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14.00 -14.45 
Historical Framework  - A Global Dynamics Perspective in the Nonlinear 
Analysis of Systems/Structures 

15.00 -15.45 Achieving Load Carrying Capacity: Theoretical and Practical Stability 

16.00 -16.45 Dynamical Integrity: Concepts and Tools_1 
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14.00 -14.45 Dynamical Integrity: Concepts and Tools_2 

15.00 -15.45 Global Dynamics of Engineering Systems 

16.00 -16.45 Dynamical integrity: Interpreting/Predicting Experimental Response 
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14.00 -14.45 Techniques for Control of Chaos 

15.00 -15.45 A Unified Framework for Controlling Global Dynamics 

16.00 -16.45 Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics 
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14.00 -14.45 
A Noncontact AFM:  (a) Nonlinear Dynamics and Feedback Control  
                                     (b) Global Effects of a Locally-tailored Control  

15.00 -15.45 Exploiting Global Dynamics to Control AFM Robustness  

16.00 -16.45 Dynamical Integrity as a Novel Paradigm for Safe/Aware Design 



Outline 

1. Main stability concepts at a glance 

2. Local versus global safety in statics and dynamics  

3. Solution/attractor robustness in phase space; the 

relevant ‘safe’ basins (through an archetypal model) 

4. Solution/attractor robustness and basin 

compactness in control parameter space (through an 

archetypal model) 

5. Robustness/erosion profiles  

6. Moving from theoretical to practical stability 



 Load carrying capacity: an old issue associated with the 

concept of loss of stability  

 Stability: to be discussed by also considering the effects 

of (static or dynamic) imperfections, always present in 

nature/technology  A system must be able to sustain 

changes in both initial conditions and control 

parameters, without changing its desired outcome  

 Robustness: a fundamental issue in analysis and design 

 Dynamic integrity: a global safety concept essential to 

secure practical stability of systems 

 Historical concepts and contributions at a glance …….. 

Achieving load carrying capacity 



 First fundamental contribution:               famous 

Euler buckling load of a column 

 Loss of load carrying capacity identified as  

     the system instability occurring at the  

     local bifurcation point of an equilibrium path  

     when changing a control parameter (axial 

     load) –  talking, of course, in modern language 

 A substantially static notion of stability 

Leonhard Euler (1707-1783) 



 Rigorous formulation within a more 

    dynamically oriented notion of stability       

 Lyapunov (or classical) local stability roughly 

states that under  

         infinitesimal changes in initial conditions  

         the system must keep the reference response 

 Major role in the solutions of a variety of 

engineering problems ensuing from modern 

technological developments 

             Aleksander Lyapunov (1857-1918) 



 Koiter realized that model imperfections are 

crucial in lowering the critical load 

 Due to imperfections, the branching point becomes a snap 

point, which (in the dangerous cases) occurs at a lower load 

threshold 

Warner Koiter (1914-1997) 

Within the mechanical community, 

looking at the effects of changes of 

control parameters:   

 Dynamical character of stability was clear, but 

the reference framework was still ‘static’ 



 Later on, bifurcation theory provided a 

mathematical background to this engineering 

intuition: 

• transcritical and pitchfork bifurcations (branching) are 

structurally unstable (i.e., unobservable in the real 

world, unless somehow forcing them) and become 

saddle-node bifurcations (snap) after system 

perturbations (imperfections in mechanical language) 

 Structural stability: studying the effect of  

perturbations of the system with respect to 

parameters and not w.r.t. initial conditions, as 

in classical local stability 

Structural stability  



 When ‘flutter’ or ‘galloping’ 

of real systems came into 

play, dynamics definitely 

entered the concept of loss of 

stability 

 In bifurcation theory 

language, the Hopf 

bifurcation was ‘discovered’ 

and experimentally observed, 

according to the fact that it is 

structurally stable 

Dynamic stability  



Key point:  how small have to be perturbations? 

From a mathematical point of view the magnitude of 

perturbations is not important (e.g. 10-50 is ok) 

But from a practical point of view it is important, since in 

our real world imperfections have a finite magnitude 

Local (or classical, Lyapunov) stability is not enough 

 for practical applications !! 

From theoretical to practical stability  

Classical stability: small changes of initial conditions 

do not affect substantially the system response  



Practical stability of attractors  

to be addressed in an  

actually dynamical environment 

Around  the  90s:  

 By considering a global approach, notion of 

dynamic integrity introduced, which is 

fundamental for properly pursuing the safety 

of structures 

 Basins of attraction – and their variation with 

a varying control parameter - become  

fundamental tools 

Michael  Thompson (1937-) 



Solution robustness in phase space 

Already in the static case: 

approaching a (local) bifurcation, the basin of reference 

solution shrinks to zero and becomes unsafely small, 

although the solution is still stable in the sense of 

Lyapunov  

 pursued response non-robust with respect to finite 

dynamic perturbations, though being its basin integer 

(no fractality)  

Properly complementing the solely local theoretical 

character of the classical concept of stability with a 

global practical one 



An archetypal asymmetric model 
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 Single-dof mechanical model 

typically used to illustrate  

post-buckling behavior and 

imperfection sensitivity of 

structural systems liable to 

unstable buckling 

 Q = “static” imperfection 

 No damping and no dynamic excitation  
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Equilibrium points and critical loads 

)cos(
)sin(1

1
1)sin( b

b
b 











 qp

0

0.08

- b

p

2


Ep

)(
2

6

2
qOqpK  



Euler critical load 

Koiter critical load 



Global safety 

 Phase portrait 
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p=0.05 

q=0.01 

 ‘basin of attraction’ of equilibrium point 

 The larger the area, the larger the ability of the 

system to support finite changes in i.c.   

     the larger the safety of the structure 



Basin and actual critical load reduction 

 Area shrinks as approaching  

critical load, with or without 

‘static’ imperfections, and 

‘rapidly’ becomes too small for 

real world, where finite 

dynamic imperfections exist 

 ‘Basin of attraction’ under (even 

transient) dynamic perturbations 

shrinks to the attractor   

               (Koiter) SN bifurcation 

overestimates the actual 

critical load 
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Area decrement without imperfections 

(q=0) 
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GIM

pT

pE

 In the neighbourhood of pE the safe region is merely 

residual and unsafe            practical pT (‘Thompson’) 

critical load much less than pE (Euler) 

Let’s accept a reduction 

to 10% (very low !) of 

initial area (GIM): 

 then pT is 59% of pE 

In parameter space 

From Euler 

to Thompson 



Area decrement with ‘static’ imperfections 

Same qualitative 

behaviour 
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From Koiter  

to Thompson 

(q0) 

For q = 0.02 

practical pT 

(‘Thompson’) 

critical load also  

lower than pK 

(Koiter) 

  

 



With dynamic excitation  

 What happens when a dynamic excitation is 

applied, e.g.,  q+q1 sin(ωt) ? 

 The phase space augments of one dimension, but this is not 

a problem, and can be overcome, e.g., by considering 

Poincaré sections 

 Also damping is added for realistic engineering analysis 
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Periodic solutions  
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Reference case without 

dynamical excitation (q1=0) 

 The saddle-node (SN) decreases by increasing q1 

 A period doubling (PD) reduces the stability 

threshold (above PDlow the solution may jump out of well) 

c=0.01, q=0.01 

PDlow 

(q10) 



Stability threshold with dynamic excitation 
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 Interaction between static (p) and dynamic (q1) loads 

causes meaningful loss of load carrying capacity 

(w.r.t. Koiter one) 

q+q1 sin(ωt)  

• periodic, 

• quasiperiodic, 

• chaotic  

attractors  

 



 Existence/competition of more attractors 

 Basin of attraction no longer safe against small but finite 

incidental changes of i.c. 

 Basin is eroded and loses its compactness/integrity 

 Load carrying capacity depends on practical stability 

under imperfections/perturbations 

Fractalization 
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Major effects of dynamic excitations 
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 Attractors are no longer equilibrium points, but 

periodic, quasi-periodic, … chaotic orbits 

 The topology of the basins of attraction changes 

significantly; fractality commonly appears 

 Dynamic integrity: 

             a major role 

     in determining the                                             

load carrying capacity 



Practical stability under imperfections/perturbations  

 W.r. to dynamic imperfections: initial conditions in phase space 

solution/attractor robustness and basin properties 

Static solution:        robust if large safe basin 

Dynamic attractor:   - robust if large and compact (i.e. integer) basin  

             - non-robust if large but fractal basin 

 W.r. to system imperfections:  parameters in control space 

how solution/attractor robustness and basin compactness in phase 

space evolve with a varying control parameter  

Static solution:        robustness profile of safe basin 

Dynamic attractor:  - robustness profiles of (integer) competing basins 

            - erosion profile with integrity reduction 

Robustness profiles: size reduction/increase of integer basin vs competing one  

Erosion profiles: reduction of basin integrity, to be explained also in terms of 

global bifurcation phenomena (homo/heteroclinic tangencies, crises, etc.)  



Robustness profile                  Erosion profile 
Increasing axial load,  

fixed dynamic excitation 

 Practical (Thompson) 

stability threshold about 1/3 

of theoretical (Koiter) 

critical load 

Increasing dynamic excitation, 

fixed axial load 

 

 Practical (Thompson) load 

carrying capacity much 

lower than Koiter one, e.g.:  

residual IF=80% (practically uneroded basins) →  

Thompson threshold = 22 % Koiter threshold 
 



Hints for design 

 Koiter load can be determined upon fixing the 

value of the expected static imperfection q 

 Thompson load can be determined upon fixing  

the acceptable minimal integrity  

      (which corresponds to fixing the maximum allowed change in i.c. 

       that can be safely supported by the system; in other words, this 

       corresponds to fixing the “safety factor”) 

 Both Koiter and Thompson theories are thus 

‘applicable’ with the knowledge of q and GIM 



A summary interaction picture 

 Interaction of static axial load and dynamic excitation 

 Dangerously residual robustness/compactness occurs 

well before disappearance of solution/attractor  

•  dynamic excitation  

    reduces Koiter practical  

    critical load  

•  static axial load  

   reduces Thompson  

   escape dynamic 

   excitation  



Theoretical vs practical stability  

I.M. 

governing parameter 

end of robustness/erosion profile corresponds to attractor 

disappearance, i.e. to loss of stability 

stable unstable 

safe different attractor unsafe 

threshold computed 

(approximated) by a 

local (global) 

bifurcation analysis 

threshold easily  

computed by local 

stability analysis 

theoretical 

practical 

dynamic 

integrity is 

necessary 


