned. : . this threshold
Sometimes It can be . can computed

approximated by -\ :<:| easily by
horr]n.hbl_f- (glotl)lal), | . stability (local)
whnicn Is usually a : analysis

lower bound | '

e more involved erosion profiles may occur
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System Integrity Scenario

evaluated through the

topologicallconcept of ‘ safe basin definition

main global | triggers prerequisites
bifurcation
event leads to
‘ safe basin measure
~o . - e e !
@ S 1 toinfinity to neighbouring wells |
E & | < ship capsize * cross-well chaos :
f?__ 8 I« rigid block overturning - scattered periodic motion !
3 .qé : « MEM sensors pull-in..... « MEM switches pull-in..... :

avoiding or
realizing
escape

avoiding
escape
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Integrity of in-well dynamics

Helmholtz
Duffing
Rigid block
MEMS
Augusti’s 2-d.o.f. model
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Overall aims

Investigating the dynamical integrity of different
nonlinear mechanical oscillators

(Helmholtz, rigid block, MEMS, pendula)

e showing practical examples of erosion profiles
e discussing specific mechanical issues
e discussing dynamical issues

different systems j> different dynamical
phenomena

e safe basin (1), i.e., steady dynamics, always used
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Mechanical and dynamical i1ssues

(Duffing) vs (Helmholtz, rigid
block, MEMS) systems

e symmefric (Duffing, rigid block) vs asymmefric
(Helmholtz, MEMS) systems

e smooth (Helmholtz, Duffing, MEMS) vs non-smooth
(rigid block) systems

e various “failure” phenomena: capsizing
(Helmholtz), overturning (rigid block), pull-in (MEMS)

e erosion of system without (rigid block) and with
(Helmholtz, Duffing, MEMS) internal frequency

e GIM vs IF (rigid block, MEMS)
e harmonic and other excitations
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4t s

A

¥+0.Lx—x+x2 =y (wt) = 2D Zfsm(]a)t#P)
J=171

€y, = overall excitation amplitude
yj/yl; LIfj = parameters governing the shape of the excitation
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Helmholtz: comparison of different excitations (1)

harmonic
harmonic + 1 super.
harmonic + 2 super.

0.75 075
Y7 N
-0.757 "-0.75
“““““““““
0.4 X 16

04 | | 16
0.75 075
y -
-0.75 --0.75
0.4 6
.04 | | 6
0.75 ~0.75
Y7 N
0757 075
“““““““““
.04 16

regularization by adding (clever) superharmonics
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higher excitation
amplitude

harmonic -
harmonic + 1 super.
harmonic + 2 super.

1.1] 1.1 1.1] 1.1

strong reduction for fixed excitation amplitude
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Helmholtz: erosion profiles

\O ! | \ 0'18\ \O ! \ \ 0'18\
1.1 o Ll 11 1.1 ‘ 1.1
] % optimal with i ] optimal with i
B / , 2 superharmonics - B 2 superharmonics -
N harmonic L i L
E i i ] harmonic i g
: ~ L S - .
7 & - -
1 i i imal with i
8 _ L , 1 sogle’:ll?arvr‘:il;nic L 8
i optimal with i ] i
0 1 superharmonic ‘ 0 0 \\ 0
[T T I A T T [T T I T T
0 Y1 0.18 0 Yy 0.18
\O \ \ 0'18\ \O \ \ 0'18\
117 111 1.1] 1.1
i optimal with i ] a i
B 2 superharmonics - B =
] harmonic L i harmonic L
9 i B ] -8
: E; | E; optimal with R .
? O | L o 2 superharmonics - ﬁ
] timal with i i i
8 i 1 sovlt;erflfarjwnic \ L i i 8
i i i optimal with i
- = E 1 superharmonic -
0 ﬁl -0 0] -0
[T T T T T T T T [T T I T T
0 Yy 0.18 0 Yy 0.18

- safe basin: classical basin of attraction; integrity through GIM

* ®=0.81 is the vertex of the escape V-region in parameter plane
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Helmholtz: excitation phase-amplitude chart

contour plot of the GIM with harmonic excitation

0.7 0.9
0.18 _ - 0.18

0.05

e “Dover cliff”’ profiles
e starting points of erosion = homoclinic bifurcations (OK!)

e sharpness close to the vertex, dullness elsewhere
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Duffing oscillator

o ).
=¢y(wt)=¢y, ¥ —JS|n(]a)t+‘{’ )
j=174

€y,— overall excitation amplitude
vi/v1; ¥;= parameters governing the shape of the excitation
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Duffing: comparison of different excitations

harmonic
harmonic + 1 sym. super.
harmonic + 1 unsym. super.

localized vs scattered reduction of fractality
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Duffing: erosion profiles

(a) harmonic, (b)
(c) harmonic + 1 unsym. super. (in the two dlfferent wells)

saved region

0.035 | | | | | 0. 085
1.05 (©), *1.05

) B B
0 _ i
o S B

I ~ i

3 _ i

0 | 0

0.035 £y, 0.085

- safe basin: classical basin of attraction; integrity through IF
* ®=0.80 is very close to the vertex of the escape V-region
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Heteroclinic bifurcation

rocking around the left corner: rocking around the right corner:
¢ +op—p-atn1)=0, ¢<0, p+op—ptat n)=0, ¢>0,
impact (Newton law): 1=2 77/ c»-periodic generic excitation:
p(")=ro(r), =0, 7’(t):zj ijOS(ja)t+ ';VJ)

overturned positions ¢=+7/2
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Rigid block: erosion profiles, different measures
a=0.2, 6=0.02, r=0.95, ©=3.5 (slightly damped) — harmonic excitation

105 by Classical safe basins |
T / o ® Nno resonance

g - . frequency around

< ] N ._,__Ig [ which focusing

~ : numerical analyses
& 5 e likely effect of a

ol : _ secondary global

. 2 N : bifurcation
0.05 Y 0.20

e GIM misses sharp fall or erosion profile

e high values after fall: absence of resonance?
e homoclinic bifurcation slowly triggers erosion
e effects of non-smoothness
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7,=0.20 a=0.2, 6=0.5, r=0.7, »=1.5 7,=0.35
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a=0.2, 6=0.5, r=0.7, »=1.5 (strongly damped)

11 -1-F-

harmonic + 1 good

17 superharmonic
0.9 -
0.8 -
0.7 harmonic + 1 bad
superharmonic
06 I \I ; I ; I '\1,1 |

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

e now coincidence between the critical threshold

and sudden falls of profiles, for all excitations
(different from what observed in other examples)
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e nonlinear dynamics of a thermoelastic

microbeam

e axial load, modeling residual stresses

e concentrated electrodynamic transverse force

applied at mid-span
(the actuation)

e both ends are fixed

wit) —

P [
b A
Microbeam :
¥ %
A h

Stationary Electrode /

e geomefric nonlinearity due to membrane

stiffness

e ultra-high vacuum environment

Stefano Lenci — DACS - Polytechnic University of Marche — Ancona — Italy — 55



€Z€CtFOd€S ““““‘\\\\\\\\\\7

0.4 o0 x=0.5687 .~ g
\_jmicrobeam ’ '
20 17 f

» small electrodynamic force %

« small visco- and thermo-elastic damping 1 0 Q‘ L |
0.4 A

— temperature condensation Y Y Y

( 7S ) sin( i+ ¥,)
)’é+ax+,3x3— A - = &9 — M+ A5 i ]
4= \ (1 x)2

substrate at x=1 overall excitation amplitu&e

\

>0 magnitude of the electrostatic force, = the square of the constant (DC) input voltage
() frequency of the periodic electrodynamic force

nj>0 and ‘Pj . relative amplitudes and phases of the j-th harmonic of the electrodynamic
force, i.e., of the oscillating (AC) voltage
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e many bifurcation diagrams built

O
o
[y
Oﬂ

only non-resonant attractor

escape /

boundary crises

both resonant and non-resonant attractors .
hom. bif.

only resOmaat
attractor

o

P33

T

only non-resonant attractor AYA—

e

0.55

é

0.75

same qualitative
features of the
Helmholtz oscillator

V-shaped region of
escape (dynamic
pull-in), vertex at
0=0.655

degenerate cusp
bifurcation at
0=0.737 and
n=0.000461
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e classical basins of attraction (stationary regime)

0=0.7 first SN homoclinic bifurcation 7 -0.00107s n

0.0000, |0.0010, |0.0015,
0.0020, |0.0025, 0.0030,
10.0035, 0.0040, 0.0045|

non-resonant

I

resonant

eroding fractal
tongues

T safe

_ | dynamic pull-in
second SN sudden incursion " (escape) at
of fractal tongues n=0.01338
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0.8

0.6 -

04 -

0.2 -

comparison of erosion profiles with Integrity Factor
(I.F.) and Global Integrity Measure (G.I.M.)

Harmonic e |L.F. better takes into
account the
instantaneous fractal
tongues penetration

o LF.<G.I.LM. — IL.F. more
—— |F. conservative — more
- GIM reliable for practical

excitation

0.0000 0.0010 0.0020 0.0030 0.0040

excitation amplitude . .
applications

confirms rigid block results
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e effects of a single added superharmonic (N=2)

o/ =-1.5 17,/1,=0 0=0.7, 1=0.0025
bad harmonic
n,/n,=0.5 \ n,/1m,=1.66
e the superharmonic may have dangerous effects if
not properly designed

e good results also for non optimal superharmonic

e marginal increments around optimality
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0=0.7, =0.0025

—A—él.F.
——GI.M

n2/nl

15 05 05 15 25 35 45

i optimum at n,/n,=1.66

e almost optimal results on a broad band —
— practically appealing

e sharpness (I.F.) vs dullness (G.I.M.) due to different
detection of instantaneous fractal penetration
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e effects of superharmomics on erosion profiles <’

1 1

0.8 - 0.8 -

0.6 0.6 -

04 0.4 - —e— Harmonic

—a— Harmonic + 1 superharmonic (h1/h2=0.5 - good)

02 | —®—Hamonic +1superharmonic (h1/h2=0.5 - good) 0.2 - —A— Harmonic + 1 superharmonic (h1/h2=1.66 - optimal)
—a— Harmonic + 1 superharmonic (h1/h2=1.66 - optimal)

—e— Harmonic

excitation amplitude excitation amplitude

O T T T T 1 O
0.0020 0.0022 0.0024 0.0026 0.0028 0.0030 0.0020 0.0022 0.0024 0.0026 0.0028 0.0030

e shifting of erosion profiles

e same horizontal shift for both measures, different
vertical shift (due to sharpness)

e profiles shapes maintained by superharmonics
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Orlando, Goncalves,
Rega, Lenci, 2009

perfect system

geometrically
imperfect system

undeformed deformed
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Melnikov prediction

P Vs escape
for perfect and
imperfect system
0 | | | | |
0.2 0.25 0.3 0.35 0.4 0.45 0.5
Q
{ Berfect system
7 Imperfect system
0.9 —

erosion profiles =,
without and with ~,. |
superharmonics |, |

Harmonico

1 Super Harmonico [(Global)
Harmonico

1 Super Harmonico [(one-side)

| | ' |

0 0.02 0.04 0.06 0.08
F
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Integrity of competing
(In-In/in-out) attractors

Duffing
Parametrically excited pendulum
Parametrically excited cylindrical shell
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Duffing: competing non-resonant/resonant attractors (1)

3. - competing basins for increasing
i ~excitation amplitude:
_ St L
i - a) only non-resonant attractor
] I ~  b) onset of resonant attractor (at
-  snB): sudden fall down of S, vs
] - new born S,
i D, B IF
1 - 100 | | |
7 B —a—right non-resonant
il . 0g0 L ——right resonant
-37 [ \ \ [ R A B | _right'We"
0 )7 (¢=0.025,y=1,0=115) ().4 | |
a) F =0.027 b) F = 0.029 WEONC
4 | 4 ,
v | M v\ 0]
o N N _—
| N F
i N 4 . / 0000 0025 0050 0075 0100 0125 0150
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Duffin

g. competing

<

T

1
“

IF

1.00

0.80 -

C)

:

y

0

F =0.041

.

]
(¢=0.025,v=1,0=115) (.4

d) F = 0.060 e

0.20 -

040+ S

non-resonant/resonant attractors (2)

c) fractalization of left/right well
basin boundaries (hb,): no
effect on compact basins

d) maximum basin of S,

—8—right non-resonant
——right resonant

—right-well

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0.00 \ ‘
0000 002 0050

Stefano Lenci —

005 0100 0125 0150
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Duffing: competing non-resonant/resonant attractors (3)

SL

~e) penetration of fractal tongues

I inside S, basin

- smoothly decreasing profiles till

B IF
1.00

i 080+

0

T T | T 1
(¢=0.025, y=1, Q=1.15)

f) F =0.130

060 -

040+

0.20 -

f) near disappearance of S, (at
snA) and residual integrity of S,

—8—right non-resonant
——right resonant

—right-well

0.00 |
0.000 0025

0.050

005 0100 0125 0150
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X+0.1x +[1+ pcos(2¢)]sin(x) =0

" rotating

e “an antique but evergreen o
physical model” [Butikov]

_woscillating

e benchmark for main features of robustness and
dynamical integrity of competing attractors

e permits a cross-study of in-well attractors J
(oscillations) and out-of-well attractors (rotations)

e has been recently shown to be of interest for
practical applications [Xu et al., 2007]
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first rotating attractor last oscillating attractor , event | comment

\
0.367 HOML1 homoclinic bifurcation of HS
06 0.418 | SN R1 appear through a SN bifurcation
4 - e

| 0.196 H the rest position loses stability. O2 appears

PF (sym. break.) 0.655 HOM2 homoclinic bifurcation of DR1

0.888 SN R3 appear through a SN bifurcation
0.935 HET heteroclinic bifurcation of DR1 and Ir
0.948 PD R3 undergo a PD bifurcation followed by a PD cascade
0.961 CR the PD cascade of R3 ends by a CR. R3 disappear
1.082 SN O6 appears through a SN bifurcation
06 undergoes a PF bifurcation, and two oscillating solutions of
1.111 PF period 6, still named O6, appear
1.116 PD 06 undergo a PD bifurcation followed by a PD cascade
1.118 CR the PD cascade of O6 ends by a CR. O6 disappear

‘ I
0

attractors
02
R1
R3
06

main saddles

HS

DR1

IR1

Ir
bifurcations
SN, PD

PF, H

CR
HOM/HET

— T T . B R 02 undergoes a PF bifurcation, and two oscillating solutions of

p (h=0.1, ®=2) 1.260 PF period 2, still named O2, appear
1.332 PD 02 undergo a PD bifurcation followed by a PD cascade
main oscillating solution of period 2 1.342 CR the PD cascade of O2 ends by a CR. O2 disappear
main rotating solutions of period 1 - -
secondary rotating solutions of period 3 1.349 PD R1 undergo a PD bifurcation followed by a PD cascade
secondary oscillating solution of period 6 the PD cascade of R1 ends by a CR. R1 disappear, and tumbling
1.809 CR chaos becomes the unique attractor

hilltop saddles
direct saddles born at the SN bifurcation where R1 appear

inverse saddles after the PD bifurcation of R1 . fo ur main competing

inverse saddle replacing the rest position at the H bifurcation

saddle-node, period-doubling attractors (02, R1, 06, R3)

pitchfork (or symmetry breaking), Hopf
crisis

romeclinicheteroclinic e =2 (parametric resonance)
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(1) starts when R1 are born by a SN
(2) R1 basins grow up against the O2 basin. This is
described by IF and GIM, to a different extent

(3) both integrity curves of O2 have the classical
“Dover cliff’ behaviour
(4) IF and GIM integrity curves of R1 have a
qualitative behaviour
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1 -

IF
Il A(5)
0.6 - 02
0.4 -
\ul®)
02 4 N\
VAR A N

040 060 080 1.00 120 140 1.60 180 2.00 040 0.60 080 1.00 120 140 1.60 180 2.00

(5) sharp fall due to the homoclinic bifurcation of
DR1: evidenced by IF but not by GIM

(6) sharp fall due to the het. bif. of DR1 and Ir:
drastic reduction of the compact core of O2
basin clearly revealed by IF. With GIM this event

is hardly recognizable (somehow hidden by the almost

simultaneous appearance of R3)
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1 -

0.8

0.6 A

0.4

0.2 ~

which is commonly less performan
provides more information than the IF
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1 -

IF
0.8 A
A
0.6 02
0.4 A
B
R1
R N — (10)
R3
0 T T /—\\C) \\\ T T p 1 T T ! T ! T 1
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80  2.00 0.40  0.60 0.80  1.00 1.20 140 1.60 1.80 2.00

(9) O6 suddenly disappears, and O2 recovers a

residual integrity by mcreasmg the GIM and by

keeping the IF constant g

(10) no further special events
up to the end of the
integrity profiles (by the BC of

_n7

the respective attractors)
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1 -

IF
0.8 A
A
0.6 02
0.4 A
B
R1
02+
R3M\ 0 p
0 T /—\ T T T T 1 T T ! T ! T 1
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80  2.00 0.40  0.60 0.80  1.00 1.20 140 1.60 1.80 2.00

e IF and GIM erosion profiles of

O2 are qualitatively similar. + P
Differences in the final part: |
GIM—O0 rapidly, IF —0 slowly
e GIM>>IF in the final part, thus | =
GIM overestimates integrity of . “EEiaiET
02, which is residual -
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1 -

IF
0.8 A
A
0.6 02
0.4 A
B
R1
02+
R3A\ 0 p
0 T /—\ T T T T 1 T T ! T ! T 1
0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80  2.00 0.40  0.60 0.80  1.00 1.20 140 1.60 1.80 2.00

R1 change ‘status’ for growing

p. Initially they erode other | TR
(passive) attractors. Then,
they are eroded by the s

secondary attractors, and
finally they disappear by / .

reciprocal (self-)erosion
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1 -

0.8 ~

0.6 A

0.4 ~

0.2

0

R3 /'\O p

040 060 080 1.00 120 140 1.60 180 2.00 040 0.60 080 1.00 120 140 1.60 180 2.00

o differences between the IF and the GIM of R1 are
much more marked than those of O2

o GIM is (almost monotonically) increasing up to 0.5

e [F Initially increases, reaches a maximum, starts
a dull decrement, undergoes a sudden falls due
to R3, slightly increases and then slowly
decreases again up to the end
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040 0.60 080 1.00 120 140 1.60 180 2.00

e qualitative difference of IF and GIM: GIM is
basically also ak’ea}ure of ,
whereas IF is a meaﬁr\of , of
major interest for safe éshn\s

e sharp (0O2) vs flat (R1) IF prohe \
e optimal operating conditions for R1
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£,,+0.150761¢,, +1.043914¢,, +9.274215¢,, &, —1.040775T, cos( Q7)<
~1.043914T, £, +0.274896¢, +0.188199¢,, 2, =0

,, +0.02086 ¢, —4.16310T, £, —4.16310T; cos(Q7) &, +69.756712¢,,
+2.318554¢2 +0.094099¢7 &, =0

Goncalves,
Silva,
Rega,
Lenci,

2009

Cq1, Coo Dasic, axisymm. mode with twice number of half waves in axial direction

1.2

0.8

F)
r
rFJ
4
r
T - ’
0 I
F
2
rd
4
0.4 — -
hAIN

1
1
1
1Tch

z.\
’ AY

0
-8

QH
post-buckling response path
(I, , static load)

0

|
4

8

0.4

o
0.4
o -0.8;
1.2 il

-1.6 —

-2

-8

4

\
0

\
4

8

=

pre-buckling
potential well

two post-
buckling
wells

-
five equilibrium points for I ,=0.4

(two heteroclinic and two homoclinic orbits)
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increasing 16 !
axial load | ] . .
amplitude I, . H ! 0 .0 |
in the main e C ) i
parametric . |
instability = g 0?135 E—— K |
. W T E K
region S 02 |
|a F
B CxD Q !
8 — | b |
H | ] e S
1 . -
-16 | | I | | | , | | i
0 0.4 0.8 1.2 1.6 2
five different broad classes of solution: L

(1) trivial pre-buckling,

(2) non-trivial 2T within the pre-buckling well,

(3) small amplitude vibrations within each of the post-buckling wells,
(4) medium amplitude cross-well,

(5) very large-amplitude cross-well period three, robust in the range
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__%_ - -
Co = =
. = =
o e e
o o
75 - =
_| .
5— 54
25— 25— 2.5 -
5 | 5 | 5 |
= 0 - 0 = 0
wn an LN
=} i = i =} _
2.5 - 2.5 — 2.5 —
5 5 5
T i | -,
-7.5 | T | T | T T T | T | T -7-5 i I T I T I | I | I | T -7.5 T | T | T T T | T | T
75 5 25 0 25 5 15 75 &5 25 0 25 5 15 75 5 25 0 25 5 15
C G C

cross-sections of 4D basins of attraction: in-well pre-buckliné attractors
Black: trivial. Light and dark blue: period two. White: escape
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' 4 4
=11 =11 =11

Topological complexity of in-well and out-of-well attractors.

Remark: Being basins of attraction in a 4D hyper-volume, it is not easy to

detect touching of the hypersphere with the nearest competing basin
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4 |
‘1 O1
i Q2
03
3
L 2
1 — 1
N
0 -\ | — | |
0 0.4 0.8 1.2 1.6 2

I‘1
erosion profiles of competing attractors
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Dynamical integrity
and experiments

MEMS
Parametrically excited pendulum
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Motivations

concept, definitions,

vl theoretical work 4 Safe basins, integrity
measures, efc.

" analyses of the dynamics of
various mechanical systems
and model by extensive

. numerical simulations

vl numerical work <

" is dynamical integrity also
useful in experiments?

experimental work? <

can it help in explaining
. some ‘strange’ behaviour?
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Al Saleem, Younis, JMM, 2008; Ruzziconi, Younis, Lenci, 2009

lower electrode  upper electrode capacitive
(substrate) (proof mass) accelerometer

-~

cantilever beams 7

the proof mass is suspended over the substrate by the two cantilever
beams

s.d.o.f. k % M mi + c(x) X + kx = AV e +V e cos(Qr)]’
2
model - - I, . 2(d - x)
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dot and crosses = experimental escape threshold

45 | | | | |
o %, <°/ | theoretical threshold
o inevitable o IS .
7/l S [T
5 escape /7. experimental threshold
&% O y // /
A R
% . \\\:\t]nga n practical y /i/// f'/%/
= & NG escape Y rrme
S (non-resOna\rlt)\\:\\ (pull-in) ///(rgﬁ(/)/rfan T — d. b
S 2 = fice Iscrepancy between
> \ //// ////// -
SN\ theoretical and
10 | unsaleNG” 7 .
(non-resonant + resonant) ~ X " safe (jump) experlm en tal
5 Disapp. (SN) -I\safe (jump) I
(non-resonant ) d
) | | | | threshol

I
165 170 175 180 185 190 195
Frequency (Hz)

e escape (pull-in) occurs when IF is 40%:
remarkable coincidence of experimental pull-in
and contour level of IF
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dot=experimental escape threshold

45
07 inevitable °‘/\°F
[=)
escape ISE
354 Y X A
90" (pull-in) V)
G, . < N
— 301 % LR
:-f) \ practical /i///// j%
8 25- escape ST
g /(resorant)
< 20- /ly // L
Q
>
15 -
10+ SN ~ L
(non-resonant + resonant) SN + safe (jump)
5+ Disapp. (SN) -} safe (jump) B
(non-resonant )
O I I I I T
165 170 175 180 185 190 195
Frequency (Hz)
g 0,02i g 0.02
%’ 0,01i %‘ 0.01
§ 70.00— § )

05— T T T T T
-420 -300 -200 -100 00 100 200 300 400 520
Displacement (um)

I L D D D
-420 -30.0 200 -100 00 100 200 300 400 520
Displacement (um)

the discrepancy can
be explained by
noting that the
basins are eroded,
so that, while
theoretically
present, they are
practically
unaccesible, not
even by slow
sweeping (to much
noise)
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Luzi, Venturi,

&+ 0.015¢ +[L+ p cos(wt)]sin(p) =0 Lenci, 2008

e damping measured
experimentally from free
damped oscillations

e main interest in

e rotations have small basins excitation
with respect to (competing)
oscillations, so they are
difficult to be detected

experimentally

e theoretical analysis
developed before
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e analytical (numerical) vs experimental results

0.50 - BCx

experimental points:
A yotation
® rotation 2T

B oscillation

PD
0.45 - "

0.40 ~
0.35
0.30 ~
0.25 ~
0.20
0.15 1.

0.10 ~ SNz

0.05 A

0.00 e \ \ \ \ \ \ \ \ Q)
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

e PD captured experimentally
e theory: rotations exist in a large region
e experiments: rotations exist in a narrow strip
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e the difference can be explained by looking at
the erosion profile of rotation:

1.2

1,

0.8 -

0.6 -

0.4 -

0.2 -

0

" due to secondary attractors

SN

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400

e only in the central strip IF is high enough to
‘overcome’ imperfections
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Conclusions on experiments

these examples agree in showing that when
the dynamical integrity is residual the
attractor cannot be detected

loss of dynamical integrity corresponds to
practical instability

IF is a good measure to assess practical
existence of attractors

regions of large IF facilitate the application of
control methods
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pendulum, p=0.170, ©=1.30, ¢=0.015
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pendulum, p=0.250, ©=1.30, ¢=0.015
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pendulum, p=0.300, ©=1.30, ¢=0.015
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